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Magnetoelectronic and optical properties of a MoS2 monolayer
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A generalized tight-binding model is utilized to study Landau-level spectra of monolayer molybdenum
disulfide. The intrinsic spin-orbit coupling effectively gives rise to multiple splitting of Landau levels. With
a close inspection of wave-function characteristics, these levels can be classified into specific groups in terms of
their orbital, spin, and valley signatures. In the calculation of magnetoabsorption spectra, the physical origin of
the optical selection rules is clearly resolved. In particular, crossings of absorption lines are available and serve
as a unique feature of the spin-orbit coupling. Our numerical results clearly demonstrate the magnetic control of
spin and valley charge carriers and provide a basis for future experiments.
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I. INTRODUCTION

Molybdenum disulfide (MoS2) has drawn tremendous
attention in recent years since this layered compound has
been thinned down to a single trilayer [1–3]. It is a newly
discovered platform to explore the two-dimensional (2D)
electronic physics. In areas of research interest, it has certain
key advantages over graphene in the race for the next
generation of semiconductors, such as the existence of a large
energy gap and intrinsic spin-orbit coupling (SOC) [4,5].
Such a coupling effectively removes the spin degeneracy
and causes these spin-polarized states having quite different
behaviors in inequivalent valleys. This also makes MoS2 a
promising material for future spintronics and valleytronics
applications. From the theoretical approach, many efforts have
been devoted to model the 2D subbands in a zero magnetic
field. Most of them are first-principles calculations [6,7] and
various tight-binding methods [8–11] which have attempted
to fit the results of the former. With regard to Landau-level
properties, to date, only a few tight-binding approaches have
been made, which are performed within the k · p method
[12–15]. However, a complete characterization of the Landau
levels and a numerical study of magneto-optical properties are
still lacking.

In this paper, we utilize a generalized tight-binding model
to numerically study the electronic and optical properties of the
spin-orbit coupled MoS2 responding to an applied magnetic
field. The atomic hoppings, spin-orbit coupling, and magnetic
field are all taken into account without using approximations.
Both Landau energies and Landau wave functions can be
simultaneously resolved. In particular, wave functions in terms
of sublattices provide an intuitive way to define the quantum
state of individual Landau levels. Such an explicit level
characterization also plays a crucial role in determining the
transition rules in magneto-optical spectra. In this study, we
show that Landau levels can be classified into specific groups
based on their orbital, spin, and valley natures. In optical
spectra, the origin of each absorption peak can be identified,
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where crossings of absorption lines appear as a direct result of
the SOC.

II. SUBBANDS IN A ZERO MAGNETIC FIELD

A MoS2 monolayer is composed of three atomic layers,
a single layer of molybdenum atoms sandwiched by two
sulfur layers where the molybdenum layer alone forms a 2D
triangular lattice. Each Mo atom interacts with six neighboring
Mo atoms, as well as six neighboring S atoms (three on the
top layer and three on the bottom). The outermost shells of the
Mo atom are 4d orbitals and those of the S are 3p orbitals.

In our tight-binding calculations, three orbitals of the
molybdenum atom (dz2 ,dxy,dx2−y2 ) are taken into account
since subbands near the top of the valence bands and the bottom
of the conduction bands are predominantly contributed from
these three orbitals. The magnetic quantum numbers of these
three orbitals are, respectively, ml = 0, −2, and 2. In contrast,
subbands from the dxz,dyz orbitals of molybdenum, and the
px,py,pz orbitals of sulfide, as well as other inner orbitals,
are all in the higher-energy regime, so that they hardly affect
low-energy subbands.

Without applying an magnetic field, the primitive unit cell
contains a single Mo atom. For low-energy subbands, tight-
binding wave functions are built up from orbitals of |ml = 0〉,
|−2〉, and |2〉. The Hamiltonian is, therefore, written as

H =
⎛
⎝ H0,0 H0,−2 H0,2

H ∗
0,−2 H−2,−2 H−2,2

H ∗
0,2 H ∗

−2,2 H2,2

⎞
⎠ , (1)

where the matrix elements are

H0,0 = 2t0(cos 2α + 2 cos α cos β) + ε1,

H0,−2 = −2
√

3t2 sin α sin β + 2it1(sin 2α + sin α cos β),

H0,2 = 2
√

3it1 cos α sin β + 2t2(cos 2α − cos α cos β),

H−2,−2 = 2t11 cos 2α + (t11 + 3t22) cos α cos β + ε2,

H2,2 = 2t22 cos 2α + (3t11 + t22) cos α cos β + ε2,

H−2,2 =
√

3(t22−t11) sin α sin β+ 4it12 sin α(cos α − cos β).

(2)
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FIG. 1. (Color online) (a) Low-energy bands at B = 0 without SOC. Subbands are drawn along kx , and the band edges are located at highly
symmetric points K ′, �, and K . (b) Same plot as (a) but with SOC. The solid blue and purple curves represent the spin-up states in the vicinity
of the K and K ′ valley, respectively, while the dashed red and brown curves shows the spin-down states. The top view of the atomic structure
is shown in the inset of (a) and the momentum space in the inset of (b).

Here, α = 1
2kxa and β =

√
3

2 kya. The lattice constant is
a = 3.19 Å between the neighboring Mo atoms. The hopping
parameters between atomic orbitals are chosen as [10] t0 =
−0.184 eV, t1 = 0.401 eV, t2 = 0.507 eV, t11 = 0.218 eV,
t22 = 0.057 eV, and t12 = 0.338 eV. The on-site energy is
ε1 = 1.046 eV added to the |0〉 orbital and ε2 = 2.104 eV
added to the |−2〉 and |2〉 orbitals.

With considering the spin degree of freedom, the number of
the basis is doubled as |0, ↑〉, |−2, ↑〉, |2, ↑〉, |0, ↓〉, |−2, ↓〉,
and |2, ↓〉. The Hamiltonian related to the intrinsic SOC is
given by

H ′ = λL · S = λ

2

(
Lz 0
0 −Lz

)
, (3)

where

Lz =
⎛
⎝0 0 0

0 0 2i

0 −2i 0

⎞
⎠ , (4)

and the coupling strength λ = 0.073 eV. This coupling takes
place between the |−2〉 and |2〉 orbital electrons with the same
spin orientation.

In the absence of a magnetic field, low-energy electronic
structures without SOC are shown in Fig. 1(a). They are 2D
subbands with band edges located at the highly symmetric
points K , �, and K ′ in momentum space. In valence bands,
subbands around the � point are attributed to the |0〉 orbital
while subbands around the K and K ′ valleys result from the
|−2〉 and |2〉 orbitals. In conduction bands, only |0〉 appears
around the K and K ′ valleys where |−2〉 and |2〉 are absent. In

addition, the spin-up and spin-down states are fully degenerate.
Thus, subbands are symmetric about the � point and states
around the K and K ′ valleys are nondistinguishable. The very
top of the valence bands is at the � point, which is about
6.8 meV higher than those at the K and K ′ valleys. The system
with such a band structure is a semiconductor with an indirect
energy gap of 1.655 eV.

These degenerate spin states are effectively split by the
intrinsic SOC, as shown in Fig. 1(b). The splitting is partic-
ularly evident for valence bands near the K and K ′ valleys,
but it is relatively minor elsewhere. Energetically, spin-up and
spin-down subbands are, respectively, shifted up and down
by 73 meV (=λ) for states at the K ′ valley. This trend is,
however, opposite for the K valley states. The splitting of
opposite spin states is up to 0.146 eV (=2λ), which turns
the system into a direct-gap semiconductor with the energy
gap reduced to 1.59 eV. It is noteworthy that the spin-up
and spin-down subbands are interchanged as they are in
opposite valleys (K or K ′). This means that the intrinsic
SOC might enable the manipulation of the combined spin
and valley degrees of freedom in such an atomic-thin layer.
In our calculations of Landau levels, we found that two spin
states from inequivalent valleys respond quite differently to a
magnetic field. Furthermore, we numerically study magneto-
optical spectra, which practically reveal the multiple splittings
of spin, valley, and Landau states.

III. LANDAU-LEVEL STRUCTURES

In the presence of a perpendicular magnetic field Bẑ

with the vector potential �A = (0,Bx,0), a Peierls phase
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�G(Rα,Rβ) = ∫ 1
0 (Rα − Rβ) · A[Rβ + λ(Rα − Rβ)]dλ is additionally implemented in a tight-binding model [16,17]. The

magnetic field needed for a flux quantum φ0 through the lattice cell corresponds to B0 = 2.3464 × 104 T. Thus, the magnetic
supercell has to be expanded to m = B0/B times larger as

∑m
j=1{|0〉j + |−2〉j + |2〉j } in order to satisfy the periodic boundary

condition caused by this magnetic phase [16,17]. The matrix elements of the magnetic Hamiltonian become

H0,k;0,j = t0e
i2αδj,k−2 + 2t0 cos βje

iαδj,k−1 + t0e
−i2αδj,k+2 + 2t0 cos βj−1e

−iαδj,k+1 + ε1δj,k,

H0,k;−2,j = t1e
i2αδj,k−2 + [t1 cos βj +

√
3it2 sin βj ]eiαδj,k−1 − t1e

−i2αδj,k+2 + [−t1 cos βj−1 −
√

3it2 sin βj−1]e−iαδj,k+1,

H0,k;2,j = t2e
i2αδj,k−2 + [−t2 cos βj +

√
3it1 sin βj ]eiαδj,k−1 + t2e

−i2αδj,k+2 + [−t2 cos βj−1 +
√

3it1 sin βj−1]e−iαδj,k+1,

H−2,k;−2,j = t11e
i2αδj,k−2 +

[
1

2
(t11 + 3t22) cos βj

]
eiαδj,k−1 + t11e

−i2αδj,k+2 +
[

1

2
(t11 + 3t22) cos βj−1

]
e−iαδj,k+1 + ε2δj,k,

H2,k;2,j = t22e
i2αδj,k−2 +

[
1

2
(3t11 + t22) cos βj

]
eiαδj,k−1 + t22e

−i2αδj,k+2 +
[

1

2
(3t11 + t22) cos βj−1

]
e−iαδj,k+1 + ε2δj,k,

H−2,k;2,j = t12e
i2αδj,k−2 +

[
− i

√
3

2
(t22 − t11) sin βj − 2t12 cos βj

]
eiαδj,k−1

− t12e
−i2αδj,k+2 +

[
i

√
3

2
(t22 − t11) sin βj−1 + 2t12 cos βj−1

]
e−iαδj,k+1, (5)

where cos βj = cos[β + π
φ

φ0
(j + 1

2 )] and sin βj = sin[β +
π

φ

φ0
(j + 1

2 )].
Landau levels in the conduction band without the SOC

are shown in Fig. 2(a). The energy as a function of B is
illustrated in the left panel. The Landau levels are all close
to being linear in B, resulting from the magnetic quantization
of parabolic bands at B = 0. In our model study, Landau
levels can be classified into specific groups. In each group,
each level can be further labeled by a Landau index n. The

FIG. 2. (Color online) (a) Conduction-band Landau states with-
out SOC: The low-lying Landau levels as a function of B and the
Landau wave functions at B = 40 T are shown in sublattices, where
the K and K ′ valley states are respectively colored blue and purple.
In the wave-function plot, the width of the horizontal axis is 60 nm
centered at the middle of the magnetic supercell. (b) Same plot as (a)
but with SOC. The K and K ′ valley states with spin up are colored
blue and purple while those with spin down are colored red and
brown, respectively.

Landau-level characterization is made according to the way the
wave functions distribute in between their sublattices, which
will be discussed in detail below.

The right panel shows spatially resolved wave functions. All
bases in the magnetic supercell can be divided into sublattices
of different orbitals. Without the SOC, these bases are |0〉j ,
|−2〉j , and |2〉j . Here |−2〉j (not shown) is exactly identical
to |2〉j since they have the same magnitude of the magnetic
quantum number, i.e., |ml| = 2. In our numerical results,
Landau wave functions consist of certain oscillation modes in
the sublattices. Since our calculations are performed in Carte-
sian coordinates, these oscillation modes are close to being
Hermite polynomials of a certain order n. For each Landau
level, wave functions may have different weights in between
sublattices. For instance, conduction-band levels are mainly
contributed from the |0〉j sublattice. Thus, the Landau index
n is defined as the node number in oscillation of |0〉j . In this
way, each Landau level can be labeled as |ml,n〉τ , where ml ,
n, and τ are the orbital, Landau, and valley index, respectively.

For conduction states without the SOC, two groups of
Landau levels are identified as |0,n〉K and |0,n〉K ′ . One comes
from states at the K valley and the other from the K ′ valley.
The K group is of a lower energy compared to the K ′ group.
In each group, Landau energies sequentially increase with the
increment of n. As B decreases, more Landau levels fall into
the low-energy regime. Specifically, all levels shift downward
except for the threshold level |0,0〉K . After reaching the
low-field limit, all low-lying levels are degenerate at 1.598 eV,
which exactly corresponds to the bottom of the conduction
bands at B = 0.

The intrinsic SOC significantly enriches the Landau-level
structures, as shown in Fig. 2(b) for conduction states. The spin
degeneracy is effectively lifted. Each Landau level is close to
the other with the same valley index τ and the same Landau
index n but with opposite spin. Except for the two lowest levels,
for the K valley states, the spin-up levels are upshifted while
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the spin-down levels are downshifted. This trend is, however,
opposite for the K ′ valley states. Such a spin splitting is more
evident for levels with the higher Landau index n as well as
in a stronger magnetic field. Also, note that the spin splitting
in the conduction band is readily apparent in a magnetic field,
even though it is still barely observable at B = 0.

In terms of wave functions, constituent sublattices are
doubled to accommodate the spin degree of freedom, i.e.,
|0, ↑〉j , |−2, ↑〉j , |2, ↑〉j , |0, ↓〉j , |−2, ↓〉j , and |2, ↓〉j . In
between the sublattices, the wave functions of the conduction
states are dominated by either the |0, ↑〉j or |0, ↓〉j sublattices.
The Landau index is thus defined as the node number on the
|0, ↑〉j sublattice for spin-up levels and that on the |0, ↓〉j
for spin-down levels. Since the wave function is completely
contributed from sublattices of either spin directions, each
Landau level can be dedicated to a specific spin state. This also
implies that the spin flip is strictly prohibited in this spin-orbit
coupled system.

Landau levels in valence band appear to be much more
complicated, as shown in Fig. 3(a) for the case without the
SOC. The green curves illustrate the group condensed from
the zero-field subband around the � point. The levels of this
group are all shifted toward EF as B decreases, and in the

FIG. 3. (Color online) Same plot as Fig. 2 but for the valence-
band Landau states. Additionally, the � valley states are colored
green.

low-field limit, they reach −58 meV. In the view of wave
functions, the |0〉j sublattice dominates and its node number
is taken to be the Landau index n. Accordingly, the levels in
this group are labeled as |0,n〉� .

The rest of the valence Landau levels have a quite different
nature since they come from zero-field subbands near the K

and K ′ valley. Those levels can be grouped into K and K ′
valley states, which are respectively colored blue and purple in
Fig. 3(a). The wave functions are dominated by both |−2〉j and
|2〉j sublattices. By using the node number to define the Landau
index, the Landau levels of the two groups are labeled as
|2,n〉K and |2,n〉K ′ . Notably, two levels from different valleys
are paired together as the Landau index of the K group is two
greater than that of the K ′ group, i.e., levels of |2,n + 2〉K and
|2,n〉K ′ are close to each other. The first two levels, |2,0〉K and
|2,1〉K , however, are left unpaired. As B decreases, all levels
of both K and K ′ valley groups move toward EF , except for
the |2,0〉K level. They eventually reach −64.8 meV, which is
6.8 meV lower than that of the � valley group.

In valence bands, Landau levels are substantially altered
by the intrinsic SOC, as shown in Fig. 3(b). For all three
valley groups (�, K , and K ′), the spin degeneracy is effectively
lifted, so that the Landau levels are further divided into groups
of |0, ↑,n〉� , |0, ↓,n〉� , |2, ↑,n〉K , |2, ↓,n〉K , |2, ↑,n〉K ′ , and
|2, ↓,n〉K ′ . The split of opposite spin states is in the 0.1 meV
scale for the � valley group but up to 146 meV (=2λ) for
both K and K ′ groups. For the K valley group, the spin-up
levels are shifted away from EF by the energy λ while the
spin-down levels are moved toward EF by λ. This trend is,
however, opposite for the K ′ valley group. As a result, groups
of opposite valley and opposite spin states are teamed up with
each other. One team is the group of |2, ↓,n〉K and |2, ↑,n〉K ′ ,
where levels reach 8.2 meV as B approaching zero. The other
team is the group of |2, ↑,n〉K and |2, ↓,n〉K ′ that reach −137.8
meV. In addition, for each team, levels are paired if the Landau
index n differs by two, i.e., |2, ↓,n + 2〉K with |2, ↑,n〉K ′ and
|2, ↑,n + 2〉K with |2, ↓,n〉K ′ . In contrast, levels of |2, ↓,0〉K ,
|2, ↓,1〉K , |2, ↑,0〉K , and |2, ↑,1〉K are left unpaired.

IV. MAGNETO-OPTICAL SPECTRA

In the calculation of optical absorption spectra, the velocity
matrix which evaluates the transition rate is calculated using
the gradient approximation [18]. For the incident photon
with electric polarization parallel to the x̂ axis, the velocity
matrix elements are the first-order derivative of the original
Hamiltonian elements 〈�c|∂H/∂kx |�v〉. In our calculations,
most spectral features appear at kx = ky = 0, where the
velocity matrix reads

∂H

∂kx

=

⎛
⎜⎝

0 i3at1 0

−i3at1 0 0

0 0 0

⎞
⎟⎠ , (6)

which implies that the most active terms are closely related to
the hopping between the |0〉 and |−2〉 orbitals of the nearest-
neighboring Mo atoms. The optical transition rules also depend
on the wave functions of occupied and unoccupied electronic
states, �v and �c.

155316-4



MAGNETOELECTRONIC AND OPTICAL PROPERTIES OF A . . . PHYSICAL REVIEW B 89, 155316 (2014)

FIG. 4. (Color online) The magneto-optical absorption spectra at
different B for the cases (a) without SOC and (b) with SOC. The
absorption rates are in arbitrary units and the spectra are offset for
clarity. Different types of transitions are distinguished by colored
triangles.

The calculated magneto-optical spectra without SOC are
shown in Fig. 4(a), where from bottom to top illustrate the field
evolution from 10 to 50 T. Absorption peaks are originated
from transitions between dispersionless Landau levels. The
peak frequencies as a function of B are shown in Fig. 5(a)
for a clearer illustration, where the symbol size represents
the peak intensity. Absorption peaks are more pronounced in
a stronger magnetic field, resulting from the greater Landau
quantization. In addition, absorption lines scale linearly in B.
They are blueshifted as B increases, except for the threshold
one. All absorption peaks can be classified into two types, as
marked by blue and purple triangles in Fig. 4(a). The transitions
of these two types are

|2,n〉K → |0,n〉K,
(7)

|2,n〉K ′ → |0,n〉K ′ .

In each type, the states associated with the first three transitions
are also indicated in Fig. 5(a). Also note that most absorption
peaks appear in pairs, where each pair consists of transitions
of |2,n〉K ′ → |0,n〉K ′ and |2,n + 2〉K → |0,n + 2〉K .

FIG. 5. (Color online) B-dependent absorption frequencies for
the cases (a) without SOC and (b) with SOC. The symbol size is
proportional to the peak intensity. In each type of transition, states
involving the first three absorption lines are also indicated.

As optical transitions occur, the following requirements
must be satisfied. First, only transitions between the |−2〉 and
|0〉 orbital states are available since the related terms in the
velocity matrix are nonvanishing, as shown in Eq. (6). Second,
two states must belong to the same valley states due to the
lack of intervalley scattering. In other words, transitions occur
only between two K states and between two K ′ states. Those
involving � states are absent in low-lying spectra. Third, the
valence and conduction states must be of the same Landau
index n. This makes two states having the same oscillation
modes in their wave functions. Therefore, by virtue of the
orthogonal properties of the Hermite polynomials, the product
of the two wave functions in the velocity matrix elements may
have a nonzero value.

The intrinsic SOC effectively lifts spin-up and spin-down
states, and thus substantially enriches the magneto-optical
spectra, as shown in Figs. 4(b) and 5(b). Due to the removal
of the spin degeneracy, the spectral intensity is about half as
large compared to the case without the SOC. The absorption
peaks can be classified into four types:

|2, ↓,n〉K → |0, ↓,n〉K,

|2, ↑,n〉K ′ → |0, ↑,n〉K ′ ,
(8)

|2, ↑,n〉K → |0, ↑,n〉K,

|2, ↓,n〉K ′ → |0, ↓,n〉K ′ .

In Fig. 4(b), peaks are marked by red, purple, blue, and brown
triangles. In addition to the transition rules mentioned above, in
the presence of the SOC, transitions are allowed only between
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states of the same spin. There are no spin flips during optical
excitations. In addition, the threshold absorption frequency
|2, ↓,0〉K → |0, ↓,0〉K can directly correspond to the system
band gap.

It is also important to note that crossings of the absorption
lines can be observed at certain field strengths. For example,
the degeneracy of the transitions |2, ↑,0〉K → |0, ↑,0〉K and
|2, ↑,2〉K ′ → |0, ↑,2〉K ′ is indicated in Fig. 5(b). These cross-
ings occur more frequently in a range of higher frequency and
lower field strength. On the contrary, in the case without the
SOC, the absorption lines are lined up next to each other, and
those crossings are absent. Such crossings of the absorption
lines can serve as a fingerprint of the SOC and have the
implication of changing the filling factor in the quantum Hall
effect. In addition, those crossings might be able to turn into
anticrossings as one further considers many-body terms.

V. CONCLUSIONS

In the spin-orbit coupled MoS2, an external magnetic field
gives rise to the multiple splittings of Landau levels. By means

of wave functions, states of different orbital, spin, and valley
signatures are all clearly resolved and can be distinguished
from one another. In magneto-optical spectra, selection rules
can be effectively determined as well. Particularly, crossings
of absorption lines are found to be a direct evidence of the
SOC. All these predictions can provide a guideline for future
magneto-optical experiments [19–21].

Note added in the proof. Recently, we became aware of a
recent publication [22], which derives an effective Hamiltonian
to characterize Landau levels of monolayer transition metal
dichalcogenides.
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