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a b s t r a c t

Gate-modulated Raman spectroscopy is a method of making Raman measurements while changing the
Fermi energy by applying a gate voltage to the sample. In this review article, we overview the techniques
of gate modulated Raman spectroscopy in graphene and carbon nanotubes (1) for assigning the
combination phonon modes, (2) for understanding the optical processes involved in Raman spectra,
and (3) for understanding the electron–phonon interaction not only for zone-center (q¼0) phonons but
also for double resonance phonons (q≠0). The gate modulated Raman spectra are used in carbon
nanotubes, too, especially for understanding electron–electron interaction from the electronic Raman
spectra that are observed in metallic carbon nanotubes. Finally we discuss our recent work on gate-
modulated Raman spectroscopy on bilayer graphene in which we explain how to get information about
the interlayer interactions from gate modulated Raman spectroscopy.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Raman scattering is the inelastic scattering of light in a solid (or
a molecule) in which the energy shifts (or Raman shifts) from the
incident light are frequently measured in units of cm−1

(1 eV¼8065 cm−1) [1,2]. Raman spectroscopy has been widely
used in nano-carbon materials, such as graphene and single wall
carbon nanotubes (SWNTs) mainly for sample characterization,
such as for defect states in graphene samples [3] or for the
diameter distribution of SWNTs [4]. When we observe the Raman
spectra by changing the energy of the incident light, the Raman
intensity is enhanced when the incident or scattered light has the
same energy as the optical transition energy of the solid, which is
called resonance Raman spectroscopy. From resonance Raman
spectroscopy, we can get information about the electronic struc-
ture of the solid which is especially significant in low-dimensional
materials such as SWNTs or graphene because the density of states
becomes singular and these characteristic effects are known as the
van Hove singularity and exciton effects [5].

The energy loss (or gain) of the incident light in the inelastic
scattering process is due to generating (or annihilating) elemen-
tary excitations, such as phonons or an electron–hole pair. The
elementary excitations are coupled to photo-excited carriers as far

as the corresponding interactions exist. For example, a phonon
can couple with a photo-excited electron by an electron–phonon
(or exciton–phonon) interaction. The generation of an electron–hole
pair in the metallic energy bands of metallic nanotubes (m-SWNTs)
or graphene can couple with photo-excited electrons (or excitons) by
the electron–electron interaction. Further, a phonon directly generat-
ing an electron–hole pair is known as an infrared absorption of the
phonon, and a photon is directly coupled with an atomic vibration by
an electric-dipole interaction. Thus, we have many possible optical
processes for photo-excited carriers in the inelastic scattering of light
and we must investigate what kind of optical processes are dominant
in the observed Raman spectra by changing parameters such as the
incident laser energy (the resonance Raman effect), pressure, tem-
perature, and the Fermi energy.

When the observed Raman spectra occur by phonon generating
processes, we can check the phonon emitting process by observing
the change of the Raman shifts when we substitute 12C for 13C
(the isotope effect, see for example Ref. [6]). When the observed
Raman spectra occur by generating an electron–hole pair, we can
examine this process by observing the change in the Raman
spectra resulting from changing the Fermi energy (gate modulated
Raman effect). By increasing (or decreasing) the Fermi energy, the
electron–hole pair generation can be suppressed because the final
state (the initial state) becomes occupied (unoccupied). Even
though we understand by gate modulated Raman spectroscopy
that the Raman spectra are due to electron–hole pair generation,
we do not know what kind of interaction is dominant for

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ssc

Solid State Communications

0038-1098/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ssc.2013.05.010

n Corresponding author. Tel.: +81 22 795 7754; fax: +81 22 795 6447.
E-mail address: rsaito@flex.phys.tohoku.ac.jp (R. Saito).

Solid State Communications 175-176 (2013) 18–34



generating an electron–hole pair, since there are two possibilities
for the interaction. One is the electron–electron interaction and
another is the electron–phonon interaction, as is discussed below.
Thus by combining experiment with theory, we need to analyze
the measured spectra in detail to answer this question.

For the case of metallic SWNTs or monolayer graphene, the
phonon energy in the presence of the electron–phonon interaction
is calculated using a perturbation Hamiltonian, in which the
phonon frequency and phonon life time are “renormalized” in
the sense that the phonon energy in a solid is originally normal-
ized by the electron–phonon interaction which is based on
discussions by Bardeen and Pine in the 1950s. The phonon soft-
ening phenomena by which an electron–hole pair is virtually
excited in the perturbation expansion by the electron–phonon
interaction is generally called “the Kohn anomaly effect” [7,8]. The
Kohn anomaly effect is a non-adiabatic phenomena in the sense
that the electron system can not remain in the ground state and
the electron system always is shaken up by an atomic vibration. In
a system for which an adiabatic approximation works, on the
other hand, the electrons quickly follow the atomic vibration while
keeping their electronic ground state. In a non-adiabatic system,
the electrons can not relax quickly to their ground states, since a
typical time for the relevant electron–phonon interaction (100 fs)
is comparable or longer than the period of the lattice vibration
(10–100 fs). Such a situation for the electrons can be imagined by
considering water in a vibrating cup. The Kohn anomaly effect can
be suppressed by changing the Fermi energy, and the effect can be
probed by gate modulated Raman spectroscopy. Here we discuss
how the Raman spectra is modified by changing the Fermi energy
and what unique information we can get from such a gate-
modulated Raman spectroscopy study.

Another interaction which can generate an electron–hole pair
in the metallic energy band is the electron–electron interaction for
photo-excited carriers or excitons in SWNTs. A part of the energy
of the exciton can be transferred to generate another exciton in the
metallic energy band in SWNTs by an electron–electron interac-
tion. The inelastic scattering of the exciton which can be observed
by a Raman spectroscopy approach is called electronic Raman
spectroscopy (ERS). Similar to the Kohn anomaly, the ERS process
can be suppressed by changing the Fermi energy, so that the ERS
process can also be probed by gated modulated spectroscopy.

Finally we briefly explain: (1) first order and second order
Raman scattering as well as (2) the intravalley and intervalley
scattering of excitons in SWNTs or of an electron–hole pair in
graphene [1].

In Raman spectroscopy, we have several characteristic features
in the Raman spectra associated with different phonon modes and
we also have ERS. Each optical process is either a first-order or
a second-order Raman scattering process. In first-order Stokes
(or anti-Stokes) Raman scattering, a Raman active phonon is emitted
(or absorbed). If the phonon has a wavevector −q, a photo-excited
electron at a state with wavevector k is scattered to a state with
wavevector k+q. In order for the scattered electron to recombine
with a hole having the same wavevector k, the phonon wavevector

of the first-order scattering should be q¼0, which we call the
zone-center phonon mode. Even though we have a phonon
dispersion relation with many q's, we only see the zone-center
phonon at the Γ point in the reciprocal lattice (or Brillouin zone) in
the first-order Raman process. In second-order scattering pro-
cesses, on the other hand, two phonons can be emitted in an
optical process induced by a photo-excited electron. In this case,
an electron–hole pair of q and −q with a q≠0 phonon can be
emitted in a two-phonon Raman process. If the two phonons are
in the same phonon dispersion curve, the Raman spectrum is an
overtone mode with twice the energy of the phonon, while in
other cases, the Raman spectrum consists of a combination mode
with the sum of the energies of the two phonons. In the second-
order Raman spectra, since the limitation of q¼0 in the first-order
Raman spectra is relaxed and since there are many combinations
of phonon modes, the assignment of the combination modes for a
given Raman spectra is not easy especially for cases when the
energies of two combination modes are close to each other. Here
we give an overview showing how gate-modulated Raman spec-
troscopy can assign the combination modes even though the
Raman features are close in frequency or the features are almost
overlapped in frequency.

In Section 2, we introduce the experimental technique of the
gate modulated Raman spectroscopy. In Section 3, we discuss the
Kohn anomaly theoretically. In Section 4 we overview the main
results of the gate-modulated Raman spectra and its analysis by
theoretical considerations. In Section 5, electronic Raman spectra
are overviewed, and in Section 6, Raman results for the in-plane
and interlayer modes in bilayer graphene are given. In Section 7, a
summary and future directions for the gate-modulation technique
are given.

2. Gate modulated devices

Here we explain how to change the Fermi energy in the
experiment by back gated and top gated devices. Two experi-
mental techniques are employed: (1) back gated devices on a
p-type silicon substrate and (2) top gated devices used with
electro-chemical doping. In the back gated devices, as shown in
Fig. 1(a), an applied gate voltage Vg can induce a potential
difference between the silicon substrate and the graphene with a
metallic contact separated by a silicon oxide (SiO2, insulator) layer.
When the Vg is positive or negative relative to the Si substrate,
electrons or holes, respectively, are accumulated in the graphene
layer. In top gated devices as shown in Fig. 1(b), the polymer
electrolyte (liquid, ionic conductor) is put on the sample. For the
polymer electrolyte, for example, we have used a mixture of
lithium perchlorate (LiClO4) and poly(methyl methacrylate)
(PMMA, molar weight 120,000) with a weight ratio of 0.30:1,
dissolved in propylene carbonate (PC) to form a precursor. For
examples of other electrolyte solutions, see Refs. [9,10,51]. Once
the precursor is ready for use, we apply it to the graphene device.
The solvent from the precursor evaporates and a thin film of

Fig. 1. (Color online) (a) Schematic view of the back gate graphene device. A variable voltage Vg can be applied between the graphene and the p-type silicon substrate.
The device is treated as a parallel plate capacitor where the silicon oxide layer is the dielectric medium, (b) schematic view of top gate graphene devices using electrolyte
solutions and (c) proposed model of the electric double-layer region, where dtg is the Debye length.
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transparent polymer electrolyte is formed on top of the device.
The device can be baked at about 90 1C to remove residual
moisture and alcohol. Since the polymer and the salt are dissolved
in a solvent, the final material is liquid but it is very viscous and it
does not evaporate with laser light exposure.

When the gate voltage Vg is applied between the sample and a
counter electrode, positive (negative) ions from the electrolyte are
accumulated near the graphene sample and they form an electric
double layer (Fig. 1(c)) combined with the electrons (holes) in the
graphene sample. In this case, we do not need any insulators to
separate the negative and positive carriers since the ions of the
double layer are surrounded by molecules which can work as an
insulating layer for the electric double layer.

It is noted here that we will not discuss here the conventional
top-gated semiconducting devices in which an insulating layer and
then the top gate are deposited on top of the graphene sample.
This type of top-gated device is essentially the same as the bottom
gated devices, and such a device is not suitable for optical
measurements whereby the incident light comes to the top of
the sample.

The merits of the bottom gated device are (1) this is a well
established technique in semiconductor technology and (2) such
devices have a fast response to carrier accumulation. The merits of
the top gate with electro-chemical doping are that: (1) there is no
need to make any insulating layers (and thus it is easily fabri-
cated), (2) the transparent top gate is suitable for Raman measure-
ments. Another important merit of the top gate device is that
(3) we can change the Fermi energy over a relatively wide range
since the size of the solvent molecule is much smaller (several nm)
than the width of the SiO2 layers (100–300 nm) that are used in
the bottom gated devices. The disadvantage of the bottom gate
approach is that we cannot change the Fermi energy over a large
energy range compared with the electro-chemical doping techni-
que. If we make a very thin oxide layer on the order of a nm, the
breakdown voltage of the insulator occurs at a relatively low Vg.
The disadvantages of the top gate device with electro-chemical
doping are: (1) the response of ions is much slower than the
response of electrons or holes and (2) we need to cover the
electrolyte with a protective layer if we want to use the device for
real applications. Thus one or the other of the two devices can be
selected in a complementary way depending on the purpose of the
device. Hereafter, we discuss the relationship between the Fermi
energy and the gate voltage for each case.

2.1. Back gated devices

The amount of charge induced in graphene can be modeled by
considering the system as a parallel plate capacitor, where one
plate is the planar graphene sheet and the other one is the
conducting p-doped silicon substrate. The silicon dioxide layer
works as the dielectric medium between the two conditions (see
Fig. 1(a)). The geometric capacitance per unit area CG of this
system is given by

CG ¼
εε0
d

Fm−2; ð1Þ

where ε0 ¼ 8:854$ 10−12 Fm−1 and ε are the permittivity of
vacuum and of the SiO2 layer, respectively, and d is the thickness
of the SiO2 layer. Then, the number of electrons per unit of area,
n, transferred to the graphene by applying a voltage Vg is given
by [11]

n¼
εε0ðVg−V0Þ

ed
¼ 7:2$ 1010 cm−2 V−1 ðVg−V0Þ; ð2Þ

where e¼ 1:602$ 10−19C is the electron charge. Here we have
used d¼300 nm and ε¼ 3:9 for the silicon dioxide [12] and V0 is
a constant voltage to adjust the Fermi level to the Dirac point,

i.e., the charge neutrality point. The position of the Dirac point can
be located by placement at the minimum in the conductivity
between the source and the drain electrodes by appropriately
varying the Vg.

The value of n in Eq. (2) is equal to the number of states per unit
of area N/A in a two-dimensional system, which is given by [13]

n¼
N
A
¼

gk2F
4π

; ð3Þ

where N is the total number of states, A is the area of the unit cell
in reciprocal space, g¼4 is the spin (up and down) and valley
ðK; K′Þ degeneracy, and kF is the wavevector at the Fermi level.
When we assume the linear dispersion EF ¼ ℏvFkF, the Fermi
energy EF is written in terms of Vg from Eqs. (1), (2) and (3)

EF ¼ ℏvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCGjVg−V0j=e

q
: ð4Þ

When we use CG ¼ 1:15$ 10−4 F=m2, vF ¼ 1:0$ 106 m=s, and
Vg−V0 ¼ 1:0 V, then we get EF ¼ 31:2 meV and the corresponding
value of the Fermi wavevector becomes kF ¼ 4:75$ 10−3 Å

−1
.

2.2. Top gated devices with electro-chemical doping

Charges in monolayer graphene can also be induced by means
of a top gate device. The advantages of using a polymer electrolyte
are that the polymer electrolyte enables the application of large
electric fields that are capable of inducing significant carrier
densities over 1013 cm−2. The transparency of the film makes it
convenient for optical studies of graphene-based devices.

The polymer electrolytes are formed by dissolving salts in soft
polymeric materials. The electric conduction mechanism involves
the motion of oppositely charged ions in opposite directions in the
polymer matrix. At the electrode–polymer interface, the ion flow is
intentionally stopped before chemical reactions could occur at the
interface. An electrical double layer (also known as a Debye layer)
of opposing charges is then formed between the gate material and
the polymer matrix material as shown in Fig. 1(c), and the
electrical double layer is maintained as long as the gate voltage
does not exceed the threshold for electrochemical reactions
(∼1:5–2:0 V in our case). The distance between the oppositely-
charged layers at the electrodes is given by the Debye screening
length which is typically on the order of a few nanometers [14].
Because of the small Debye length, the geometric capacitance of
the system (Eq. (1)) is much larger than that in usual back gated
devices using Si/SiO2, where the distance between the two
oppositely-charged layers is about 300 nm. Consequently, the
graphene sample can be charged with a one order of magnitude
higher density of carriers.

The application of a gate voltage Vg creates an electrostatic
potential difference ϕ between the graphene and the gate elec-
trode, and the addition of charge carriers leads to a shift in the
Fermi level EF. Therefore, Vg is given by

Vg ¼
EF
e
þ ϕ; ð5Þ

with EF=e being determined by the chemical (quantum) capaci-
tance of the graphene, and ϕ¼ ne=CG being determined by the
geometrical capacitance CG [15]. In classical electromagnetism, all
positive and negative charges appear at the surface of a metal and
the electric field inside of the metal is zero because of complete
screening by these surface charges. The capacitance thus obtained
is called a geometrical capacitance. However, since the graphene is
one atomic layer thick, the electric field created by the gate is only
partially screened and thus the capacity becomes less than the
geometrical capacitance. The capacitance obtained when consid-
ering such a screening effect is called the quantum capacitance.
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In the back gate device, the graphene on a Si/SiO2 substrate
with 300 nm of SiO2 has a small geometric capacitance per unit
area CG ¼ 1:15$ 10−8 F cm−2 (Eq. (1)). Thus, for a typical value of
the carrier density n¼ 1$ 1013 cm−2, the potential drop becomes
ϕ¼ 140 V, which is much larger than EF=e∼0:37 V for monolayer
graphene and the contribution from EF=e in Eq. (5) can then be
neglected. Thus in the case of the back gated (bg) device, Vbg≈ϕ
and the doping concentration n is expressed simply by n¼ ηVbg,
where η¼ CG=e is a factor that shows that the carrier density can
be accumulated by a given Vbg.

Similar to the back gated systems discussed above, top gated
systems can also be modeled as a parallel-plate capacitor, but now
the Debye layer is the dielectric layer made of polymer molecules
whose thickness is a few nanometers (∼1–5 nm) [15]. As an
example, assuming a Debye length of 2 nm, and taking the
dielectric constant ε of the polymer PEG to be ∼5 [15] or of PMMA
to be ∼2:6 [16], we obtain a gate capacitance per unit area
CG ¼ 2:2$ 10−6 F cm−2 for PEG and CG ¼ 1:2$ 10−6 F cm−2 for
PMMA, which is 100 times larger than the geometric capacitance
for the back gate system. In this case, the first term in Eq. (5)
cannot be neglected.

Substituting ϕ¼ ne=CG and Eq. (2) for n and Eq. (4) for EF into
Eq. (5), we get

Vg ¼
ℏvF

ffiffiffiffiffiffi
πn
p

e
þ

ne
CG

: ð6Þ

Using the numerical values CG ¼ 2:2$ 10−6 F cm−2 and
vF ¼ 1:0$ 106 m=s, we obtain a relation for Vg in terms of the
doping density n as

Vg ¼ 1:16$ 10−7 ffiffiffi
n
p
þ 0:728$ 10−13n; ð7Þ

where n is in units of cm−2. For example, for Vg ¼ 1 V, we get a
value of n¼ 9$ 1012 cm−2, and EF ¼ 0:35 eV for this top gated
device. The back gate and top gate devices discussed in Section 2
are used experimentally to vary the carrier density and the Fermi
level in realizing the physical concepts involved in using Raman
spectroscopy to study phonon renormalization in metallic nano-
tubes and graphene.

Finally it is noted that the two type of gates (solution gated and
electrostatically gated) have a different sign convention for carriers
on a graphene sample for a given gate voltage. For a positive gate
voltage, electrons are accumulated on graphene for the bottom
gate measurements, while holes are accumulated on graphene for
the top gate measurements. Likewise, for a negative gate voltage,
holes are accumulated on graphene for the bottom gate measure-
ments and electrons are accumulated for the top gate measure-
ments. It worth mentioning that the different conventions are
needed because the top gate voltages are applied through a
potentiostat device (in this case the graphene flake is not

grounded), while the back gate voltages are applied through a
DC source generator, in which the graphene is grounded.

3. The Kohn anomaly

The formalism used to describe phonon renormalization is
called the Kohn anomaly which is the most important for
determining the phonon frequency and line width in graphene
and metallic carbon nanotubes and both quantities are measured
in a Raman scattering measurement. More generally, the Kohn
anomaly is a phonon softening phenomena in the presence of the
free electrons in a metallic energy band. In the normal metal, only
electrons at the Fermi energy with the wavevector −kF can be
excited by absorbing a phonon through the electron–phonon
interaction. In the case of graphene and metallic carbon nano-
tubes, the final states are generally unoccupied states in the same
metallic energy band with a wavevector kF and with phonon
wavevectors that are thus 2kF (as shown in Fig. 2(a)). The opposite
relaxation process from kF to −kF is possible, too, if the state at −kF
is not occupied. Using second order perturbation theory, the
phonon energy is expressed by [8]

ℏωq ¼ ℏωð0Þq þ 2∑
kk′

jVkk′j2

ℏω0
q−E

eh þ iγq=2
$ ðf h−f eÞ ð8Þ

where k and k′ are, respectively, wave-vectors for the initial and
final electronic states; q≡k−k′ is the phonon wave-vector;
Eeh≡ðEek′−E

h
kÞ is the e–h pair energy; ωð0Þq is the phonon frequency;

γq is the phonon decay width; f hðf eÞ is the Fermi distribution
function for holes (electrons) and Vkk′ gives the electron phonon
matrix element. For a specific phonon frequency ωq, the phonon
frequency correction term due to its self-energy is given by
ℏωq−ℏωð0Þq ≡½Πðωq; EF Þ'. Here Πðωq; EF Þ is a complex quantity with
a real part that is a shift of the phonon energy ℏωq−ℏωð0Þq , where
ℏω0

q is the phonon energy in the adiabatic approximation. The
imaginary part Im½Πðωq; EF Þ' of Eq. (8) gives the decay width, γq,
which determines the inverse lifetime of the phonon [8]. The γq is
determined self-consistently in the sense that the imaginary part
of ℏωq is γq.

In a normal metal, the phonon energy at q¼ 2kF becomes soft
because the energy denominator of Eq. (8) becomes negative since
Eeh for a given q is larger than ℏω0

q. Phonon softening at q¼ 2kF can
be observed experimentally by inelastic neutron scattering mea-
surements. This phenomenon in a three dimensional metal is
generally called the Kohn anomaly [7]. Especially for one-
dimensional metals (or low dimensional materials) with a “nesting
Fermi surface” (parallel Fermi surfaces of kF and −kF), the Kohn
anomaly can become significant. In fact, the phonon frequency ℏωq

can obtain a negative (or more correctly a pure imaginary) value,
and this situation is called the giant Kohn anomaly. In the case of

kF2

kF kF
E F

q=0
q=0

k

E E

k

q=0 K’

K

Γ
KK

K’

K’

K K’

Fig. 2. The Kohn anomaly, (a) in the case of a normal metal, an electron is excited from −kF to kF by absorbing a q¼ 2kF phonon. If we consider the second order perturbation
process for a phonon, the phonon energy with q¼ 2kF becomes soft, (b) in the case of graphene, an electron is excited from the π to πn band within the same k by absorbing a
q¼0 phonon which becomes soft. There is another possibility of the excitation for q¼ KK ′¼ ΓK for the scattering from one valley K to another valley K′ (intervalley
scattering), (c) the two dimensional Brillouin zone of graphene and the circles represent equi-energy circles around the K and K′ points. An arrow shows the intervalley
scattering.
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the giant Kohn anomaly, the lattice becomes distorted (Peierls'
instability) and a charge density wave (CDW) for the electronic
charge appears.

In the case of undoped graphene, since there are occupied π
and unoccupied πn energy bands that touch each other at the Dirac
point which coincides with the Fermi energy, a phonon with q¼0
(Fig. 2(b)) can excite an electron only from the π to πn band.
Further, since the slope of the phonon energy dispersion is much
smaller than the slope of the electron energy dispersion, only q∼0
phonon excitation is allowed within a Dirac cone. However, in the
hexagonal Brillouin zone of graphene, as shown in Fig. 2(c), there
are two inequivalent hexagonal corners in k space, so that we
expect electron excitation from π at the Dirac cone around the K
point to be scattered to πn at the Dirac cone around the K′ point as
shown in Fig. 2(b). This scattering process of an electron (or hole)
is called intervalley (EV) scattering, while the scattering within the
same Dirac cone is called intravalley (AV) scattering [17]. In the
case of EV scattering, the phonon wave vector q corresponds to ΓK
and either the phonon near the K point or a phonon near the K′
point is relevant. In Section 4, we will discuss the combination
phonon modes corresponding to the EV scattering processes.
Hereafter in this section, we discuss AV q¼0 phonons.

The zone-centered q¼0 phonon softening phenomena can be
observed by Raman spectroscopy as a phonon frequency change
and a spectral width broadening. The spectral width broadening
occurs because the phonon now has a finite life time which comes
from the interaction of the phonon with electrons. This interaction
occurs because the phonon frequency of the optical phonon mode
is relatively high (47 THz, 20 fs) compared with the time for the
electron–phonon interaction time (∼100 fs) estimated by the
uncertainty relation. Quantum mechanics tells us that an elemen-
tary excitation with a finite life time behaves like a “quasiparticle”.
In the presence of an electron–phonon interaction, a phonon at
q¼0 in graphene becomes such a quasiparticle.

In the case of m-SWNTs, the LO phonon mode (G band) which
is seen in the Raman spectra at a frequency of 1590 cm−1 for
s-SWNTs becomes soft for m-SWNTs and is observed around

1550 cm−1, but with a frequency that depends on the nanotube
diameter. In the Raman spectra of a single wall carbon nanotube
(SWNT), the two in-plane optical phonon modes, that is, the
longitudinal and in-plane transverse optical (LO and iTO) phonon
modes at the Γ point at the center of the hexagonal, two-
dimensional Brillouin zone (2D BZ), which are degenerate in
graphene, split into two peaks, G+ and G− peaks, respectively,
due to the curvature of the cylindrical nanotube surface [4,18,19].
Since the splitting of the two peaks for SWNTs depends on the
nanotube curvature, the frequency between the G+ and G− modes
is thus inversely proportional to the square of the diameter dt of
SWNTs (curvature). For the case of s-SWNTs, the G+ mode does not
change with changing dt because the vibration is parallel to the
nanotube axis, but the G− frequency, whose vibration is perpendi-
cular to the nanotube axis, decreases with decreasing dt [20]. In
the case of m-SWNTs, the G peak for the LO mode G− appears at a
lower frequency than the G peaks for the iTO mode G+ [21]. The
spectra of G− for metallic SWNTs show a much larger spectral
width than that for semiconducting SWNTs. Furthermore, the
spectral G− feature shows an asymmetric lineshape as a function
of frequency which is known as the Breit–Wigner–Fano (BWF)
lineshape and is expressed by the following formula [22]:

IðωÞ ¼ I0
½1þ ðω−ωBWFÞ=qBWFΓBWF'2

1þ ½ðω−ωBWFÞ=ΓBWF'2
; ð9Þ

where 1=qBWF is an asymmetry factor and ωBWF is the BWF peak
frequency at maximum intensity I0, while ΓBWF is the half width of
the BWF peak. If 1=qBWF ¼ 0, then IðωÞ shows a Lorentzian line-
shape and thus the function Eq. (9) is a natural extension of the
spectral function. The origin of the asymmetric lineshape is the
interference effect (the Fano effect) of the discrete (phonon) states
with the continuous (electron excitation) spectra [23].

The Kohn anomaly effects depend on the Fermi energy since
the Fermi distribution function in Eq. (8) is modified by the self-
energy correction term [24] if optical processes in the perturbation
expansion are suppressed by occupying an unoccupied state
(or unoccupying the occupied state) with increasing (decreasing)
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Fig. 3. (a), (c), (e) Experimental G band Raman spectra which are given for various values of Vg, taking advantage of the electro-chemical doping effect. (a) Vg ¼ 1:5 to −1.5 V,
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and (f) 0.39 to −0.39 eV. Nanotube chiralities are: (a) and (b) (11, 11), (c) and (d) (24, 4), (e) and (f) (12,0), and adjacent curves differ by ΔV ¼ 0:1 V. Taken from Ref. [27].
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Fermi energy which can be accomplished through the use of an
applied gate voltage. When Eeh is smaller (larger) than ℏω0

q in the
denominator of Eq. (8), the corresponding processes contribute to
the phonon hardening (softening) [25]. Thus the suppression of
the lower energy excitation below ℏω0

q by increasing or decreasing
the Fermi energy causes the phonon frequency to become soft and
to have a minimum at EF ¼ 7ℏω0

q=2. The Fermi energy depen-
dence of ωq can be clearly observed at a low temperature (10 K),
since the Fermi distribution becomes a step function of energy
[26]. Further, the Kohn anomaly of m-SWNTs is shown for various
values of the gate voltage Vg in Fig. 3 where the Kohn anomaly is
seen to have a nanotube chirality dependence.

In Fig. 3, we also show the calculated Raman spectra (below) as
a function of the Fermi energy for (b) (11,11) armchair, (d) (22,4)
chiral and (f) (12,0) zigzag m-SWNTs, which reproduces the
experimental Raman spectra well for m-SWNTs of the same
chirality, respectively, in Fig. 3(a), (c) and (e) (above). The reason
why the Kohn anomaly effect depends on the chirality is that the
electron–phonon (more precisely exciton-phonon) interaction is k
dependent around the K point in the two-dimensional Brillouin
zone (for details see Refs. [25,27,28]).

We can also see the Kohn anomaly effect in the Raman spectra
for the radial breathing phonon modes (RBM) [29], but the phonon
softening effect is small (2–3 cm−1) for the RBMs because: (1) the
phonon energy of a RBM is much smaller than for the G band and
(2) the time period of vibration (100–200 fs) is even longer than
the time period for the electron–phonon interaction (100 fs) [8].

In the case of graphene, the optical mode also shows a Kohn
anomaly effect [15] but the broadening and asymmetry are not so
large when the Fermi energy is located at the Dirac point because
the electronic density of states of graphene at the Dirac point is
zero while the density of states of m-SWNTs at the Dirac point is
finite. The difference in the density of states behavior in graphene
and in carbon nanotubes comes from the different dimensionality
of the two systems. When the Fermi energy is shifted from the
Dirac point in graphene, we can see some asymmetry in the
Raman spectra.

In the case of graphite, when we intercalate many alkali metal
ions between graphene layers (to form graphite intercalation
compounds (GICs) [31]) we can also observe BWF line shapes.
The asymmetric shape in GICs depends on the stage number [30]
as shown in Fig. 4. Here the stage number n is defined by the
number of graphene layers between subsequent alkali metal ion
layers. Stages 1, 2 and 3 Rb intercalated GICs correspond, respec-
tively, to the C8Rb, C24Rb, and C36Rb stoichiometries. In stage n
GICs, a layer of ions is intercalated between every n graphene
layers. With decreasing stage number from 3 to 1, the shift and
broadening of the G-band increases and in the case of stage 1, we
can clearly see an asymmetric Raman lineshape. It is pointed out
here that in the case of GICs with higher stage than 2, the electrons
donated from the alkali metal ions to the graphene layers are
inhomogeneously distributed in the direction perpendicular to the
graphene plane, and thus the Fermi energies of the bounding layer
adjacent to the intercalate layer and EF for the internal graphene
layers measured from the Dirac point are not the same as one
another. That is, the bounding graphene layer close to the inter-
calate layer is strongly perturbed, but the interior layers are only
weakly perturbed. Thus we need to consider the contributions to
the Raman spectra from both the bounding and interior layers
separately in the analysis of the Raman spectra [31].

4. The Kohn anomaly for the q≠0 phonon of graphene

In this section, we only discuss the Kohn anomaly for
q≠0 phonons in terms of gate modulated Raman spectroscopy.

As shown in Fig. 2(c), there are two Dirac cones around the two
inequivalent hexagonal, two-dimensional Brillouin zone corners,
the K and K′ points. For a given electron–hole (e–h) pair energy
excited by a q≠0 phonon, there are two possible scattering
processes, namely intravalley (AV, q¼0 and q∼0) and intervalley
(EV, q≠0) (Fig. 5(a)) scattering [17]. For the one phonon Raman
spectra, only q¼0 occurs and thus only AV phonon scattering can
be observed, because after the scattering of a photo-excited
electron at k+q that electron should be recombined with a hole
at k, which requires the condition that q¼0. However, for two
phonon Raman spectra, the q≠0 phonon scattering for both AV and
EV processes is possible, and we can observe either overtone or
combination phonon modes for either of the two AV or EV
processes with q and −q. It is however noted that a combination
mode between an AV and an EV phonon is not possible since we
must select the pair of q and −q phonons for a combination mode.

In two phonon Raman spectroscopy, an important concept is
the enforcement of the double resonance conditions for the
phonon wavevector q, that is, q¼2k and q∼0 in which k is the
absolute value of the electron wavevector measured relative to the
K point [3,19,32], as shown in Fig. 5(b). In Fig. 5(a) and (b), we

Fig. 4. Raman spectra of C8Rb (stage 1), C24Rb (stage 2), and C36Rb (stage 3)
graphite intercalation compounds. In the case of the C8Rb, the G band spectrum is
significantly softened and shows an asymmetric lineshape with a peak intensity
around 1400 cm−1. The figure is taken from Ref. [30].
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Fig. 5. (a) The intravalley (AV) and intervalley (EV) scattering process of a photo
excited electron. A photo-excited electron at k on an equi-energy circle of a Dirac
cone around the K point in the hexagonal Brillouin zone is scattered to a k+q state
on another equi-energy circle around a K or K′ point, respectively, for an AV or EV
process by emitting a phonon with −q. (b) The q¼0 and q¼2k conditions of double
resonance Raman spectroscopy. For a given k point, many k+q states are possible
on a circle. When we rotate k around an equi-energy line near the K point, the
circles of k+q are rotated around the K point if we plot the q vector from the Γ
point. When we consider the phonon density of states for such a q vector, the inner
q∼0 and outer q¼ j2kj vectors becomes singular, which we identify as the q¼0 and
q¼2k conditions for double resonance Raman spectroscopy.
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show an equi-energy circle for electron wavevector k around the K
point where optical absorption occurs for a given laser energy EL. If
we assume that the π and πn energy bands are symmetric around
the Dirac point energy, then we obtain, EðkÞ ¼ 7

ffiffiffi
3
p

γ0ka (γ0 is the
nearest neighbor tight binding energy, a is the lattice constant,
and k¼ jkj.), In this case, the energy of the photoexcited electron
is EL=2 measured from the Dirac point energy and thus
k¼ EL=2

ffiffiffi
3
p

γ0a. For a given k, the photo-excited electron scatters
to k+q states at the K′ point by emitting a −q phonon
(EV scattering, Fig. 5(b)). The possible k+q states are then on
another equi-energy circle with an energy of EL=2−ℏωð−qÞ in
which the phonon energy ℏωð−qÞ is much smaller than EL and
thus we can make the approximation that the two circles have the
same diameter. When we plot q for a given k measured from the Γ
point, the vector moves on a circle near the K point and when we
rotate k around the K point, then the circles rotate around the K
point forming a donut shape, as shown in Fig. 5(b). In the case of
Fig. 5(b), the outer q¼ 2jkj and inner q∼0 regions give a singularity
in the phonon density of states for the EV scattering phonons.
Thus in the two phonon Raman spectra, phonons at q¼2k or q∼0
are observed. When we increase EL, k also increases and the
observed phonon energy for q¼2k changes along the phonon
dispersion curve, which we call the “dispersion of the Raman
spectra”. On the other hand, the observed phonon energy for q¼0
does not depend on EL [32].

Thus even though there are many possible q vectors which are
involved in the two phonon scattering process, the observed phonon
in the Raman spectra has a wave vector that is either q¼2k or q∼0.
The corresponding Raman spectra is further enhanced by the “double
resonance” process in which two out of the three intermediate states
are real electronic states, so that the corresponding double resonance
Raman intensity becomes comparable or even stronger than the first
order resonance Raman intensity. The double resonance Raman
process which is very important in the Raman spectra observed for
graphene and nanotubes (see more in Ref. [19]) because the electron–
phonon interaction is not only strong near the Γ point but the spectra
are also very strong near the K (or K′) points [17]. If we are now
considering the Raman spectra for the defect-induced peaks, such as
the D, and D′ bands, then one of two scattering processes is an elastic
scattering by a defect and the double resonance theory can also be
applied to understand the defect-induced Raman spectra [3,19].

When we assign the phonon modes for a given Raman
spectrum of graphene, we will consider the following four condi-
tions: (1) we select overtone or combination modes of the phonon
from six phonon modes; oTA, iTA, LA, oTO, iTO and LO; (2) we
select either single or double resonance Raman spectra, and in the
case of the double resonance spectra, we select either (defect-
induced elastic scattering)+(a phonon) or two phonon Raman
spectra; (3) we select either AV or EV scattering processes; and
(4) we select either q¼0 or q¼2k double resonance conditions. For

first order Raman processes, only the iTO and LO phonons are
Raman active and these scattering processes both give a G band
signal around 1580 cm−1. In the case of SWNTs, the radial breath-
ing mode (RBM) can be seen as the first order Raman spectra, and
the RBM frequency is inversely proportional to the nanotube
diameter [33]. In the second order processes, we have 6$6
combinations of phonon modes, 2 scattering processes (AV or
EV), 2 double resonance conditions (q∼0 or q¼2k) and thus 144
possible combination or overtone phonon modes. The method for
assigning the overtone and combination modes are given by the
following three conditions: (1) sum of the frequency is close to the
phonon modes at Γ (AV) or K (EV), (2) when we change the
incident laser energy (EL), the q¼2k double resonance phonon
mode frequency changes according to the dispersion as is dis-
cussed above [32], while the q¼0 double resonance or single

Fig. 6. (Color online) (a) Intravalley (AV) scattering with Γ(point phonons (q¼0) processes for e–h pair creation due to phonon (with energy ℏωq) absorption. Eeh stands for
the e–h pair energy, (b) intervalley (EV) scattering with a K point phonon (q¼0 measured from the K point), (c) AV scattering with a q≠0 phonon and (d) EV scattering with a
q≠0 phonon [38]. EF¼0 (top line) and EF≠0 (bottom line) are shown.

Fig. 7. (a) Vg(dependence of the phonon frequency correction ωG−ωð0ÞG (black line)
and the corresponding decay width change of γq−γ

ð0Þ
q (grey line) for the G band. The

inset shows the corresponding theoretical illustration and (b) illustrative predic-
tions for the Vg(dependence of the phonon frequency correction ωG−ωð0ÞG (black
line) and the corresponding decay width change of γq−γ

ð0Þ
q (grey line) for the q≠0

phonons. The behaviors of the frequency and spectral width are opposite to the
case of (a) [38].
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resonance Raman frequency does not change and (3) when a
Raman signal becomes strong for defective graphene, the corre-
sponding Raman signals (D and D′) are defect induced Raman
signals. In this article, we will explain how gate modulated Raman
spectroscopy provides a new technique for the assignment of the
combination and overtone phonon modes.

Most of the discussions in the literature until now for the
phonon self-energy corrections have been for zone-center pho-
nons (Γ point) with q¼0 by observing the G-band Raman spectra
in monolayer graphene (1LG) as a function of the Fermi level
energy (EF) or of the gate voltage (Vg) [29,34–37]. In Fig. 6(a) we
show the corresponding perturbation process for the q¼0 phonon
which can be suppressed by increasing jEFj [38]. The phonon
frequency ωG and its corresponding spectral width γG are shown in
Fig. 7. These experimental results are explained by the conven-
tional theory of the Kohn anomaly [35–37,39], which shows
a ωG hardening and γG narrowing when jVgj increases as a function
of EF.

The double resonance Raman features with frequencies ranging
between 2350 and 2850 cm−1 (which contain the G⋆ (2450 cm−1)
and the G′ (or 2D, around 2700 cm−1) bands, as shown in Fig. 8(a),
were studied to show that the phonon renormalization for q≠0
phonons gives a different EF dependence from that for the G band
and this effect can be used in making specific phonon assign-
ments. Figs. 7 and 8(a)–(d) show the experimental results.

The G⋆ and G′ bands are the most prominent double-resonance
features in the Raman spectra in graphene and an assignment of
the G⋆ band at 2450 cm−1 was not yet well solved in prior
publications. Originally, the G⋆ band had been assigned to the
2iTO phonon overtone mode (q∼0, EV) [40] and then Mafra et al.
assigned the G⋆ band as the iTO+LA phonon combination mode

(q¼2k EV), since they observed a dispersion in the Raman spectra
of −18 cm−1/eV by changing EL [41].

Let us now understand what happens for phonons correspond-
ing to the cases for the q∼0 EV and q¼2k AV/EV scattering
processes. As shown in Fig. 8(b)–(d), the G⋆ and the G′ bands
show a different behavior when jVgj increases compared to the
behavior observed for the AV q¼0 process. Regarding the G⋆ band,
we assign it in Fig. 8 as the ITO+LA and the 2iTO in which the
frequency of the iTO+LA mode ωiTOþLA decreases with increasing
jVgj, while their decay width γiTOþLA increases with increasing jVgj.
For the 2iTO G⋆ feature at ∼2470 cm−1, which is a q¼0 EV process
around the K point (Fig. 8(c) and (d)), the frequency ω2iTO and the
decay width γ2iTO almost do not change with increasing jVgj. These
results mean that there are two Raman peaks around 2450 cm−1

involving different laser excitation processes even though they
almost overlap with each other in frequency. These conclusions
follow from the ability to use both gate modulation and different
laser excitation energies strategically to show a different physical
process responsible for these two peaks. A phenomenological
formulation for the phonon self-energy for the EV q¼0 and the
AV/EV q¼2k processes in single-layer graphene is presented to
explain the anomalous experimental results and the way that
variation of Vg and of the laser excitation energy cooperatively can
be used to assign phonons. If we remember the case of the
AV processes for the q¼0 phonons (Fig. 6(a)), which applies to
the G-band feature (Fig. 7(a)), the creation of an e–h pair is possible
when EF ¼ 0, which implies a ωq softening and a γq broadening.
With increasing jEFj, ωq hardens and γq narrows, which means that
the e–h pair excitation is suppressed by the Pauli principle because
the phonon energy is becoming smaller than 2 jEFj [39,42]. This
approach can also now be used to understand the q∼0 and q¼2k

Fig. 8. (Color online) (a) The experimental Raman spectra of the G⋆ and the G′ bands. The asymmetric G⋆ feature is a combination of the iTO+LA modes (q¼2k read from the
K point) and the 2iTO mode (q∼0 read from the K point). The G′ mode is an overtone of the iTO mode (q≈2k). For illustrative purposes, the signal of the G⋆ feature was
multiplied by a factor of 10 and the Lorentzian profiles used to fit the spectrum are shown in constructing (a), (b) the gate voltage Vg and Fermi energy dependence of the
2iTO (q¼2k) ωG′ mode and γG′ values (inset in (b)), (c) and (d) show, respectively, the ωq and γq dependencies on gate voltage and EF seen for the iTO+LA and 2iTO modes
(G⋆ band). The error bars come from the fitting procedure [38].
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processes by considering a small difference in approach: now,
instead of the Pauli principle, the density of phonon and electronic
states, as well as the energy and momentum conservation require-
ments, will be jointly responsible for suppressing the e–h pair
excitation [38].

As shown above, a different behavior is expected for the q∼0
phonon (measured from K-point) in the EV process shown in Fig. 6
(b), which explains the G⋆ 2iTO mode behavior as jEFj is varied
with varying jVgj, shown in Fig. 8(a) and (b). According to the
Fermi golden-rule, the probability that a real electron–hole pair
exists at EF ¼ 0 (upper panel of Fig. 6(b)–(d)) is quite small since
the density of states of both electrons and phonons at EF ¼ 0
almost vanishes [2,34]. Therefore, neither softening of ωq nor
broadening of γq is expected, since almost no e–h pairs are excited.
When jEFj increases (lower panel in Fig. 6(b)–(d)), the probability
for a K point q≈0 phonon to connect inequivalent energy k and k′
states increases, because the density of phonon and electron states
also increases as we move away from the K point [2,34]. As a
result, the number of e–h pair increases and the phonon mode
softening and damping effects could be observed with increasing
jEFj. This means that the phonon self energy will be a small
correction and, therefore, small ωq softening and small γq damping
effects are expected for any jEFj value (weak EF(dependence).

By considering phonon modes with q¼2k AV and EV processes,
as shown in Fig. 6(c) and (d), the phonon wavevectors are either
around the Γ point or around the K point. Since the phonon and
electron density of states are small close to the K point and since
the phonon energy dispersion for graphene has a much smaller
slope ∂ℏωq=∂q than that for the electronic energy dispersions
∂EðkÞ=∂q [2], there is essentially no coupling between q≠0 phonons
and e–h pairs (since there is no q value such that q¼ k−k′) if EF ¼ 0
and therefore the softening and damping of the phonon mode
does not take place resonantly, i.e., where Eeh ¼ ℏωq. However,
when EF≠0, the density of phonon and electron states increases
and phonon modes with q¼2k can now connect electronic states
with different k and k′ values, in the sense that there is a q such
that q¼ k−k′ (the different slopes between ∂ℏωq=∂q and ∂EðkÞ=∂q
decrease when we move away from the K point [2]). This gives rise
to a strong electron–phonon coupling which enhances the creation
of real e–h pairs. As a consequence, the phonon mode softens
(ωq decreases) and gets damped (γq broadens). This q¼2k AV/EV
process behavior is illustrated in Fig. 7(b), where it is seen that the
frequency softening (black solid line) must increase with increas-
ing jEFj while the decay width (grey solid line) must broaden with
increasing jEFj.

4.1. The combination modes around 1700–2300 cm−1

Recently, attention has been given to studying some weak Raman
features in the frequency range 1700oωo2300 cm−1 (Fig. 9), which
are associated with Raman combination and overtone modes of
graphene [45–47]. These combination and overtone modes are seen
in various forms of nano carbons but have not been studied system-
atically until recently. Firstly, the study of these modes in graphene is
desirable for establishing a baseline that can be applied later to other
nano carbons. Historically, laser excitation energy (EL) dependent
Raman spectroscopy has been used to perform the phonon assign-
ments of these features, as is the case in the Refs. [45–47]. However,
these works [45–47] disagree with each other regarding the number
of phonon peaks and the phonon assignments attributed to each
peak. The main reason behind this disagreement is that, by perform-
ing only EL(dependent Raman experiments, it is not easy to properly
assign the combination modes when these combination modes are
close together in frequency and the spectral feature often overlap
in their lineshape profiles. Moreover, an experiment limited to
EL-dependent measurements does not tell us in which directions in
k space the various scattering processes are happening.

Concerning single layer graphene (1LG), the first studies of the
combination modes in the frequency region between 1690 and
2150 cm−1 was reported by Cong et al. [46] and Rao et al. [45],
while Cong et al. assigned only three peaks and Rao et al. reported
two additional peaks. Recently, Mafra et al. [44] proposed a
different assignment for some of these five peaks and showed
that the k-dependent electron–phonon interaction investigated by
studying the Raman spectra as a function of both the Fermi energy
EF and gate voltage Vg by varying of both EF and Vg is important to
give accurate/reliable information about these combination
modes.

Fig. 9(a) shows the combination modes in the spectral region
from 1700 to 2300 cm−1 for four different laser lines: 488 nm,
532 nm, 575 nm and 590 nm. Five peaks could be observed in this
spectral region. The experimental frequency dispersions for the
five peaks were taken from the fitting procedure applied to the
Raman features in Fig. 9(a) and are here plotted together with the
theoretical phonon dispersions for monolayer graphene adapted
from Popov and Lambin [43] (Fig. 9(b)). The symbols correspond to
the frequencies of peaks 1–5 for each laser energy EL along the
high symmetry KΓ and KM directions. Squares, circles, triangles,
diamonds and stars denote peaks 1–5, respectively. The full lines
are the theoretical phonon branches [43] for the combination
modes LO+iTA (black), iTO+LA (red), LO+LA (blue), oTO+iTO

Fig. 9. (Color online) (a) The Raman spectra for the combination modes in the frequency region from 1700 to 2300 cm−1 for four different laser lines: 488 nm (2.54 eV),
532 nm (2.33 eV), 575 nm (2.16 eV) and 590 nm (2.10 eV), (b) phonon dispersion of 1LG (solid lines) adapted from Popov and Lambin [43] showing the phonon branch
combinations LO+iTA (black), iTO+LA (red), LO+LA (blue), oTO+iTO (purple), oTO+LO (grey) and iTO+iTA (green) near the Γ and the K point. The phonon assignments
proposed by Mafra et al. [44] are given by squares, triangles, diamonds and stars correspondingly to peaks from 1 to 5, respectively. The peaks 1, 2 and 3 come from an
intravalley DRR process, while the peaks 4 and 5 come from an intervalley DRR process [44].
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(purple), oTO+LO (grey) and iTO+iTA (green). The peak numbers
given in Fig. 9(a) are written below the corresponding phonon
branch assigned to each combination mode. When the peaks can
be fitted to a phonon dispersion for either direction of KΓ or KM,
we can then clearly assign the peak to the corresponding
combination mode.

The assignments proposed here are based on and supported by
phonon self-energy renormalization calculations and by angle
dependent el-ph scattering matrix element calculations, that
provide more precise information that was not considered in the
previous works [45,46]. These angle dependent scattering calcula-
tions give us the direction along which the scattering processes
have the highest probability of happening (see the brightest spots
in the calculated Fig. 10(d)–(f), where θi and θf are, respectively,
the initial and final scattering angles at the K point measured from
the kx axis). From Fig. 9(b), we can see that the experimental peak
2 (red circles) is in better agreement with the combination phonon
branch iTO+LA around the Γ point. Also, as shown in Fig. 9(b), by
comparing the experimental and the theoretical phonon disper-
sions, we can see that peak 3 matches more accurately the phonon
branch LO+LA around the Γ point, while peak 4 is in good
agreement with the intervalley DRR process around the K point
involving the oTO+iTO phonons.

As discussed above, peaks 4 and 5 were assigned by Mafra et al.
[44] as, respectively, the oTO+iTO and iTO+iTA q¼2k combination
modes around the K point generated by an intervalley process.
However, the phonon wavevector which is mainly involved in the
DRR process lies along either the KM or the KΓ directions
(considering the high symmetry directions, for simplicity) mea-
sured from the K point [48,49] (see Fig. 10(a) and (b) for the
distinction between a KΓ and a KM process). Fig. 10(c) shows the
experimental phonon dispersion for peaks 4 and 5 considering
both the KM and KΓ directions. The main distinction from the
results found in the literature [44–46] lays in the choice of the oTO
+iTO or oTO+LO combination modes.

Fig. 10(c) shows that for peak 4 assigned here as the oTO+iTO
combination mode, the agreement between the experimental data
and the theoretical phonon dispersion points indicates that
phonon scattering processes are happening in the KΓ direction.
However, note that it is delicate to decide whether it is the oTO+LO
or the oTO+iTO combination mode that is the correct assignment
for this phonon mode, since the frequencies of these combination
modes and their dispersions are very close to each other. To make
a correct assignment, we used the fact that the directions of the
maximum el-ph matrix elements, as well as their phonon self-
energy corrections, were as given by varying EF different for oTO
+LO and oTO+iTO (as shown later in the text). Fig. 10(d)–(f) shows
the absolute values for the angular dependence of the intervalley

el-ph matrix elements for the oTO+iTO, iTO+iTA and oTO+LO
phonon combination modes for EL ¼ 2:54 eV, where θi and θf are,
respectively, the initial and final scattering angles defined at the K
and K ′ points. The diagrams in Fig. 10(d)–(f) show the scattering
directions for which the el-ph matrix elements are maximum
(brightest spots in the figures) for the corresponding combination
mode. Looking at the el-ph matrix elements for the oTO+iTO
combination mode in Fig. 10(d), one can see that the direction for
which the el-ph matrix elements are maximum is closer to the KΓ
direction. On the other hand, if we look at the scattering diagram
for the oTO+LO combination mode in Fig. 10(f), the el-ph matrix
elements are a maximum closer to the KM direction. From Fig. 10
(c), we can see a better agreement of peak 4 along KΓ than along
the KM direction.

The experimental data for peak 5 (Fig. 10(c)) is seen to be close
to the theoretical curve for both the KΓ and KM directions and we
must use other information to decide the direction for which the
main contribution to the Raman scattering occurs. In Fig. 10(e), we
can see that the direction for which the iTO+iTA combination
mode has a maximum is closer to the KM direction, fromwhich we
conclude that the main contribution to peak 5 comes from an
intervalley DRR process in the KM direction. These assignments
are confirmed by gate-modulated Raman measurement [44].

Next we discuss the phonon self-energies and the el-ph
coupling for those combination modes which were also explored
[44]. Fig. 11(a)–(e), respectively, shows the experimental data for
the dependence of the phonon frequency ωq (black solid triangles)
and the phonon decay width γq (open dots) on Vg (or on the Fermi
energy) for the five combination modes.

In Fig. 11(a)–(e), it is seen that ωq is softened for all the five Raman
combination features from 1700 to 2300 cm−1, and that the ωq

softening is accompanied by a broadening of γq with increasing
carrier concentration (increasing jVgj). This behavior observed for all
five combination modes in Ref. [44] is common to Raman modes that
come from an AV or EV DRR process with q¼2k and is opposite to
the behavior observed for the Γ point q¼0 phonons [38].

The results for phonon self-energy corrections (Fig. 11(a)–(e))
confirm that the Raman combination modes come from a DRR
process with q¼2k phonons and we also can see that the ωq and γq
renormalizations due to the change in the Fermi level position are
weak for peaks 1 (Fig. 11(a)) and 3 (Fig. 11(c)), when compared to
the other three peaks. In accordance with the assignments given to
the peaks and since both of these peaks involve the LO phonon
branch, we can conclude that the coupling of this phonon to all the
other relevant phonon modes is smaller than compared to peaks 2,
4, and 5. Moreover, the LO mode is not expected to show a strong
el-ph coupling when q moves away from the Γ point (the LO mode
shows a strong coupling only for q¼0 at the Γ point) [50], which

Fig. 10. (Color online) DRR processes involving phonons in the (a) KM or in the (b) KΓ direction, respectively, measured from the K point (red full arrows), (c) the phonon
dispersion relation for the two intervalley combination modes: peaks 4 (purple diamonds) and 5 (green stars)) combination modes. The half colored symbols correspond to
the DRR process in the KM direction and the open symbols correspond to the DRR process in the KΓ direction. The absolute value for the angular dependence of the
intervalley el-ph scattering matrix elements for the (d) oTO+iTO, (e) iTO+iTA and (f) oTO+LO phonon combination modes for EL ¼ 2:54 eV. θi and θf are, respectively, the
initial and final scattering angles. The diagrams in (d), (e) and (f) show the scattering directions along which the el-ph matrix elements are maximum [44].
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confirms the reason for the assignments to peaks 1 (LO+iTA) and 3
(LO+LA). Since the magnitudes for the self energy correction of
peaks 1 and 3 are similar to each other, we conclude that the
acoustic modes have zero (small) energy at (around) the Γ point so
that they make a negligible contribution to the phonon renorma-
lizations which come from the iTA and LA acoustic modes.

The behavior observed for peaks 4 (oTO+iTO) and 5 (iTO+iTA)
is due to the strong el-ph coupling of the iTO phonon branch that
is expected at the K point in 1LG. Another interesting observation
is that peak 2 (iTO+LA), which is identified with a q≠0 mode
around the Γ point, shows that the renormalizations due to the
iTO mode become strong when moving away from the Γ point.
This is fully consistent with what was observed for peaks 1 and
3 around the Γ point. While the LO mode renormalization
weakens, the iTO mode renormalization is strengthened in moving
away from the Γ point. The observed gate-dependent behavior
consistently confirms the assignments given to the combination
modes by Mafra et al. [44], showing that the gate-modulated
Raman scattering is indeed a powerful technique to confirm the
phonon mode assignments attributed to two Raman peaks which
are close in frequency when the VG and EL dependencies are both
measured and correlated with one another. Note that as regards
peak 4, the gate-modulated results are important to decide which
is the correct combination mode assignment for this peak, since
this peak could have also been assigned to the oTO+LO phonon
combination mode, as stated earlier [45]. However, if this assign-
ment were correct, the el-ph coupling would be expected to be
similar to what is seen in Fig. 11(a) and (c), which are mode
combinations that contain the LO phonon mode. Note that the oTO
mode is not expected to show a strong el-ph coupling [50].

5. Electronic Raman spectra and their gate dependence

One of the problems in the Raman spectroscopy of graphene
and SWNTs that is not yet well solved is the origin of the Breit–
Wigner–Fano (BWF) spectra discussed below. In the presence of
free electrons in doped-graphite, doped-graphene or metallic
SWNTs, the G band spectra show an asymmetric lineshape with
a shifting of the peak position as EF is changed. This spectral
feature shows a BWF lineshape, as was mentioned in the

Introduction. In the present section, we provide an overview of
our recent measurement of the electronic Raman spectra (ERS) of
metallic SWNTs (m-SWNTs) which show a BWF spectral lineshape.
The ERS is also sensitively investigated by the gate modulated
Raman technique.

Whenwe consider an asymmetric Raman spectrum, we need to
consider the continuum spectra, so that we can study the inter-
ference effects between a continuum spectrum and a discrete
phonon spectrum which is known as the Fano effect [23]. When
the constructive (or destructive) interference effect appears at
either a lower or higher energy region than the phonon energy,
the observed spectra show an asymmetric shape which is
described by the BWF line shape (Eq. (9)) as discussed in Section
4. If the constructive interference effect appears at both lower and
higher energy regions than the phonon energy, the spectra thus
obtained show a symmetric (Lorentzian) lineshape but the inten-
sity is enhanced by the interference effect. The Fano effect appears
in many physics situations when: (1) both a continuum and
discrete spectra exist over the same energy range, (2) two different
optical processes exist with the same initial and final states
(coherent processes), and (3) the sign of the interaction changes
at the discrete energy level. The interaction between the discrete
and continuum spectral features causes the lifetime of the excita-
tion of the discrete level to become finite and thus the discrete
spectrum becomes broad. In the case of Raman spectra, the
discrete levels are Raman-active phonon modes of zone-centered
phonons (a first order process) or double resonance phonons
(a second order process). As for the continuum spectra for carbon
nanotubes or graphene, we thought in the past that the plasmon
was relevant to the inelastic scattering of light, because: (1) the
plasmon spectrum becomes continuous from zero energy in low
dimensional materials and (2) the BWF lineshape asymmetry is
significant only when the Fermi energy is shifted away from the
Dirac point by doping.

However, recently, a new broad spectrum has been observed
experimentally and identified as the electronic Raman spectrum
(ERS) of isolated metallic carbon nanotubes, as shown in Fig. 12 for
a (23,14) SWNT [51]. The ERS here appears at 2.08 eV between the
RBM and the G band when the energy of the incident laser E¼ EL
is selected as 2.14 eV. Here 2.08 eV corresponds to the E−22 transi-
tion energy where the − sign in the superscript of E−22 denotes the

Fig. 11. The dependence of the phonon frequency ωq (black solid triangles) and phonon decay width γq (open dots) on gate voltage (Vg) for the (a) 1, (b) 2, (c) 3, (d) 4 and
(e) 5 combination modes in Fig. 9. All the graphics, except for the G band, are on the same scale for better comparisons between the five combination modes. Notice that all
five combination modes show a decrease of the ωq and a broadening of the γq with increasing Vg. The dashed lines are guides for the eyes and the error bars come from the
fitting procedure [44].
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lower energy of the E22 transition that is split by the trigonal
warping effect [52]. The full width at half maximum intensity
(FWHM) of the broad spectral line is around 60 meV (¼484 cm−1)
which is much broader than the FWHM of the normal phonon
feature observed in Raman spectra (¼10 cm−1). The ERS is not
related to any phonon Raman spectra because: (1) the peak energy
position of the ERS does not change by changing EL, (2) the
spectral width of the ERS is much larger than the spectral width
of the phonon, and (3) the ERS appears only for m-SWNTs and not
for s-SWNTs.

The ERS corresponds to a faster (∼10 fs) inelastic scattering
process than the scattering by emitting a phonon (∼100 fs)
whereby an exciton makes a transition from E¼ EL (this state is
generally a virtual state) to Eii by exciting another exciton in the
metallic energy band. The interaction between the two excitons is
an electron–electron interaction. Since the exciton in the metallic
energy band can be generated for any energy value, the relaxation
from E¼ EL to Eii is possible for any value of EL. We can observe
this ERS process by probing the scattered light at Eii. Since a typical
time for the electron–electron interaction is 10 fs, it is consistent
with the fact that the spectral width of the ERS is on the order of
100 cm−1. In the case of a metallic SWNT, the exciton in the
metallic energy band can not be excited by a photon because the
transition is optically forbidden for an electric dipole interaction
[53]. On the other hand, an exciton in a metallic energy band can
also be generated by a phonon and this results in the Kohn
anomaly effect. However, in the case of the Kohn anomaly effect,
broad Lorentzian Raman spectra are observed at the phonon
energy, which can be clearly distinguished from ERS.

Important evidence that an exciton can be formed in a metallic
energy band is that the electronic Raman signal disappears by
changing the Fermi energy and this can be directly checked by
gate modulated Raman spectroscopy [51]. It should be mentioned
that carrier relaxation from a laser excited state E¼ EL to a Van
Hove singular transition energy Eii is also possible by emitting a
phonon (for example a G band phonon) if the energy difference of
EL−Eii is matched to the energy of a G band phonon, which is
generally called the scattered resonance Raman spectra. In this
case, the Raman spectra that would be observed appear for both
m- and s-SWNTs, and have a much narrower spectral width than
ERS and we generally see a large enhancement of the Raman
intensity compared with the non-resonance case.

When we now select E¼ EL so that the phonon G band spectra
appear close to the electronic Raman spectral region, then we can
see two Raman effects which occur at almost the same frequency
so that their line widths overlap with each other, giving both a G
band that is broad and a G band with an enhanced intensity. We
can see that the asymmetry factor 1=qBWF of the G band is changed
by observing the shifts in the peak position of the ERS relative to
the G band as shown in Fig. 13. In Fig. 13 (right), we see that the
value of qBWF decreases (and the G-band becomes more asym-
metric) with increasing EL except for EL ¼ 2:33 eV. In the case of
EL ¼ 2:33 eV, since the difference EL−Eii is close to the phonon
energy, the ERS peaks become weak and the Kohn anomaly effect
can be readily seen. The G-band spectra are thus symmetric at
EL ¼ 2:33 eV and 1=qBWF∼0. The origin of BWF line in a m-SWNT is
thus considered to be an interference effect between the phonon
mode and the ERS in the presence of the Kohn anomaly effect.
Phenomena similar to that shown in Fig. 13 can be observed in
graphene, too. Further theoretical study on this topic is now on-
going.

Recently a Raman enhancement effect has also been observed
in other phonon spectra when a nanocarbon-based sample of
nanotubes or of selected molecules are placed on graphene [54].
The surface enhancement of the Raman signal of a molecule on
graphene is called graphene enhanced Raman spectroscopy

Fig. 12. (Color online) Electronic Raman spectrum (ERS) for the (23,14) metallic
SWNT. The ERS spectra appears at 2.08 eV between a RBM and the G band when
the energy of the incident laser E¼ EL is selected as 2.14 eV. Here 2.08 eV
corresponds to the E−22 electronic transition energy. The ERS spectra appear only
for m-SWNTs [51].

Fig. 13. (Color online) ERS spectra (left) and G-band spectra (right) of a SWNT with
different laser excitation energies with EL values: 2.00, 2.07, 2.10, 2.14, 2.20, 2.33 eV
from the top to the bottom of the figure. Red lines are ERS spectra fitted to
Lorentzians. When the ERS position is close to the Raman G band at 1580 cm−1,
then the spectrum between the ERS and the G band changes the asymmetry factor
in the Breit–Wigner–Fano formula qRBM drastically, even though the central peak
ωLO and spectral width ΓLO do not change much.
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(GERS) [54] and the origin of the enhancement is considered to be
of chemical origin in which charge transfer between the molecule
and the graphene surfaces occurs. The mechanism of GERS is
different from that for electronic Raman scattering, with the
Raman signal being affected by charge transfer in the case of GERS
and by a Kohn anomaly-related effect for the case of ERS.

Another quantum interference effect observed in gate modu-
lated Raman spectroscopy in graphene is the enhancement of the
G band that is observed by changing the Fermi energy EF for a
given laser excitation energy, Elaser. Kalbac et al. observed an
enhancement of the G-band Raman intensity as a function of the
Fermi energy while the G0(band intensity monotonically
decreases with increasing electrode potential or jEFj [55]. When
the energy Elaser of the laser light was increased, the electrode
potential (or jEFj) that gives the G band enhancement was found to
shift to a higher energy. On the other hand, however, the G0(band
did not show any change in the electrode potential dependence of
the intensity by changing Elaser. This enhancement effect of the G
band is independent of the Kohn anomaly effect because the
decreases of the Raman intensity due to the spectral broadening
by the Kohn anomaly occur at a much smaller electron potential
than that for observing the intensity enhancement. Basko pre-
dicted from the calculation that the G band intensity is enhanced
when the condition EF ¼ Elaser=2 is satisfied because of the Pauli
Blocking effect of suppressing some possible Raman processes that
contribute to the destructive interference [56]. Chen has reported
that the constructive interference between the G band and hot
luminescence (HL) spectra appears when the 2jEFj is similar to
Elaser and that the interference is not observed for the 2D (G0) band
[57] which is consistent with the results of Kalbac et al. [55]. In
order to get the constructive quantum interference between the
scattered photon and the HL photon, the phases of the two
photons should similar to each other. The HL intensity strongly
depends on the jEFj values and thus some recombination processes
such as optical phonon emission is suppressed. A detailed analysis
of the dynamics of photo-excited carriers is needed to understand
the phase of the HL spectra, which will be a future work.

6. The Kohn anomaly of bi-layer graphene

Finally, we present our results for interlayer (IL)-related pho-
non combination modes and overtones as well as their phonon
self-energy renormalizations in bilayer graphene (2LG), using both
gate-modulated and laser-energy dependent Raman scattering

spectroscopy. The IL interaction of 2LG gives two energy bands
for the π valence and πn conduction bands and thus in the double
resonance scattering process we get up to four possible phonon q
vectors. The IL interaction does not result in an effect on the in-
plane phonon modes since the calculated change of the LO, LA, iTO
and iTA phonon frequencies in going from 1LG to 2LG is less than
1 cm−1. As for the out-of-plane phonon modes (oTA, oTO of 1LG),
there is both an in-phase and out-of-phase motion of the two
graphene layers with respect to each other, respectively, giving
rise to the ZA and ZO′ modes for 2LG coming from the oTA mode
and the two almost-degenerate ZO modes from the oTO mode
which are shown in Fig. 14(a)–(d) [47]. Among the four phonon
modes of 2LG, the zone-centered ZO′ and one ZO phonon modes
are Raman active since the volume of the unit cell is changed by
this vibration. For general q along the phonon dispersion, as
shown in Fig. 14(e), we generally have electron–phonon interac-
tion taking place. These phonons are relevant to low-energy
phenomena, such as transport and infrared absorption. It is noted
that we used a different notation in [47], but here we adjust the
notation used in [47] to be compatible with the many references
used in this article.

In Fig. 15(a) we show the phonon combination modes and
overtones observed in 2LG in the spectral range 1600–1800 cm−1.
The insets show the phonon vibrations schematically and their
symmetries (following also P1, P2, and P3 notations) together with
their respective EL(dependent frequency dispersions for the LOZA
mode (P1, the combination mode of LO+ZA) and the two LOZO′
modes (P2, LOþ ZO′) in the upper box in Fig. 15(a)), and the two
2ZO modes (P3, overtone of ZO) in the lower box in Fig. 15(a)). As
regards the dispersion relations and the phonon peak assign-
ments, our findings given for the LOZA and LOZO′ combination
modes agree well with those reported by Lui et al. [59]. The LOZA
mode (P1 in Fig. 15(a)) comes from a q∼2k intravalley phonon
scattering process (q∼2k AV) showing a frequency dispersion
∂ωLOZA=∂EL ¼ 26:1 cm−1=eV. By looking at the feature P2 in Fig. 15
(a), we observe that the LOZO′ mode (q∼2k AV process) splits
into two peaks, LOZO′ðþÞ and LOZO′ð−Þ, whose frequency dis-
persions are ∂ωLOZO′ðþÞ=∂EL ¼ 55:1 cm−1=eV and ∂ωLOZO′ð−Þ=∂EL ¼
34:2 cm−1=eV, respectively. As schematized in Fig. 16(c), the two
P2 peaks do not arise from the phonon dispersion, but rather, they
come from different resonant q vectors of the LOZO′ combination
mode with the two electronic energy bands (πn

1 and πn
2) of 2LG. In

other words, the two peaks, LOZO′ðþÞ and LOZO′ð−Þ observed in
the Raman spectra, come from the same phonon combination
mode LOZO′ but probed at two different q points connected with
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Fig. 14. The lattice vibrations of the four out-of-plane modes for bi-layer graphene (2LG). Here we show (a) the out-of-plane acoustic mode (ZA), (b) the breathing (ZO′)
mode, (c) the symmetric mode (ZO+), (d) the anti-symmetric (ZO−) tangential optic phonon modes. Two ZO+ and ZO− modes are almost degenerate and (e) the phonon
dispersion relation of bi-layer graphene along the ΓM line. The resonance points arrows for double resonance Raman scattering are also shown, respectively.
ΓM¼ 2π=
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p

a¼ 3:63a−1. Here a¼0.246 nm is the lattice constant of two-dimensional graphite. The inset is the Brillouin zone of graphene. It is noted that a different
notation is used in [47] but we adjust the notation for other works [58] to be consistent with one another in present article.
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LOZO′ phonon dispersion [59]. Actually, the LOZO′ðþÞ corresponds
to a resonance process involving the πn

1 band, while the LOZO′ð−Þ
corresponds to a resonance process involving the πn

2 band. These
resonance conditions (see Fig. 16(c)) require the phonon momen-
tum q for the LOZO′ðþÞ mode to be larger than that for the
LOZO′ð−Þ mode (qLOZO′ðþÞ4qLOZO′ð−Þ). As a consequence, the phonon
energies are such that ℏωLOZO′ðþÞ4ℏωLOZO′ð−Þ as shown in Fig. 16.

Next, we discuss the two 2ZO (P3) spectra. In 2LG systems (see
Fig. 15), the 2ZO overtone should be observed for forward (q≈0)
and backward (q∼2k) AV scattering, where the q∼2k mode shows a
negative frequency dispersion [47] (for clarity, in Ref. [47], the
abbreviations for the phonon modes are as follows: oTO stands for
ZO, M stands for 2ZO, while oTA stands for ZA and ZO stands for
ZO′)). While the 2ZO (q≈0) was discussed by Lui et al. [59], the 2ZO
(q≈2k) remained elusive until later. In 2012, Araujo et al. [58]
reported the 2ZO (q≈2k) mode which was found to show a
negative frequency dispersion ∂ω2ZOðq≈2kÞ=∂EL ¼ −48:1 cm−1=eV, as
seen in Fig. 15(b). As indicated in Fig. 15(b), the 2ZO (q≈2k) mode
crosses the LOZO′ðþÞ at 2.58 eV (also predicted theoretically by
Sato et al. [47]). The 2ZO (q≈2k) mode should have another cross
point with the LOZO′ð−Þmode at 2.78 eV, according to the estimate

based on the phonon dispersion [58]. The second crossing at
2.78 eV was not predicted in Ref. [47] but is a consequence of the
different dispersions observed for the LOZO′ phonon when this
phonon is in resonance with the π1(πn

1) bands or with the π2(πn
2)

bands (only the resonance process with the π1(πn
1) bands was

considered in Ref. [47]). These phonon mode crossings could affect
both the dynamics of the photoexcited carriers and the thermal
properties of many systems, since these phonon mode crossings
rely on relaxation processes mediated by high-energy optical and
acoustic phonons [60,61].

The assignment of the combination modes of 2LG has been
sensitively investigated by gate modulated Raman spectroscopy
[47]. The Kohn anomaly effect occurs for phonon modes which
have electron–phonon interactions such as the ZO, ZO′ and ZA
combination modes [34,47,62]. It is noted that the LO mode does
not couple with the intralayer interaction and the LO mode does
not change with gate voltage in 2LG [58]. As depicted in the inset
of Fig. 16(c), the LOZO′ combination mode comes from a q∼2k AV
process. Note that, Fig. 16(a) and (b) show, respectively, the EF
dependence of ωLOZO′ðþÞ and ωLOZO′ð−Þ when Vg is varied. Both,
ωLOZO′ðþÞ and ωLOZO′ð−Þ soften with increasing jEFj which is

Fig. 15. (Color online) (a) LOZA (P1) and LOZO′ (P2) combination modes and the 2ZO (P3) overtone mode as they appear in the Raman spectra taken with the 532 nm laser
line. The solid lines are Lorentzian curves used to fit the spectrum. The upper and lower boxes in (a) show the lattice vibrations associated with each normal mode involved
in the combination modes and overtones and their frequency dispersion as a function of EL, as shown in (b), (b) the Raman shift as a function of EL , showing that the LOZO′
(P2) combination mode will be crossed by the 2ZO q≈2k overtone at 2.58 eV and, according to the dispersion obtained in this work, will likely be crossed again at 2.78 eV.
The symbols correspond to the experimental data. The solid lines are the fitting curve results [58].

Fig. 16. (Color online) The Vg dependence of (a) ωLOZO′ðþÞ and (b) ωLOZO′ð−Þ . The insets show the Vg dependence of the linewidth γLOZO′ , (c) phonon q vectors shown for the
LOZO′ combination modes ZO+ and ZO− of bilayer graphene 2LG, (d) the Vg dependence of ω2LO. The inset shows the Vg dependence of the linewidth γ2LO, (e) density of
electronic states of 2LG for the valence bands π1 and π2 (black curves) and for the conduction bands πn

1 (red curve) and πn
2 (blue curve) [58].
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controlled by increasing jVgj. Correspondingly, as shown in the
insets of Fig. 16(a) and (b), the phonon line widths γLOZO′ðþÞ and
γLOZO′ð−Þ broaden with increasing jEFj. Analogously, Fig. 17(a) shows
that ωLOZA (γLOZA) softens (broadens) with increasing jEFj, while for
the 2ZO overtone, almost no dependence on Vg is observed for
both ω2ZO and γ2ZO in Fig. 17(c).

As discussed in Section 4, this behavior is opposite to what
happens to the q¼0 phonons at the Γ(point [38], as is the case of
the G-band feature, where ωq hardens and γq narrows when jEFj
increases. On the other hand, the behaviors reported in Figs. 16
and 17 agree with what is expected for q¼0 AV and q¼2k AV/EV
phonon self-energy renormalizations. In order to quantify the ZO′
phonon self-energy corrections, the Vg dependence of ω2LO and
γ2LO for the 2LO overtone at around 3244 cm−1 (see Fig. 16(d)) has
been measured, which is known as the 2D′ band with the D band
occurring at 1608 cm−1 [58]. In analogy to the LOZO′ combination
mode about the Γ(point, the 2LO overtone is associated with a
q¼2k AV double resonant process and is a fruitful choice for
unraveling the two-phonon self-energy contributions that are
merged in the LOZO′ combination mode.

By inspecting Fig. 16(a) and (b), we find that the renormaliza-
tion corrections are ΔωLOZO′ðþÞ ¼ 9 cm−1 and ΔωLOZO′ð−Þ ¼ 7 cm−1,
respectively. On the other hand, by looking at Fig. 16(d) we see
that Δω2LO ¼ 5 cm−1, which means that the LO frequency renor-
malization for this AV process is ΔωLO≈2:5 cm−1. The self-energy
corrections regarding the LO mode will be the same for the LO
contribution for both the LOZO′ðþÞ and LOZO′ð−Þ features. There-
fore the phonon self-energy correction ΔωZO′ðþÞ for the ZO′(+) mode
will be given by ΔωLOZO′ðþÞ−ΔωLO ¼ 6:5 cm−1 while the phonon self-
energy correction ΔωZO′ð−Þ for the ZO′ð−Þ mode will be given by
ΔωLOZO′ð−Þ−ΔωLO ¼ 4:5 cm−1. From the analysis above, and remem-
bering that, the larger the self-energy corrections Δωq, the
stronger are the e-ph couplings, we deduce that the interlayer e-
ph coupling mediating the renormalizations for the ZO′ mode is
stronger than the renormalization for the LO mode. It is note-
worthy that the self-energy renormalizations for LOZO′ðþÞ and
LOZO′ð−Þ are different, even though they involve the same LO
phonon. We understand these differences as follows: the phonon
self-energy corrections for q≠0 phonons rely on the density of
electron and phonon states [62]. The density of phonons states
will be the same because the same phonon is involved. However,
as shown in Fig. 16(e), for energies smaller than j2j eV, the density
of electronic states for the π2(πn

2Þ band is always smaller than that
for the π1ðπn

1Þ bands. This means that the phonon self-energy
corrections are weaker for the ZO′ð−Þ in comparison to that for the
ZO′ðþÞ and this result in not due to a different e-ph coupling
symmetry, but because the density of electronic states for π2ðπn

2Þ is
smaller in comparison to that for π1ðπn

1Þ, as seen in Fig. 16(e). By
following the same strategy, we could also estimate the phonon
self-energy corrections for the ZA mode, whose LOZA combination

mode frequency (linewidth) also hardens (broadens) as expected
for the q≠0 AV processes. As shown in Fig. 17(a), ΔωLOZA ¼ 8 cm−1.
Therefore, the ZA mode self-energy corrections ΔωZA will be given
by ΔωLOZA−ΔωLO ¼ 5:5 cm−1. It is interesting to note that, the
renormalization for the ZA mode is similar to the renormalization
correction for the ZO′ mode [58].

Finally, we discuss the Vg dependence of the 2ZO overtone for
both, the q∼0 and q¼2k AV processes. Interestingly, the results in
Fig. 17(b) and (c) show that, for both cases, the phonon self-energy
corrections to the phonon frequency Δω2ZO and to the line width
Δγ2ZO, are weak and as a consequence, the ω2ZO and γ2ZO renor-
malizations show a constant behavior with increasing jEFj. This
result is understood as follows: for phonon self-energy correc-
tions, the phonon energies themselves will determine where in
the Dirac cones the e–h pair creation (annihilation) will be
happening and, therefore, the phonon energies will determine
the initial (final) density of the electronic and vibrational states.
On top of this, the momentum conservation requirement q¼ k−k′,
which is mostly determined by the slopes in the electronic and
vibrational dispersion relations, must be obeyed in order to
observe a strong coupling. Comparing all the cases, the ZO phonon
mode would create (annihilate) an e–h pair at much higher
energies ∼110 meV and, therefore, at a much higher density of
electronic and vibrational states compared to the energies of the
ZA (∼3:1 meV) and the ZO′ ð∼11:2 meV) modes. Because phonon
renormalizations can be observed for both the ZA and ZO′ modes,
the authors of Ref. [58] understand that the reason behind the
weak renormalization observed for the ZO mode is due to the lack
of a phonon momentum q such that q¼ k−k′, and this lack
prevents any resonant renormalization from happening. This is
confirmed by symmetry arguments since the deformation poten-
tial mediating the e-ph coupling is related to the ZO mode, which
is an anti-symmetric interlayer vibration (as seen in Fig. 15(a)). The
deformation potential is expected to allow a coupling between
orthogonal electronic states since the ZO vibration breaks the
lattice symmetry, which implies Vkk′ ¼ 0 in Eq. (8). Thus, no
renormalizations are expected for the 2ZO mode [63].

7. Summary and future outlook

In this article we show how gate modulation makes Raman
spectroscopy, which already had been shown to provide a power-
ful characterization technique for nanocarbons like carbon nano-
tubes and graphene, even more powerful than had ever been
envisaged before. The physical phenomenon hereby discussed
involves using a positive or negative back gate voltage or a top
gate voltage to control the position of the Fermi level, or equiva-
lently to control the electron or hole doping concentration of the
nanocarbon.

Fig. 17. (Color online) LOZA and 2ZO phonon self-energy renormalizations. (a) and (b) show, respectively, the Vg dependence of ωLOZA, ω2ZO for the q≈2k AV process and
(c) shows Vg dependence of ω2ZO for the q≈0 AV process. The insets show the Vg dependence of the line widths γLOZA, γ2ZO for the q≈2k AV process ((a) and (b), respectively)
and γ2ZO for the q≈0 AV process (c).
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Over the years, many features in the Raman spectra of
nanocarbons have been identified and studied. Features, such as
the G-band and the radial breathing mode, have become widely
known to engineers for characterizing nanotubes for their metal-
licity and (n,m) chirality. Using gate modulation, it is shown in this
review article that each feature in the Raman spectra of nanocar-
bon materials has its own distinguishing characteristics. After
reviewing some of the technical aspects of using back gates and
top gates in nanocarbon systems, the fundamental aspects of the
Kohn anomaly, which governs the electron–phonon interaction in
materials generally, is discussed, giving special emphasis to why
the Kohn anomaly is so special for nanocarbon materials, and why
the linear E(k) dependence and the K and K′ points in the Brillouin
zone, which are related by time inversion symmetry and have a
vanishing carrier density at zero wave vector, are so special. The
article reviews how small changes in the gate voltage can have a
profound effect on the electron and hole populations and on the
wave vector q at the Fermi level. These physical effects are vividly
seen in each in-plane and out-of-plane phonon mode, combina-
tion mode, and harmonic. Many-body and renormalization effects
on the frequency and lifetime of the various modes are considered
and addressed, thereby explaining many detailed wave vector-
dependent effects and distinguishing between q¼0 and q≠0
related effects. It is shown how gate modulation helps to identify
each Raman feature with a specific phonon mode and to identify
how many features are present in a given Raman spectrum and
what symmetries are relevant to each Raman feature. What is
special about the present study is the correlated variation of gate
voltage and laser excitation energy EL to observe and interpret
each physical Raman process.

In the future the use of gate modulation should be combined
with other experimental techniques by studying differences in the
Raman spectra observed when the sample is subjected to two
different conditions, such as the use of the isotope 13C rather than
12C which should allow one to separate electronic effects from
vibrational phonon effects. Other examples could be the differ-
ences between electrochemical and gate voltage changes of the
Fermi level, the use of magnetic fields to perturb the electronic
structure, time-dependent or pulsed perturbations, strain effects,
and combination of these different perturbations. Finally the
various findings reported here for graphene suggest the study of
each of these physical phenomena in other layered materials like
MoS2 and other transition metal dichalcogenides.
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