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“I stand upon my desk to remind myself that we must constantly look 
at things in a different way.  You see the world looks very different 
from up here. Don’t believe me?  Come see for yourself.  Come on.  Just 
when you think you know something you have to look at it in another 
way even though it may seem silly or wrong.  You must try . . . ”

—John Keating, in the Dead Poets Society, a movie by Peter Weir
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There are excellent text books available in solid state physics (see 
bibliography, a non-exhaustive list), and the better the books, the 
easier looks solid state physics. But even clear explanations do not 
necessarily involve a full understanding of this field of physics. The 
best test for the reader is to try an alternative point of view: solve 
exercises or problems, and this is the assigned goal of this book. This 
book provides a stimulating challenge for the grey cells as it gives the 
opportunity to make useful (for the understanding) errors and also 
to draw curves and figures or to deal with orders of magnitude in 
the numerical applications. The questions at the end of each chapter 
permit to have another proper view  as they are free of mathematical 
calculations and can be solved using common sense. 
  This book is the deeply revised version of the French book 
Initiation à la physique du solide: exercices comméntes avec rappels 
de cours, which was written more than 20 years ago and was the 
result of years of teaching solid state physics at the Reims University, 
France. Its initial idea was just a compilation of problems given for 
examinations at the end of each year to test the young students on 
their understanding of lectures based upon the first ten chapters of 
the well-known book of C. Kittel with complements from books of 
pioneers of this subject. Next a sabbatical stay in a laboratory involved 
in microelectronics (lab directed by Dr. A. Frederic at Thomson CSF, 
presently Thales, Orsay) opened my eyes on the fascinating samples 
that were elaborated and operated: nearly academic samples 
involving the physics of surfaces and of 1- or 2D samples, such as 
atom aggregates, multilayers, and semiconducting devices, full of 
promising applications in nanotechnologies. Finally came the idea 
of adding exercises and problems inspired from a dozen of Nobel 
Prize–winning works on solid state physics, including the most 
recent on graphene and carbon nanotubes. 
 The prerequisites to use this book are only the mathematics 
of differential equations involved in Maxwell’s and Schrödinger’s 
equations in their simplest form. The detailed statements permit 
to overcome other mathematical difficulties by suggesting practical 

Preface



xx Preface

simplifications in order to lead the reader step by step up to the end. 
I hope the readers will find the same pleasure as I had while writing 
this book and also making errors. 
 I am greatly indebted to my colleagues of various French 
universities: M. Gerl, B. Gruzza, J. Philibert, Y. Queré, C. Colliex, and 
O. Jbara for their comments and constructive remarks. I also wish to 
thank again A. Friederich, J. Massies, A. Fert, C. Weisbuch, and their 
colleagues for their stimulating hospitality in the Thomson-CSF 
group during the years 1987–1990. Last but not at least, I am very 
grateful to the hundreds of students in physics at the University of 
Reims who, by their errors, unintentionally acted as guinea pigs in 
testing this book and thus improving it. 

Jacques Cazaux
Reims, France

Winter 2014



xxiContents

This book is divided into five chapters numbered I to V. Each chapter 
is composed of a course summary, exercises with solutions, and then 
problems that are also followed by solutions. Simple questions are 
given at the end of each chapter. 
 At the end of some questions one may find, between parentheses, 
indications such as e, m, kB, etc. to denote that the numerical value 
of the electron charge, e, the electron mass, m, and the Boltzmann 
constant, kB, etc. are needed to solve them. These numerical values 
are given in Table I at the beginning of the book. Table II lists 
some useful numerical values that would be required to solve the 
exercises and problems. SI units have been used in both tables. Table 
III presents the periodic table of elements for easy reference.
 At the right end of some solutions one may find between 
parentheses indications such as Chapter IV, Ex. 5, or Chapter V, Pb. 6. 
These indications refer to other exercises, Ex., or problems, Pb., being 
in continuity to the exercise or problem under consideration. The 
roman capital number of the chapter is omitted when the correlated 
exercises or problems belong to the same chapter. This arrangement 
permits the reader to gather various exercises and problems that 
have a common aspect. For instance, an extended investigation of 
the various properties of graphene may be performed from the 
addition of Chapter I, Ex. 17 (Crystallography); Chapter III, Pb. 9 
(Phonons); Chapter IV, Ex. 14b; and Chapter V, Pb. 11 (π electrons). 
Similar correlations may be established between the phonon and 
the electron dispersion curves in 1D, 2D, or 3D.

Note to the Reader
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Table I Physical Constants

Charge of 1 electron e or q 1.60 × 10–19 C
Mass of 1 electron m 9.1 × 10–31 kg
Planck’s constant H

ħ
6.62 × 10–34 J·s
1.05 × 10–34 J·s

Boltzmann constant kB 1.38 × 10–23 J/°K
Avogadro’s number N 6.02 × 1023 mol–1

Dielectric constant of 
vacuum

e0 8.85 × 10–12 F/m

Magnetic permeability of 
vacuum

m0 1.257 × 10–6 N/A2 (H/n)

Ionization energy of 
hydrogen atom

RH 13.6 eV

Bohr radius ħ 24pe0/me2 = rB 0.53 Å
Bohr magneton mB

m0mB

0.93 × 10–23 A·m2

1.165 × 10 –29 (MKSA)
Ideal gas constant R = N·kB 8.314 J/° K·mole
Speed of light c ~3 × 108 m·s–1

Table II Some Useful Numerical Values

 • (4pe0)–1 = 9 × 109 N·m2/C2 (F/m)
 • 1 eV : Temperature: ≈ 12000 °K ; Frequency: ≈ 2.4 × 1014 Hz;
  Molar energy: ≈ 23 Kcal/mole; Wavenumber: ≈ 8000 cm–1 ;
  Wavelength: ≈ 12400 Å 
 • h/kB = 4.8 × 10–11 sec·°K • e2/h = 3.874 × 10–5 W–1

 • h/e2 = 25812 W
 • hc/el = 12400 eV for g = 1 Å • h/(2 meV)1/2 = 12.26 Å for V = 1 volt
 • kBT = 1/40 eV = 25 meV for T (ambient) = 290 °K
 • ħ2/2m = 3.8 eV·Å2  • h3(2πmkB)–3/2 = 4.2 × 10–22m3 (deg)3/2

 • e/4pe0r0 = 14.4 volts for r0 = 1 Å

Tables
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Course Summary

A. Crystal Structure

1. Definitions

Crystal: An ideal crystal consists of a regular repetition in space of 
atoms or groups of atoms.

Lattice: The group of points from which the observed atomic 
environment is the same as at the origin. This identity concerns both 
the chemical nature of the atoms and their orientation.

Basis: The atoms or group of atoms which constitute the structural 
unit applied to each points of the lattice.

Primitive vectors of the lattice: To go from one point of the crystal 
to an equivalent point, in which the arrangement and orientation 
appear exactly the same, it is sufficient to effectuate a translation of 
the form T = + +m n p







a b c  in which 






a b c, ,  are the primitive vectors of 
the matrix and m, n, p are integers (positive, zero, or negative).

Crystal structure = Lattice + Basis

Chapter I

Crystal Structure and Crystal Diffraction
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2 Crystal Structure and Crystal Diffraction

2. Simple and Multiple Lattices

The choice of vectors 






a b c, ,  is not unique. The vectors 






a b c, ,  are 
said to be primitive if the translations allow a complete description 
of all the points of the crystal lattice. The parallelepiped 







a b c)( ¥  
corresponds to a simple (or primitive unit) cell of the lattice.
 A multiple cell is constructed from the non-fundamental vectors 






a b c¢ ¢ ¢, , , where the parallelepiped contains n equivalent points 
(n > 1): the corresponding non-primitive cells, therefore, consists of 
n primitive cells and the order of the lattice cell will be n, where n = 
2 or n = 4.

3. Lattice Rows and Miller Indices

To describe the crystal structure it is sufficient to state the choice of 
lattice vectors, and the nature and position of atoms that make up 
the basis. These positions are expressed with the help of the vectors 






a b c, , , considered as the unit vectors:
 





r a b cj j j ju v w= + + .

 The lattice points are arranged along various rows and planes. 
When the rows and the planes are parallel and equidistant to each 
other they are equivalent and they are represented with the same 
symbols.
 A series of parallel rows is represented by (m, n, p) where 
r








= + +m n pa b c  when the row is parallel to the line that connects 
the origin to the lattice point m, n, p.
 A series of parallel planes can be represented all by Miller indices 
(h, k, l), which describe the equation of the form hx + ky + lz = 1 
of plane nearest the origin and using a, b, c units (see Ex. 8). This 
definition means that the intersections of the plane (h, k, l) with axes 
x, y, and z are 1/h, 1/k, 1/l, respectively. The atoms chosen to define 
a plane must not be collinear.

4. Point Symmetry

In nearly all crystals one or several directions are equivalent. This 
orientation or point symmetry of a crystal can be represented by 
the symmetry of the figure formed by the group of half-lines which, 
emanating from the same point 0, are parallel to the directions 
from which all the properties of the crystal are identical. The point 
symmetries that are encountered include the rotations of order n 
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around an axis (the angle of rotation is 2p/n with n = 1, 2, 3, 4, 6) and 
the rotation-inversions, written as n  (1 ∫  inversion with respect to 0, 
2 ∫�m: mirror symmetry, 3 4 6, , ). Several symmetry elements can be 
associated around a point but the number of distinct combinations 
and possibilities is limited to 32. That is, there are 32 symmetry 
point groups which result in a classification of 32 crystal classes.

5. The 7 Crystallographic Systems and the 14 Bravais Lattices

Limited to the symmetry of the lattice (and not that of the crystal = 
lattice + basis), there are only seven possibilities, corresponding to 
the seven crystallographic systems shown in Table 1.

Table 1 The 7 crystallographic systems and the 14 Bravais lattices

System
Number 

of lattices
Nature of axis 

and angles

Lengths 
and angles 

to be 
defined Symmetry

Triclinic 1
P

a ≠ b ≠ c
a ≠ b ≠ g

a, b, c
a, b, g

1

Monoclinic 2
P,C

a ≠ b ≠ c
a = g = 90° ≠ b

a, b, c
 b

2/m

Orthorhombic 4
P,C,I,F

a ≠ b ≠ c
a = b = g  = 90°

a, b, c mmm

Tetragonal 2
P,I

a = b ≠ c
a = b = g  = 90°

a, c 4/mmm

Cubic 3
P,I,F

a = b = c
a = b = g  = 90°

a m3m

Trigonal 
(Rhombohedral)

1
P (R)

a = b = c
a = b = g  ≠ 90° 
≠ 120°

a
a

3m

Hexagonal 1
P

a = b ≠ c
a = b = 90°;  
g  = 120°

a, c 6/mm

(P = primitive, C = base-centered, I = body-centered, F = face-centered, R = 
rhombohedral)
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 Besides the primitive cells, P, if one includes in this classification 
certain multiple lattices because they render the symmetry of the 
lattice more clearly, 14 possible Bravais lattices are obtained from 
the 7 crystallographic systems in 3D: they are labeled C, I, F. (In 2D 
there are five Bravais lattices, see Ex. 17.)

bc

a b

g

cubic
( = = )a b ca b= = = 90°g

p c p
monoclinic triclinic trigonal

( = = )a b c

p ( = 120°)
hexagonal

g

p a i f p i
tetragonal
( = )a b π c

orthorhombic
( )a b cπ π

r

c i fp

Figure 1 The 14 Bravais lattices.

6. Space Symmetry

If one sought to study nature at the atomic scale and enumerated all 
the possible symmetry operations, keeping unchanged the positions 
of atoms (position symmetry), the number of possibilities is 230, 
making up what are known as the space groups.
 These symmetry operations involve placing the point symmetries 
into the Bravais lattices of the system.

B. Diffraction and the Reciprocal Lattice

1. Bragg’s Law

One can use the interferences of waves scattered by atoms of a 
crystal to deduce its underlying crystal structure. The Bragg’s law, 
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2dh k l, , sinq l= , is satisfied when the wavelength of the radiation, l is 
smaller than the interatomic distance (say <3 Å).
 For such a purpose, three types of radiation are used in general:

 (a) Photons or electromagnetic radiations with very short 
wavelength X-rays so that, 3 Å > l > 0.1 Å and l = hc/E, where 
l(Å) = 12.4/E (keV) (see Exs. 15 and 20; Pbs. 1, 5, and 6).

 (b) Fast or slow electrons (Pbs. 3 and 4):

  l = = +
Ê

Ë
Á

ˆ

¯
˜

È

Î
Í
Í

˘

˚
˙
˙

h mv h m
m c

/( ) /
/

2 1
20 0

0

0
2

1 2

eV
eV

  giving in the non-relativistic case, l( ) / ( ).Å . V volts= 12 26

 (c) Neutrons (Pbs. 7 and 11):
  l = h Mv/

  where l( ) . / ( )Å E eV= 0 286

2. X-Rays

In laboratory diffraction experiments, X-ray radiation is obtained by 
bombarding a metallic anode by a beam of high-energy electrons, 
eV0 (∼10s of keV). The obtained radiation spectra (see Fig. 2) consist 
of a broad distribution of photon energies ranging from hn∼0 to 
hn∼eV0 (continuous radiation or bremsstrahlung) superimposed 
with some very intense characteristic lines, which correspond to 
transitions between electronic shells in the target metal of atomic 
number, Z. Schematically, the energetic order of magnitude of the 
X-rays can be evaluated using the Bohr model applied to an atom, 

Z where, hv R Z
n nn n, ' = -

¢
Ê
ËÁ

ˆ
¯̃H

2
2 2

1 1 , leading to the Moseley law, 

v cR Z= -H ( )s , where n = 1, n¢ = ∞, s is related to the screening 

and RH = 13.6 eV. The nomenclature of these X-rays summarizes the 
atomic number Z of the metallic anode: the quantum number of the 
electron vacancy induced with the incident electrons (K: n = 1, L: 
n = 2, M: n = 3); the quantum number of the atomic electron filling 
this vacancy (n¢ – n = 1: a, n¢– n = 2: b, etc.) and finally, in subscript 
the sub-shells concerned (taking into account the selection rules: 
l¢ = l ± 1). For instance, if the target metal is Mo, the most intense 
characteristic line is noted as Mo Ka1.
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Figure 2 X-rays sources. (Top) Conventional: (a) Example of X-ray 
spectrum issued from a conventional X-ray tube. (b) Electronic 
transitions involved in the production of characteristic X-rays. 
(Bottom) Synchrotron radiation: (c) Source. (d) Spectral 
distribution of X-rays. (e) Monochromatization and focussing 
on the sample.

 X-rays are also emitted when ultrafast charged particles 
experience radial accelerations. Such a radiation, called synchrotron 
radiation, is produced in synchrotrons using bending magnets, 
undulators, and/or wigglers. This radiation is tunable, linear 
polarized, left and right, in the soft X-ray range. In solid state physics, 
the main applications concern not only X-ray diffraction but also 
photoelectron spectroscopy and X-ray absorption spectroscopy 
(Chapter IV).

3. Reciprocal Lattice (Exs. 12, 13, and 19)

If 






a b and c, ,  are the vectors of the primitive (or fundamental) crystal 
lattice, then the reciprocal lattice of the system is constructed from 
the vectors 

  

A B and C, ,  such that:

 














 



 







 


A = b c

a b c
 B = c a

b c a
 C = a b

c a
s s s2 2 2Ÿ

Ÿ( )
Ÿ
Ÿ( )

Ÿ
Ÿ

, ,
bb( )
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Then, 

 A b A c B a B c C a C b

A a B b C c

           

     

◊ = ◊ = ◊ = ◊ = ◊ = ◊ =

◊ = ◊ = ◊ =

0

ss 2

 In general, s2 is defined as either s2 = 1 or s2 = 2p. In the following 
we adopt the latter choice, which is the metric used for representing 
reciprocal and vector pace (2p/l), which is convenient for the Ewald 
construction.

Property Exs. 10a and b
The vector 



G (h, k, l) = h


A + k


B + l


C of the reciprocal space is 
perpendicular to the planes of the same indices (h, k, l) of the direct 

lattice such that 


G( , , ) , ,h k l dh k l◊ = 2p , where dh,k,l is the distance 

between two adjacent (h, k, l) planes.

4. More Detailed Analysis of Diffraction

 • Phase difference: The phase difference between two scattered 
waves, O and M is:

  

d

j p d
l

= -

= = - = ◊

r s s

k k r k r

  

    

( ),

( )

0

02 D

  where k s




0 0
2= p
l

  For a simple lattice of identical atoms, the constructive 
interference conditions are reduced to:

  j p p a b g= ◊ = ◊ = + +Dk r




N m n p2 2 ( ), where Dk G
 

= .
  One can then deduce the Ewald construction (see Exs. 18 

and 19). The diffraction condition can also be written as 
 

k G G0
22 2◊ =/ ( / ) , which imposes that the incident wave vector, 

k0, extend from the origin, G, to a point of any plane of symmetry 
between the origin and any point (h, k, l) of the reciprocal 
lattice space. The smallest possible volume surrounding the 
origin and limited by such symmetry planes is known as the 
first Brillouin zone (BZ; Ex. 14).

	 •	 Structure	 factor:	When several atoms make up the basis of 
a crystal, the scattered wave amplitudes of each atom fj will 
contribute a structure factor to the total amplitude:

M

r
sOs.



8 Crystal Structure and Crystal Diffraction

  A f ij
j

j= - ◊ +ÂÂ
r

rexp ( )Dk r
  

  where 
 





r = + +m n pa b c and 
 





r u v wj j j j= + +a b c .

  Furthermore, when the Bragg condition is met so that Dk G
 

= , 
the contribution, from all the atoms of the basis is:

  
F h k l f i f i hu kv lwj j

j
j j j j

j

( , , ) exp exp ( )= - ◊ = - + +Â ÂG r
 

2p

  For applications we can refer, for example, the distinction 
between ordered alloys and disordered alloys in Pb. 5.

	 •	 Atomic	form	factor:	X-rays striking an atom “see” the electrons 
surrounding the nucleus. These atoms are not points compared 
to l and the corresponding atomic form factor, f, includes the 
electronic distribution into the atom, r(r), and the phase 
difference between the origin and any point of the electron 
cloud:

  f iµ - D ◊Ú r( )exp ( )r k r
  

atom

 (see Ex. 22)

  Exercises 1 to 9 are meant to familiarize the reader with the 
crystal lattices in 1-, 2-, and 3D. Similarly, Exs. 10 to 18 are 
meant to introduce the basic notions of the reciprocal lattice 
and the BZ. The knowledge of these crystallographic elements 
is indispensable for what  follows in Chapters III to V, because 
this book concerns essentially the crystal and the behavior of 
the atoms and electrons from which it is constructed. Thus, 
the effects of diffraction concern both external electrons in the 
crystal and also the internal valence and conduction electrons 
that lead to the theory of bands in Chapter V. In this Chapter, 
external radiation is used to characterize periodic structures 
such as crystal surfaces and their growth (with a preference 
for incident electrons, Pbs. 3 and 4) and magnetic structures 
(preferably with neutrons, Pb. 11). The more general method 
for investigating crystal structures in 3D consists of using 
X-rays to characterize alloys, for instance (Pbs. 5 and 6) and 
superlattices (Pb. 10) and finally, structures such as those 
found in Ex. 20.
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Exercises

Exercise 1: Description of some crystal structures

Describe the crystal structures represented in Fig. 3. For each case 
state the Bravais lattice, the position of the atoms making up the 
basis (Hint: The crystals in “a” to “f” belong to the cubic system). 
In the case of multiple lattices, it is best to describe the atoms and 
the atom fractions in each lattice, in order to deduce the chemical 
formula attributed to the basis. In the case of multiple lattices, state 
the primitive lattice (of order 1).

(a) (b) (c)

5.46 Å

(f)

4.5 Å

Ti

4.5 Å 3.2 Å

c = 2.89 Å

(g) (h)

Mg

5.2 Å

(d) (e)

3.56 Å
5.63 Å

Na FCaClC

4.11 Å 3.99 Å
5.41 ÅCl

Cs
Ti
Ba

S
Zn

O

O

Figure 3



10 Crystal Structure and Crystal Diffraction

Solution:

One must first characterize the crystalline lattice by searching for 
the places of the points where one observes the same chemical 
environment (1°) as at the origin with the same orientation (2°) (For 
definition of the lattice points, see Course Summary).
 If one atom of species A is taken as the origin, then condition 1 
excludes all other atoms of species B ≠ A. Among atoms of species A, 
the second condition excludes certain others: (Fig. 3d) for instance, 
the atoms at the same positions as the white atoms in Fig. 3c, would 
be excluded; (Fig. 3g) the central atom would be excluded; (Fig. 3h) 
the atoms located in the intermediate plane are excluded.
 The lattice points thus determined, one has to connect two 
identical points by translations of type: T a b c









= + +m n p  (where, m, 
n, and p are integers). The vectors 







a b and c, ,  form the basis vectors 
of the primitive lattice cell if such a translation allows an identical 
description of all the lattice points.
 For the crystals represented in Figs. 3a and 3b, there are three 
orthogonal vectors of length “a” which extend to the edges of the 
cube.
 For Fig. 3g, the lattice is tetragonal.
 For Fig. 3h, the structure contains in fact three juxtaposed lattices 
of order 1. The lattice vectors in the base plane are represented by 
bold lines in Fig. 4 (where there is a projection on the plane of atoms 
situated in the intermediate plane).
 The lattices shown in the crystals c, d, e, and f are multiple of 
order 4 (face-centered cubic). The vectors of the fundamental lattice 
(order 1) are represented in Fig. 5. It is clear that such a lattice choice 
(and the corresponding vectors) masks the obvious symmetries of 
the lattice and that it is better to choose multiple lattices which do 
represent these symmetries (e.g., Bravais lattices).
 In order to characterize the basis, one should first determine 
the number and the nature of the constituent atoms. It is sufficient 
to evaluate the total number of atoms (and atom fractions) of each 
species situated in the interior of the lattice of order n and to divide 
this number by n. One then obtains the position of the basis atoms 
and uses the basis vectors of the lattice of order n as the metric. 
Applying these principles to the lattice structures, we find the 
following results:
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 (a) Bravais lattice: cubic simple; a = 4.11 Å, Basis: 1 Cs at (0,0,0) 
and 1 Cl at (½,½,½) 

 (b) Bravais lattice: cubic simple; a = 3.99 Å, Basis: 1 Ba at (0,0,0) 
and 1 Ti at (½,½,½); 3 O at (½,½,0), (½,0,½), and (0,½,½). 
The structure is BaTiO3, known as a perovskite.

 (c) Bravais lattice: face-centered cubic; a = 5.41 Å, Basis: 1 S at 
(0,0,0) and 1 Zn at (¼,¼,¼). The structure is known as zinc 
blende.

 (d) Bravais lattice: face-centered cubic; a = 3.56 Å, Basis: 1 C at 
(0,0,0) and 1 C at (¼,¼,¼). The structure is known as diamond 
structure. Also it is that of Si, Ge, and of many other binary 
semiconductors.

 (e) Bravais lattice: face-centered cubic; a = 5.63 Å, Basis: 1 Na at 
(0,0,0) and 1 Cl at (½,0,0). The structure is known as NaCl.

 (f) Bravais lattice: face-centered cubic; a = 5.46 Å, Basis: 1 Ca at 
(0,0,0) and 2 F Zn at (¼,¼,¼) and (¾,¼,¼ (or at (–¼,¼,¼). 
The structure is known as fluorine, CaF2.

 (g) Bravais lattice: tetragonal; a = 4.5 Å, c = 2.89 Å; Basis: 2 Ti at 
(0,0,0) and (½,½,½); 4 O at ≈ (⅓,⅓,0), (⅔,⅔,0), (⅔,⅓,½), and 
(⅓,⅔,½).

  The structure is known as rutile (TiO2).
 (h) Bravais lattice: hexagonal; a = 3.2 Å, c = 5.2 Å; Basis: 2 Mg at 

(0,0,0) and (⅔,⅓,½). The structure is hexagonal close packed 
(hcp), which is not a Bravais lattice.

 It can be verified that the above descriptions are sufficient 
to reconstruct the different structures. Exercise 3 shows the 
determination of the structures from their descriptions. Note that 
the meaning of the word “structure” is less precise than “Bravais 
lattice”.

a
a

1
2

c
C

A

B

b

a

y
x

Z

a

 Figure 4  Figure 5
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Exercise 2: Mass per unit volume of crystals

With the help of Table III (periodic table at the beginning of the 
book), find the mass per unit volume (V.M.) of the crystals shown 
in Fig. 3.

Solution:

It is easy to see that V.M. = p A NVi i
l

Â , where V is the volume of the 

lattice containing the equivalent of p atoms of species with atomic 
mass A and N is Avogardo’s number. We thus find:

 V.M. (CsCl) = (132.9 + 35.45) /N a3 = 4 g◊cm–3

 V.M. (Diamond) = 8 ¥ 12 /N a3 = 3.53 g◊cm–3

 V.M. (CaF2) = 4(40 + 2.19) / N a3 = 3.18 g◊cm–3

Exercise 3: Construction of various crystal structures

Construct the corresponding crystal structure from the following 
descriptions of the Bravais lattices and the bases:

 (1) One-dimension
  Bravais lattice: a line of length a. Basis: Two atoms of species 

A spaced by 0 and ¼.
 (2) Two-dimensions

 (a) Bravais lattice: simple rectangle with a = 4 Å, b = 3 Å; 
Basis: one atom of species A located at (0,0) and another 
atom of species B located at (½,½).

 (b) The same parameters as in (a) but now using atoms A and 
B that are chemically the same (A = B). In addition to the 
crystal structure, state the basis vectors of the primitive 
lattice and specify the nature of the new Bravais lattice.

 (c) Bravais lattice: hexagonal (a = b, g = 120°). Basis: two 
atoms of C, one located at (0,0) and the other at (⅓,⅔).

 (3) Three-dimensions
  The Bravais lattice of (a) silicon, (b) GaAs, and (c) Mg2Si are 

face-centered cubic. Their basis vectors are respectively 
located at:
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 (a) Two atoms of Si; one at (0,0,0) and the other at (¼,¼,¼)
 (b) One atom of As located at (0,0,0) and one atom of Ga 

located at (¼,¼,¼)
 (c) One atom of Si located at (0,0,0); two atoms of Mg located 

at (¼,¼,¼) and (¾,¼,¼)

 For the sake of simplicity, limit the representation of the atomic 
projection on the base plane, specifying the relevant height.

Solution:

This is a complementary exercise to Ex. 1

 (1) See Fig. 13, Ex. 15.
 (2) (a) See Fig. 6a.

 (b) See Fig. 6b. Each atom is situated on a lattice junction. The 
base vectors of the primitive lattice are given by: a’ = b’ = 
2.5 Å; g = 73°6. Translations of the type m



a¢  + n


b¢ , allow 
the crystal to be constructed but do not evidence the 
rectangular symmetry of the lattice. The Bravais lattice, 
better adapted to show this symmetry, is rectangular 
centered. There exist only five 2D Bravais lattices of order 
1 (see Ex. 17).

 (c) This is the graphite structure (see Fig. 16, Ex. 17).

 (3) After substituting C atoms for Si, the crystal structure of Si is 
represented by Fig. 3d. After substituting the atoms of S by the 
atoms of As and the atoms of Zn by the atoms of Ga, the crystal 
structure of GaAs is represented in Fig. 3c (Ex. 1).

 The crystal structure of Mg2Si is analogous to that of CaF2 with 
the atoms of Mg substituted for F and those of Ca substituted for Si 
(Fig. 3f).

C1
Na

. .
.

.

. .
.

.

(a)

a
b

A

(b)

A
B

b¢

a¢
g

 Figure 6    Figure 7
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 In order to avoid the difficulty of representing 3D structures, 
one can project the atoms on the base plane, while specifying their 
side. Figure 7 shows this representation for the case of silicon (or 
equivalently diamond).

Exercise 4: Lattice rows 

Determine the lattice rows noted by the indices [m, n, p], from the 
two points in the lattice m1, n1, p1 and m2, n2, p2.

(a) 321 and 240; (b) 321 and 331; (c) 121 and 111; (d) 121 and 
212.

Solution:

One must determine the translation between the origin and the line 
formed between the two points so that the lattice direction can be 
determined (see definition of lattice planes in Course Summary, 
Section 3). Note that the direction [m, n, p] is confused with the 
direction [m, n , p ].

 We thus use: [m2–m1, n2–n1, p2–p1] and find:
(a) [1 2 1]; (b) [0 1 2]; (c) [2 1 0]; and (d)[1 1 1 ]

Exercise 5a: Lattice rows and reticular planes

Using the property of the reciprocal lattice, find the condition that 
permits the lattice direction [m, n, p] to be found in the lattice plane 
(h, k, l).
 Is the lattice direction [2 1 0] contained in the plane (1 2 3)?

Solution:


G(h, k, l) is perpendicular to the plane (h, k, l). For the lattice row 
[m, n, p] to be contained in this plane it is sufficient for the scalar 

product: 








G a b ch k l m n p, ,( )◊ + +( ) = 0. We thus arrive at the condition, 

hm + kn + lp = 0.
 The lattice direction [2, 1, 0] is thus contained in the plane 
(1, 2, 3).

Exercise 5b: Lattice rows and reticular planes (continued)

Using the properties of the reciprocal lattice, determine the indices 
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of the plane (h, k, l) which contains the lattice directions [m1, n1, p1] 
and [m2, n2, p2].
 Do this for the lattice directions [1, 1, 1] and [3, 2, 1].

Solution:

The vector product of two vectors in the plane is a vector 
perpendicular to this plane. It is therefore parallel and proportional 
to G(h, k, l).
 h n p p n k p m m p l m n m n= - = - = -a a a( ); ( ); ( )1 2 1 2 1 2 1 2 1 2 2 1

 The coefficients a are chosen so that h, k, l are of lowest order 
and so that the planes (h, k, l) and ( h k l, , ) are equivalent.
 For the given numbers we find (1 2 1 ) or equivalently ( )1 2 1 .

Exercise 6: Intersection of two reticular planes

Using the properties of the reciprocal lattice, determine the indices 
[m, n, p] of lattice direction defined by the intersection of the planes 
(h1, k1, l1) and (h2, k2, l2).
Do this for the lattice planes (3 2 1) and (1 2 3).

Solution:

The vector product of 


G (h1, k1, l1) and 


G  (h2, k2, l2) defines a vector 
that is parallel to both planes (h1, k1, l1) and (h2, k2, l2) and is thus, 
parallel to their intersection, which is the lattice direction [m, n, p]. 
The procedure to follow is thus analogous, to that in the previous 
exercise:
m k l k l n l h l h p h k h k= - = - = -a a a( ); ( ); ( )1 2 2 1 1 2 2 1 1 2 2 1

 For the given numbers we thus find [1,2,1].

Exercise 7: Lattice points, rows, and planes 

Determine the indices [m, n, p] of the row that results from the 
intersection of two planes where one passes through the lattice 
points 3 2 1, 2 4 0, and 33 1 and the other through the lattice points 

12 1, 1 1 1, 21 2.

Solution:

The solution is the synthesis of Exs. 4, 5b, and 6, using the appropriate 
numerical applications. The solution is thus [1, 2, 1].
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 One observes that the technique used in the Exs. 4 to 7 is 
applicable to all the crystalline systems, including the triclinic one.

Exercise 8: Atomic planes and Miller indices: application to 
lithium

The Bravais lattice of lithium is simple cubic with lattice parameter 
a = 3.48 Å.

 (a) Suppose that the atoms (assumed to be spheres) are placed 
along the [111], represent the atomic distribution along the 
following faces (100), (110), (111), and (201).

 (b) For each such 2D structure, state the direction and basis 
vectors 



a  and 


b of the elementary lattice as well as the value 
of the angle, g.

 (c) Find the atomic concentration and the mass density of lithium 
(A ≈ 7).

Solution:

 (a) By definition, the intersection of P, A, and R in the plane (h, k, l) 
with the base vectors 







a b c, ,  from the direct lattice are such 

that OP a 



=
h

;  OQ b OR c   





= =
k l

;  (see Fig. 11 and Ex. 10a). When 

one indice is zero; the intersection with the corresponding 
axis is at infinity. The planes in this exercise are shown on the 
top of Fig. 8.

  The atoms are in contact along the direction [1,1,1], their 

radius is r
a= 3

4
. It is easy to find the atomic distribution, 

shown in the bottom of Fig. 6.
 (b) The base vectors of the elementary lattice relative to the 

different sides are respectively:

 

( ): ; ;( ): / ; ;

( ):

100 90 110 3 2 70

111

a b a b

a b

 



 



 

= = = ∞ = = ª ∞

= =

a a

a

g g

22 60

5 90

;

; ; .

g

g



 



= ∞

= = = ∞

and

a b

120°;

(201): a a

  We observe that the atomic density decreases when the 
indices h, k, l increase (see also Chapter IV, Ex. 15).
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b

g

(100) (110) (111) (201)

b

g

a

a

Figure 8

  The packing rate (t = 0.68) is found in the following exercise 
(Ex. 9).

 (c) There are two atoms (c.c) of lithium at each cube (within a 
volume a3).

  N (Li) ≈ 4.7 × 1028 atoms/m3.

  The mass density is found using r = NA
N

, where 

r ≈ 546 kg/m3.

Exercise 9: Packing

Assume that the elemental atoms are hard spheres of radius r. 
Calculate the maximum packing rate t obtained when this element 
crystallizes into the following structures:

 (a) simple cubic (sc)
 (b) body-centered cubic (bcc)
 (c) face-centered cubic (fcc)
 (d) diamond
 (e) hexagonal close packed (hcp) (first calculate the optimal c/a 

relation)
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  Using these results, determine the value of the lattice 
parameter(s) of the following real crystal systems where d is 
distance between nearest neighbors:

 (f) magnesium (hcp), d = 3.20 Å
 (g) aluminum (fcc), d = 2.86 Å
 (h) silicon (diamond), d = 2.35 Å

Solution:

We denote r as the radius of the hard spheres and s as the side of the 
cube.

 (a) The cube occupies 8 1
8

1¥ =  sphere so that s = 2r and 

  t = =p/ .6 0 524.
 (b) The spheres touch along the diagonal of the cube, thus 3 4s r=  

so that the cube contains two spheres. We thus have:
  t = =3 8 0 680p/ . .
 (c) The spheres touch along the diagonals of the cube faces, thus 

2 4s r=  so that the cube contains 6 1
2

8 1
8

¥ + ¥  spheres, 

totaling four spheres per cube. We thus find:
  t = =2 6 0 740p/ . .

 (d) The distance between the two atoms (at 000 and ¼ ¼ ¼) 
forms the basis so that 3 4 2s r/ =  and 8 atoms are contained 
in a volume of s3 (order 4 with two atoms per basis), where

  t = =2 16 0 340p/ . .
 (e) In the elementary lattice (Fig. 9) the atoms at 000(O), 100(A), 

110(B), and 2/3; 1/3; 1/2 (C) are placed at the summits of a 
tetrahedron with side a, which is regular when the relation 
c/a is optimal. 

  In this case AH AK= = ∞ =2
3

2
3

60 3
3

a
ssin ; the height 

CH = s 2
3

. We thus have h
c=
2

, so that the optimal c
a

 relation 

for the hexagonal close-packed structure is:

  c
a

= =8
3

1 63. .
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A B

C
O

(a) (b)

A

C

B

O

H K

Figure 9

  The lattice parameter in Fig. 3h contains 12
6

3 2
2

6+ + =  atoms 

and a = 2r. The packing is thus:
  t = p/3 2  = 0.74.
  We have thus verified that there are two ways to minimize 

the volume occupied by hard spheres: the face-centered 
cubic and the hexagonal close packed structures. As shown in 
Fig. 10, both result in the same packing (t = 0.74) because 
they represent, in fact, the same method of placing spheres in 
a third layer.

A

B

A

B

A

B

A

C

B

A

C

Figure 10 Three-dimensional filling of the hexagonal close packed (left) 
and face-centered cubic (right) structures.

 (f) Mg: d = 2r = a = 3.2 Å, c = 3.2 8 3/ = 5.23 Å

 (g) Al: d = 2r = 2a/2, thus a = 4.04 Å 
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 (h) Si: d = 2r = 3a/4, thus a = 5.43 Å

Exercise 10a: Properties of the reciprocal lattice

 (a) Show that all reciprocal lattice vectors of the form 
   

G A B C= + +h k l  are perpendicular to the planes of the same 
indices (h, k, l) in real space.

 (b) Show that the distance dh,k,l between two consecutive planes 
(h, k, l) is inversely proportional to 



Gh k l, , .

 (c) Find dh,k,l for:
 (i) A simple cubic lattice
 (ii) A orthorhombic lattice (a ≠ b ≠ c, a = b = g = p/2)

Solution:

 (a) By definition, the intersections of plane (h, k, l) with the basis 
vectors of the lattice (see Fig. 11) are: 

    P
a
h

Q
b
k

R
c
l

, , , , , , ( , , )0 0 0 0 0 0Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

.  

  The vector PQ
 

 containing the plane (h, k, l) obeys the relation 

PQ b a 





= -
k h

 and the product 
     





G PQ A B C b a
h k l h k l

k h, , ◊ = + +( ) -
Ê

ËÁ
ˆ

¯̃
 

= 0 because by the definition of 


Gh k l, , :

  





 



A a B b C c◊ = ◊ = ◊ = 2p  and 
  







A b A c B a◊ = ◊ = ◊ = 0 .
  



Gh k l, ,  is therefore perpendicular to PQ
 

 and we may also 
show similarly that 



Gh k l, ,  is perpendicular to PR
 

: it is thus 
perpendicular to the plane (h, k, l).

 (b) The distance dh,k,l is represented by the length OH in Fig. 11. 
OH  is perpendicular to the plane (h, k, l) and is therefore 
parallel to 



Gh k l, , . Consider OH
 

 as the projection of OP
 

 on 


Gh k l, , . 
We obtain 

  
   

G G OPh k l h k l h k ld, , , , , ,◊ = ◊  = h k l
h

  



A B C a+ +( )Ê
ËÁ

ˆ
¯̃

= 2p .

  Thus, dh k l
h k l

, ,
, ,

= 2p


G
.
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( , , )h k l

a

P
OP a h= /

OQ = b k/

b
Q

OR = /c l

c

H

R

O

Figure 11

 (c) From the definition of a reciprocal lattice 

  (
( )

, ( )
( )

, ( )A b c
a,b,c

B c a
a,b,c

C a b

 

  







  



 

= = =2 2 2p p pL L L
(( , )

)
a b,c
  

  in the rectangular coordinate system, we obtain the following 
relations:

  A a B b C c











= = =2 2 2
2 2 2

p p p
a b c

, ,  

  from which we obtain

  G h k l
h

a

k

b

l

ch k l, , ( )2 2 2
2

2

2

2

2

24= + + = + +
Ê

ËÁ
ˆ

¯̃
A B C
  

p

  If the lattice is orthorhombic 

  d
G h

a

k

b

l

c

h k l
h k l

, ,
, ,

/= =

+ +
Ê

ËÁ
ˆ

¯̃

2 1
2

2

2

2

2

2

1 2
p

  If the lattice is cubic (a2 = b2 = c2) 

  ( )
( ), , /a b c d

a

h k lh k l
2 2 2

2 2 2 1 2= = Æ =
+ +

Exercise 10b: Distances between reticular planes

 (1) Starting from (a) the definition and (b) a property of the 
reciprocal lattice, give an expression for the distance dh,k,l 
between inter-reticular planes (h, k, l) of a cubic array with 
edges a and next an orthorhombic array (a ≠ b ≠ c).
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 (2) In each of the two cases, state the eight first distances in 
decreasing order. For the cubic array consider only the non-
equivalent planes. For the orthorhombic array use a = 3Å, b = 
4 Å, and c = 5 Å. 

Solution:

 (1) The distance between two parallel planes with equation 
Ax By Cz D+ + + =1 0 and Ax By Cz D+ + + =2 0  is  

d =  
D D

A B C

1 2
2 2 2

-

+ +
.

 (a) The plane equation (h, k, l), the nearest to the origin in a 
orthorhombic matrix is (see Course Summary, Section 3):

  h
a

x
k
b

y
l
c

z
Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

- =1 0 .

  Thus, d(h,k,l) = 1 2 2 2 2 2 2 1 2/[( / / / )] /h a k b l c+ +  for the or-
thorhombic case; d(h,k,l) = a h k l/( ) /2 2 2 1 2+ +  for the cubic 
case.

 (b) On can also obtain easily obtain these results using the rela-
tion 

 

d( ) G( )h k l h k l, , , ,◊ = 2p  where 
   

G( ) A B Ch k l h k l, , = + +( )  
(see Ex. 10a for further details).

 (2) For the cubic lattice, it is sufficient to classify the quantity  
h2 + k2 + l2 by increasing order. We thus find: (100); (110); 
(111); (200); (210); (211); (220); (300) and (221).

  For the orthorhombic lattice: (001); (010); (011); (100); 
(101); (002); (110); (111). This series was found from the 

increasing values of 


G .

Exercise 11: Angles between the reticular planes

In a cubic lattice, determine the angle Φ between the planes  
(h1, k1, l1) and (h2, k2, l2). Verify the result for (100) and (110) planes.

Solution:

The angle between the planes (h1, k1, l1) and (h2, k2, l2) is in reciprocal 
space the angle Φ between G1(h1, k1, l1) and G2(h2, k2, l2).  (see Course 
Summary of Chapter II, Section 3). 
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 It is therefore sufficient to determine the scalar product, 
 

G G1 2 1 2◊ = G G cosΦ. 

Using 
   

G A B C1 = + +h k l1 1 1  and 
   

G A B C2 2 2 2= + +h k l , we obtain:

   cosΦ = 
h h k k l l

h k l h k l

1 2 1 2 1 2

1
2

1
2

1
2

1
2

2
2

2
2

2
2

1
2

+ +( )
+ +( ) + +( )

 Applied to planes (100) and (110), we find cosΦ = 2 2/ , or  
Φ = 45°.

Exercise 12: Volume of reciprocal space

Consider successively the direct (cubic) simple cubic, body-centered 
cubic, and face-centered cubic lattices, each with lattice parameter a 
and their associated reciprocal lattices. In reciprocal space, find the 
corresponding volume of the primitive lattice (order 1).

Solution:

Simple cubic reciprocal lattice has a volume V = ( / )2p a 3.
 Body-centered cubic: In real space, the cubic lattice is of order 
2. Its volume is therefore (see Course Summary) v a= 3 2/ . The 
reciprocal lattice of the bcc is fcc (order 4) with a cubic parameter 

2 2p
a

Ê
ËÁ

ˆ
¯̃

, which gives V
a

= Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

1
4

4 3p  = 2( / )2p a 3

 Face-centered cubic: In real space, the cubic lattice is of order 4: 
v = a3 4/ . In reciprocal space, the lattice is of order 2 (bcc) with a 

cubic parameter 2 2p
a

Ê
ËÁ

ˆ
¯̃

 so that the volume is V
a

= Ê
ËÁ

ˆ
¯̃

4 2 3p .

Note: In these special cases, one can verify the general relation: 
v V◊ = ( )2 3p .

Exercise 13: Reciprocal lattice of a face-centered cubic 
structure

Construct the reciprocal lattice of a face-centered cubic structure 
using:
 (a) The definitions
 (b) The structure factor:
 F h k l f i hu kv lwj

j
j j j( , , ) exp[ ( )]= - + +Â 2p
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Solution:

	 (a)	 Starting	 from	 the	 definitions,	 one	 must	 consider	 the 
primitive	 rhombohedral	 (or	 trigonal)	 lattice	 from	 which	
the	 basis	 vectors	 a¢,	 b¢,	 and	 c¢	 obey	 the	 following	 relations 
(see	Ex.	1,	Fig.	5):

  a x y b y z c z x
        

¢ ¢ ¢= + = + = +( )( / ); ( )( / ); ( )( / ).a a a2 2 2

	 	 The	 volume	 of	 this	 primitive	 lattice	 is	 such	 that	 V a= 3 4/ ,	
because	the	fcc	lattice	is	of	order	4.	The	translation	vectors	of	
the	reciprocal	lattice	are	given	by	( / )A V= ¥2pb c¢ ¢ :

  A x y z B x y z C x y z
           

= + - = - + + = - +2 2 2p p p
a a a

( ), ( ), ( )

	 	 These	are	the	primitive	lattice	vectors	of	a	bcc	lattice.
	 (b)	 The	diffraction	conditions	of	a	direct	lattice	impose	the	diffu-

sion	vector	D


k	from	being	equal	to	the	reciprocal	lattice	vec-
tor 



G h k l, ,( ) 	and	the	presence	of	identical	atoms	in	the	interi-
or	of	the	lattice	(by	the	intermediate	of	the	structure	facture)	
“erases”	certain	of	these	reflections.

	 To	construct	a	reciprocal	 lattice	 for	a	given	Bravais	 lattice,	one	
must	 therefore	 consider	 the	 multiple	 reciprocal	 lattices	 chosen,	
erasing	 in	 the	 reciprocal	 space	 the	 points	 corresponding	 to	 a	
forbidden	reflection	(associated	to	the	presence	of	additional	points	
in	real	space).	Thus,	in	the	case	of	the	fcc	lattice	F(h,	k,	l)	is:

 F h k l f i k i k h i h( , , ) { exp ( ) exp ( ) exp ( )}= + - + + - + + - +1 1 1p p p

 F(h, k, l)	is	zero	when	h,	k, and l	have	different	parity.	Reflections	
of	type	100	and	110	are	forbidden	and	in	reciprocal	space	erase	the	
corresponding	 points,	which	 are	 only	 present	 in	 a	 cubic-centered	
lattice	with	edge	4p/a.

Remark:	 We	 are	 concerned	 with	 deleting	 the	 reflections	 related	
to	 the	 existence	of	 points	 of	 the	primitive	 lattice	 contained	 in	 the	
multiple	 lattice	 considered	 here	 and	 not	 with	 deleting	 all	 of	 the	
forbidden	reflections.	For	instance,	the	reciprocal	lattice	of	diamond	
remains	 bcc	 (direct	 lattice	 is	 fcc),	 even	 though	 the	 position	 of	 an	
atom	at	¼,	¼,	¼	is	chemically	identical,	but	not	equivalent,	to	that	
found	at	0,	0,	0,	forbids	reflections	at	which	h + k + l = 4n	+2	(such	as	
the	reflection	200;	see	Pb.	1).
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Exercise 14: Reciprocal lattice of body-centered and face-
centered cubic structures

Construct the BZs for these two lattices.

Solution:

 • The reciprocal lattice of the bcc structure is the fcc lattice with 
a lattice edge of 2 2◊ p/a and points positioned at the center of 
the faces. This structure takes into account only the reflections 
of the simple cubic lattice such as the h + k + l = an even number: 
110, 200, etc. The perpendicular bisector (or symmetry) 
planes between the center G(0 0 0) and the reciprocal points 
of the type 110 (represented by a black point on Fig. 12a) are 
sufficient to define the first BZ. These planes pass through 

the points of type N with coordinates of p p
a a

, , .0  The same 

bisector planes pass through points of the type H and P. Note 
that at points H there are also perpendicular bisector planes 
between G and points of the type 200. All these planes delimit 
the cube in Fig. 12a. The points P are half-distance between G 
and the points 111, and do not appear in the reciprocal lattice. 
We thus fine that the first BZ consists of a regular rhombic 
dodecahedron.

(a) (b)

101 101 011

ky

kx

H
N

r

P
H

1 11

kz

111 K
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w r
K kykx
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1114 /p a

xx
L

4 /p a

kz

  Figure 12
 • The reciprocal lattice of the fcc structure is the bcc lattice with 

lattice edge of 2 2◊ p/a, where the only allowed reflections are 
those where h, k, l have the same parity, such as 111, 200, etc. 
The points of type 111 allow the construction of the cube 
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(indicated by dashed lines in Fig. 12b), which, with the G point 
in the center, constitutes a bcc lattice. The intersections of the 
eight symmetry planes between the origin and the points of 
type 111 construct eight regular hexagons centered on the 
points of type L because these median planes are truncated 
by the six median planes between G and the points of type 
200, from which appear the squares centered at X. The first BZ 
is thus a truncated octahedron.

Exercise 15: X-ray diffraction by a row of identical atoms

Consider the linear chain of carbon atoms shown in Fig. 13. This 
structure could easily be a chain of hydrocarbons with alternating 
single and double bonds such as –C=C–C=C–C=C–C=.

a

(0) (1) (2) (3) (4) (5) (1) (2) (3)

q q q q

(0)
b

 Figure 13 Figure 14

 (a) What is the lattice vector? What is the basis? Specify using the 

conventional notation with b a=
4

.

 (b) Monochromatic X-rays of wavelength l illuminate the chain.
 (i) Evaluate the path difference between the waves diffused 

in the angle q by the atom positioned at the origin (O) 
and the atom placed in position (2). Indicate the possible 
values of q (or of one of its trigonometric function) 
observed by diffraction assuming that the chain consists 
only of atom pairs (crystal diffraction). Show that the 
addition of odd atoms accentuates the diffracted intensity 
in certain directions while diminishing it in others (always 
assuming that b

a=
4

). Find the result using the structure 
factor.

 (ii) Numerical application: l = 0.5 Å, a = 0.5 Å, determine the 
table of increasing values from 0, 0

2
£ £q p , for which 

the diffraction conditions are satisfied. State the values 
corresponding to the intensities IT/If in which IT is the 
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diffracted intensity of the group of atoms of the chain and 
If is the diffracted intensity of the atoms only situated at 
the lattice points.

Solution:

 (a) The lattice vector is 


a and the basis consists of two atoms of 

carbon and one atom of 0 such that b
a

= 1
4

.

 (b) Crystal diffraction: 
  The path difference dr between waves diffused by two 

consecutive points of the basis is such that, dr = asinq; the 
diffraction condition of the corresponding matrix is thus dr = 
asinq = nl.

  Note: Beware of simply writing the Bragg diffraction condition 
with the usual form 2dsinq = nl without considering the 
problem at hand.

  The diffraction waves emitted by the crystal are thus of the 
form:

  q l= Ê
ËÁ

ˆ
¯̃

Arcsin n
a

  Diffraction by a basis:
  The step difference dm between waves emitted by the two 

different atoms in the same lattice cell is such that

  d q qm sin sin= =b
a
4

.

 (i) The second interference system combines with the first such 

that when d l q l
m sin= =Ê

ËÁ
ˆ
¯̃

n
n
a

¢ ¢4  the diffraction is enhanced 

(by a factor of 4) by the diffraction of the basis but the system 
of interferences destroys the values of q corresponding to 

d lm = +( )2 1
2

n¢ . In other cases (where n is odd), the resultant 

intensity will be double because of the phase difference 
between the diffracted waves is ±p/2. 

  One can obtain this result from the structure factor:
  F h k l f i hx ky lzj

j
j j j( , , ) exp[ ( )],= - + +Â 2p
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  which here reduces to (1D where, xj = 0.1/4):

  F h f f i h( ) exp/= + - Ê
ËÁ

ˆ
¯̃0 1 4 2

p

  With f0 = f1/4 (identical atoms)
  For h(n) = 4k; F(h) = 2f0, IT = 4If

  For h(n) = (2k+1)◊2; F(h) = 0, IT = 0
  For h(n) = odd; F(h) = f0(1±i), IT = 2If

 (ii) Numerical application: l = 0.5 Å, l/a = 0.1

n(h) 1 2 3 4 5 6 7 8 9 10
 

sinq l= n
a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q 5°.74 11°.53 17°.45 25°.50 30° 36°.86 44°.42 53°.13 64°.16 90°
IT/Ir* 2 0 2 4 2 0 2 4 2 0

*In reality, the absolute values of the intensities IT and IF will vary with q because they 
depend on the polarization and Lorentz factors and on the form factor (see Ex. 22). 
The evaluation of their ratio related to a given diffraction angle, however, is exact  (see 
Chapter III, Ex. 1). 

Exercise 16: X-ray diffraction by a row of atoms with a finite 
length

We continue with the same structure in Ex. 15, but now assume that 
the linear chain of atoms has a finite length with the basis repeated 
N times.

 (a) Find the expression for the intensity due only to the lattice as 
a function of q.

 (b) Find the expression for the intensity due to the crystal 
structure (lattice + basis) assuming that b = a/4.

 (c) Apply the result to the case when l = 0.5 Å, a = 5 Å and N = 10. 
What is the angular width of the first reflection (n = 1)?

Solution:

 (a) As previously, if we neglect polarization and Lorentz diffusion 
factors (see pp. 134 and 242 of Ref. [15a] and the atomic form 
factor (see. Ex. 22), we find the classic optics problem consist-
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ing of N waves of the same amplitude. Taking the phase origin 
to be the initial atom, we obtain the resultant amplitude:

  A f i
n r

N

= -
-

Â exp 2

0

1 p d
l

, with dr = asinq.

  This leads to the determination of the geometric progression 
exp -( )i rpd l/  that is of the form exp -( )if  where f = 2pasinq/l. 
The intensity is thus:

  I AA ff

N

ff
Na

aR
x x x= = ◊ =

Ê
ËÁ

ˆ
¯̃

Ê

sin

sin

sin sin

sin sin

2

2

2

2

2

2

j

j

p q
l

p q
lËËÁ

ˆ
¯̃

  The main maxima correspond to the values of q which 
simultaneously cancel the numerator and the denominator:

  p q
l

p p q
l

pNa
n

a
n

sin sin= =¢ and 

  This last condition, which is more restrictive, is just the 
diffraction condition (nl = asinq) and the associated intensities 
are given by Ir = ffxN2 (and are therefore proportional to the 
square of the number of scattering atoms).

  However, the diffused intensities are strictly zero when sinq 
= n¢l/Na ≠ nl/a. The characteristic of the variation of the 
diffused intensity by the lattice as a function of sinq is shown 
in Fig. 15a.

  Note that the reflection order n is given mostly by the 

angular interval such that 
nN

N a
nN

N an
-Ê

ËÁ
ˆ
¯̃

< < +Ê
ËÁ

ˆ
¯̃

1 1l q lsin  

and the associated angular width of diffraction is inversely 
proportional to the number N of irradiated bases.

 (b) If we consider the waves diffused by the crystalline structure 
(lattice + basis), we obtain the following resultant amplitude:

  
A f i f i f ir m r= - ◊Ê

ËÁ
ˆ
¯̃

+ - Ê
ËÁ

ˆ
¯̃

+ - ◊Ê
ËÁ

ˆ
¯

exp exp exp2 0 2 2 1p
d
l

p
d
l

p
d
l ˜̃

+ -
+È

ÎÍ
˘
˚̇

+ -
-È

ÎÍ
˘
˚̇

+ -

f i f i
N

f i

r m rexp ( ) exp ( )

exp

2 2 1 0

2

p d d
l

p d
l

p(( )( ) .N r m- +È
ÎÍ

˘
˚̇

1 d d
l
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(a)
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N a
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Figure 15 (a) Intensity diffracted by the lattice; (b) modulation induced 

by the basis, 4
4

2

cos sinp q
l

aÊ
ËÁ

ˆ
¯̃

; (c) resulting intensity: lattice 

+ basis.

  This expression is of the form:

  A f i i
nm r

N

= + -Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ -Ê

ËÁ
ˆ
¯̃Â1 2 2

0

exp exppd
l

p d
l

  where the term between brackets is just the structure factor 
[ / ]F h f f ih( ) = + -exp p 2  when the Bragg condition for the 
crystal is satisfied: dm = (a/4) sinq and a sinθ = hl.

  The resultant intensity, I is:

  I AA ff
a

Na

a
x x= = ◊ Ê

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

4
4

2

2

2
cos sin

sin sin

sin sin
p q

l

p q
l

p q
l

ÊÊ
ËÁ

ˆ
¯̃
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  The intensity of the lattice (Fig. 15a) is modulated by the 

crystal structure via the term 4
4

2cos sinp q
l

aÊ
ËÁ

ˆ
¯̃

, represented in 

Fig. 15b, with the final result shown in Fig. 15c.
 (c) For the reflection, n = 1 and neglecting the slow variations 

introduced by the modulation of the basis, we note that the 
corresponding reflection half-width is of the order l/Na or 
∆(sinq) ≈ ∆q = 10–2 radian.

  The angular widths of the diffraction are inversely 
proportional to the number of basis atoms in the linear 
crystal.

Exercise 17: Bravais lattices in 2D: application to a graphite 
layer (graphene)

 (a) Starting from basic elementary considerations, list the five 
possible Bravais lattices in 2D.

 (b) Graphite is lamellar crystal in which single layers of carbon 
atoms or graphene are distributed at the points of regular 
hexagons (with sides d) to form a honeycomb pattern. 

 (c) Characterize this structure by its Bravais lattice and basis (see 
also the definition given in Ex. 3, Q. 2c).

 (d) Sketch the corresponding reciprocal lattice and the first BZ.
 (e) Give the expression of the structure factor F(h, k) and then 

state the different values for graphite.

Solution:

 (a) In 2D the primitive Bravais lattices are characterized by two 
vectors 



a  and 


b  and the angle g formed between them. The 
different possibilities are thus:

  a ≠ b; g ≠ 90°; oblique system
  a ≠ b; g = 90°; rectangular system
  a = b; g = 120°; hexagonal system
  a = b; g = 90°; square system
  All lattices can be only centered, and thus, of order 2 but 

the centered hexagonal lattice can be described as a simple 
hexagon and the centered square as a simple square because 
they involve no reduction in symmetry. Consequently, in 2D 
the only multiple lattice is thus the centered rectangular 
lattice (see note at the end of problem).
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 (b)  The carbon atoms in a graphite monolayer (or graphene) are 
depicted in Fig. 16  (see also Chapter III, Pb. 9, and Chapter V, 
Pb. 11).

(a)

b

ao

b

o
a

g

   (b)    (c)
Figure 16

  After having arbitrarily chosen the origin on the atom O, it 
can be noted that the other lattice points (where the chemical 
environment is indistinguishable from the origin with the 
same orientation) should not be confused with the geometric 
position of all the atoms but only the atomic position of every 
other atom (see the points indicated in Fig. 16). The primitive 
lattice forms a rhombic unit cell (a = b = d 3, g = 120°) which 
belongs to the hexagonal system and the basis consists of two 
atoms of carbon situated at 0,0 and at 1/2, 2/3 (or 2/3, 1/3).

 (c) The reciprocal lattice is defined by the following 
relations given by the definition in Chapter II, Section 3: 
a A b B a B b A
       

◊ = ◊ = ◊ = ◊ =2 0p ; .



33Exercises

  Thus, A B
 

= = ∞2 30p/( cos )a  because 


A  is not parallel to 


a as 

g = 60° (or 120°):

  F h k f i
h k( , ) exp= + - +Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙0 1 2

3
2
3

p

 (d) The factor F(h, k) is complex, but the intensity (ff*) is real.
  If h + 2k = 3n, F(h, k) = 2.
  If h + 2k = 3n ± 1, F(h, k) = 1+exp ± i2p/3. 
  (See Chapter IV, Pb. 12 and Ex. 14b) 

12 02

21 11 01 11

101020

01 11 21

00

r
B

A

Figure 17

Notes: (1) The lattice of order 1 in a centered rectangular lattice 
(order 2) is a variation of the oblique lattice (a ≠ b, g ≠ 
90°) called the lozenge lattice (a = b, g ≠ 90° and 120°). 
It is represented in Ex. 3, Fig. 7, and Ex. 8, Fig. 8, face 
(110).

 (2) A single monolayer of graphite is also called “graphene”. 
It is a very important material in particular for its 
electronic properties and in the form of carbon 
nanotubes (see the corresponding exercises in Chapter 
V) but also for its specific atomic vibrations (see Chapter 
III, Pb. 9, and Chapter V, Pb. 11).

Exercise 18a: Ewald construction and structure factor of a 
diatomic row

Consider an infinite row of atoms placed at equidistant positions 
d with alternating species Z1 and Z2. A radiation of wavelength l 
irradiates this row at normal incidence. As shown in the figure below, 



34 Crystal Structure and Crystal Diffraction

the diffracted rays are detected using a photographic plate (with a 
hole) that is placed perpendicular to the incident beam.

Photographic film

a a

d

Z 2 Z 1 Z 2 Z 1Z 1
Figure 18

 (1) From simple geometric considerations, numerically determine 
the angles a1, a2, a3, ..., which corresponds to the constructive 
interference (evaluated from a increasing but limited to the 
plane of incidence). Give the expressions of the corresponding 
amplitudes A1, A2, A3. Take l = 2d/3.

 (2) Find the above results using the graphic construction of Ewald 
in the reciprocal space. Note that the reciprocal lattice of a 
lattice in 1D in the direct space reduces to a lattice of planes 
(not points) with abscissa n



A (n is an integer not equal to 
zero). In short, represent the planes and their intersection 
with the Ewald sphere (l = 2d/3), determine the direction of 
the diffracted rays (and thus a1, a2, a3, …), and evaluate the 
amplitude using the structure factor.

  On the same construction, show the Bragg angles q and the 
vectors ∆



k.
 (3) Sketch what is observed on the photographic plate.
 (4) Answer all the questions above for the case when all the atoms 

are identical.

Solution:

 (1) We are considering a linear lattice with a = 2d and basis Z1 at 
0 and Z2 at ½. 

  The interferences are constructive when the ray IK = nl, 
equivalent to 2dsina = nl (note that it is purely accidental 
that this expression corresponds to the usual Bragg formula). 
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We thus have a1=Arc sin(l/2d) = 19.5°. For n = 1, and more 
generally for any odd n), the step difference between waves 
diffracted by consecutive atoms Z1 and Z2 is (2n+1)l/2 [with 
phase difference (2n + 1)p] and amplitude A1 µ Z1 – Z2. The 
other numerical values are a = 41.8° (A2 ∝ Z1 + Z2); a3 = 90° 
(A3 ∝ Z1–Z2).

 

K

a a

I
Z2
2d

Z1Z1
 

Figure 19

 (2) The Ewald sphere is defined by the ray k0, where k0 = 2p/l = 
3p/d and the position of its center C, which is deduced from 
the origin of the reciprocal space knowing that 



k0 is parallel to 
the direction of the incident rays. The points of the reciprocal 
space (in 3d) are reduced here (1d) to planes characterized by 

the translations 
 

T A= n  with


A u= 2p
a a . (To show this result, 

consider the given definition in the Course Summary and 
extend 



b  and 


c  to infinity in order to observe that 


B and 


C  
go to zero; the points of the reciprocal lattice are thus, located 
on planes perpendicular to 



A .)

  After noting that 


A = 2 2p/ d , it is easy to obtain the 
construction shown in Fig. 20a. One observes that, because the 
reciprocal lattice is formed on planes, the intersection of the 
Ewald sphere with these planes is necessary (and henceforth 
that l < 2d). The diffraction conditions are always fulfilled on 
the contrary to the situation where the reciprocal lattice is 
made up of points (in 3d for monochromatic radiations and 
regardless of the incident angle). We also note the existence of 
symmetrical reflections (1 2 3, , ) and the observable diffractions 
by transmission (when 



k is pointing down.)
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  The amplitude of the interference is deduced from the 
structure factor in 1d: 

  F n f f ez z
i n( ) = + -

1 2

p

  Planes of odd n correspond to phases in opposition (destructive 
interferences) and thus, the diffracted intensity is reduced.

k0 k(p.p.)

_ _ _

(a)

C

k0

ka1

c

(b)

3 2 1 0 1 2 3 4

A

O

2q
n = –1 = 1n

n = –2

n = 2

n = 0

(c)

Dk

Figure 20

 (3) The intersections of the Ewald sphere with the planes of the 
reciprocal lattice result in circumferences. The extremities 
of vectors 



k  (extending from the origin C in Fig. 20a) are 
therefore, that form these circumferences satisfy the Bragg 
condition (Fig. 20b). The diagram observed in the photographic 
plate, shown in Fig. 20c, indicates the intersection of the 
different cones formed by 



k and the plate. The diagram is 
formed of conics, in this case parabolas, with the intensity of 
the even ones (n = ±2 in Fig. 18c) greater than the odd ones  
(n = ±1 in Fig. 20c).

 (4) If one imagines the atoms of species Z2 become progressively 
identical to those of species Z1, one expects that the above 
odd reflections will be diminished and next vanish, leaving 
the even reflections from the previous parts of this question. 
This intuitive result is coherent with the Ewald construction 
because the direct lattice has lattice constant d (and not 2d) and 
the only planes in the reciprocal lattice are those equidistant 
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at 2p/d (and not p/d). See the even planes indicated in Fig. 
20a.

  Only the parabolas at n = 2 and n = –2 will appear on the 
photographic plate, along with the line at n = 0.

Exercise 18b: Structure factor for a tri-atomic basis; Ewald 
construction at oblique incidence (variation of Ex. 18a)

Consider a linear crystal with lattice constant a in which the basis 
consists of atom of species A at 0 and two atoms of species B at 1/3 
and 2/3. Find the structure factor of such a crystal. 
 X-rays of wavelength l (= a/4) irradiate this crystal at an oblique 
incidence (45°). Using the Ewald construction in the plane of 
incidence, show graphically, the diffraction directions and indicate 
the relative weights of the different diffracted intensities. State the 
physical significance of the vector 



k  from which the extremity is on 
a plane passing through the origin of the reciprocal lattice.

Solution:

The linear crystal is shown below:

 F h f f e f ei h i h( ) = + +-
A B B

2 3 2 3p p/ / because e ei h i h- =4 3 2 3p p/ /

 F h f f
h( ) = + Ê

ËÁ
ˆ
¯̃A Bcos2 2

3
p

 F h f f( ) = +A B2  for the reflections such that h = 3n

 F h f f( ) = -A B  for the others

 Keeping in mind that I(h) = F(h) × Fx(h), Fig. 21 shows the 
reciprocal space, where the planes corresponding to the strong 
reflections (h = 3n) are represented by solid lines and the those 
corresponding to weak reflections (h ≠ 3n) by dashed lines.
 The vectors 



k extending from C to the plane passing by origin 
O, such as ks, correspond zero path difference between the rays 
scattered from all the atoms in the and the constructive interferences 
exist even for randomly distributed atoms along the row. In the plane 
of the incident beam, the corresponding reflected beam is symmetric 
to the incident beam and it is called specular reflection. In addition 
to the 



k  vectors diffracted up (reflections), there are also those 
being diffracted down, corresponding to transmission diffraction 
(see Chapter II, Ex. 2b , and Chapter III, Ex. 2b).
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Exercise 19: Reciprocal lattice, BZs, and Ewald construction of 
a 2D crystal

Consider a 2D crystalline structure characterized by a simple 
rectangular lattice (a = 3 Å, b = 4 Å) and a basis consisting of one 
atom Z1 located at (0,0) and another atom Z2 located at (1/2,1/2) 
(see Ex. 3, Q. 2).
 Starting from an orthorhombic simple crystal structure (a ≠ b ≠ c; 
a = b = g = 90°), show that the reciprocal lattice in 3D is transformed 
into a series of parallel lines when parameter c decreases down to 
zero. Build the 2D reciprocal lattice from the vectors 



A, 


B . Construct 
the first BZ (all the following considerations are limited to the AB 
plane).
 A radiation of wavelength l is directed along the row [1, 0] in 
direct space. Use the Ewald construction to determine the reflection 
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indices that will be observed and indicate the numerical value of the 
first Bragg angle. Use l = 1.8 Å.
 In the general case for radiations at any angle, list the six first 
non-equivalent reflections (with increase in Bragg angles) and 
determine the corresponding amplitudes. On the figure drawn in 
part (2) draw the extremities of the diffracted vectors corresponding 
to the reflection (1, 1) and relative to the incident wave vector 



k0, 
which has an extremity at (0, 0).
 Atoms of species Z1 and Z2 are identical. Show the reciprocal 
lattice of a centered rectangular lattice is a centered rectangular 
lattice. Represent the first BZ and give the list of the first five non-
equivalent reflections being allowed.

Solution:

 (1) Applying the definition of the reciprocal basis vectors to the 
simple orthorhombic lattice (see Course Summary), we find 

that the vectors are 


A u= 2p
a a ; 



B u= 2p
b b; 



C u= 2p
c c. When 

c Æ •  in direct space the planes (0,0,n) separate from each 
other to infinity, leaving only the 2D lattice. In reciprocal 
space 



C goes to zero and the points of the type (0, 0, n) are 
transformed into lines normal to the plane defined by 



A  and 


B
. In this plane, the reciprocal lattice is drawn from translations 
of the type h



A + k


B  from the origin at (0, 0) where each point 
is indexed by integer values of h and k. The result of this 
operation leads to the scheme shown in Fig. 22.

  The limits of the BZs are the symmetry planes (lines in 2d) 
between the origin (0, 0) and the various (h, k) points and 
the first BZ corresponds to the minimum surface defined by 
these symmetry lines and surrounding the origin (area of the 
rectangle with hatched contour in Fig. 22.

 (2) The points intercepting the Ewald sphere are reflections 
located at (1, 2); (1, 2); (3, 1); (3, 1), where we have considered 
only the waves diffracted in the plane (



A,


B ). In 3d the Ewald 
sphere intercepts in fact all lines normal to 

 

A B, , where the 
points h, k are in the interior of the circumference shown in 
Fig. 22.
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  The angle (


k0,


k) = 2q is such that:

  sin
/

q l
12

0
2 2

1 2

2 2
1 4 32 7= = +Ê

ËÁ
ˆ
¯̃

= ∞OA
k a b

 (3) The sequences of increasing angles q corresponding to the 
Bragg’s law may be evaluated numerically from the increasing 

values of 1 2

2

2

2

1
2

d h k
h

a b( , )
= +

Ê

ËÁ
ˆ

¯̃
k . They can also be directly 

determined from measurements of |G| in Fig. 22 because

G h k
d h k

( , )
( , )

= 2p  (see Ex. 10b).
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  Using either method we find the following sequence (0,1); 
(1,0); (1,1); (0,2); (1,2); (2,0); (2,1); (0,3). The amplitude of 
the reflections is given by the structure factor which here is:

  F h k f f ez z
i h k( , ) ( )= + - +

1 2

p

  When h + k is even, F h k f fZ Z,( ) = +
1 2

(Ex. 1, 3)

  When h + k is odd, F h k f fZ Z,( ) = +
1 2

 (Ex. 1, 2)
  Finally, the line labeled by ∆ in Fig. 22 (median plane between 

the origin and the point  ( ,1 1) represents the end of all incident 
vectors 



k0 which can be excited by the reflection at ( ,1 1). Such 

vectors obey either 




k G
0 2

11 11 4◊ ( ) = G( )/  or 
   

k k k G0 11- = = ( )D .



41Exercises

 (4) When Z1 = Z2 the direct lattice is a centered rectangle (see 
the solution to Ex. 3, Q. 2) and the reciprocal lattice must be 
constructed from the vectors a¢



 and b¢


 of the lattice of order 
1 in the form of a lozenge. It is simpler to describe a centered 
rectangle structure as a simple rectangle with two identical 
atoms at 0,0 and ½,½. The presence of this basis leads to 
forbidden reflections of the type h + k = odd number. Erasing 
the corresponding points on Fig. 22, we obtain Fig. 23, where 
the forbidden reflections are marked by an ¥).

  The reciprocal lattice thus obtained corresponds to a centered 
rectangle lattice with A A¢

 

= 2  and B B¢




= 2 .
  The first five allowed reflections that are non-equivalent are 

(1, 1); (0, 2); (2, 0); (1, 3); and (2, 2).
  In Fig. 23, the hatched area indicates the contour of the first 

BZ when Z1 = Z2.
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Exercise 20: X-ray diffraction patterns and the Ewald 
construction

The main experimental methods of X-ray diffraction are:

 (a) the Laüe method
 (b) the crystal rotation method
 (c) the powder method (or the Debye–Scherrer method)

 Describe the corresponding experimental set-up and with the 
help of the Ewald construction in reciprocal space, deduce the 
observed diffraction patterns in each case.
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Solution:

Figure 22 shows a schematic experimental set-up and an example of 
X-ray spectrum is given in the Course Summary with the correlated 
electron transitions.
 In the Laüe method, the sample is a fixed crystal and the useful 
part of incident X-ray spectrum is the continuous radiation spectrally 
varying between lm and lM. These two extremes correspond to 
Ewald spheres with respective radii of kM = 2p/lm (from center CM) 
and km = 2p/lm (from center Cm). All the points of the reciprocal 
lattice included between these two extreme spheres can be cut 
by an intermediate sphere of intermediate radius k (from center, 
C) and the Bragg condition, D

 

k G= , are satisfied for each of these 
points. The diffraction pattern observed on a photographic plate will 
be formed by a limited number of spots from the transmission (if 
the angle2q between 



k0 and 


k is such that 2 2q p£ /  and from the 
reflection 2 2q p> / .
 Max T. F. von Laüe won the Nobel Prize in physics, 1914, for his 
discovery of the diffraction of X-rays by crystals. For the first time 
his experiments demonstrate the periodic structure of crystals 
(that was suspected from a long time but not evidenced) and they 
established also the wave nature of X-rays. Bragg formulation of 
X-ray diffraction was first proposed by William Lawrence Bragg and 
his father William Henry Bragg. They were awarded with the Nobel 
Prize in physics, 1915.
 In the crystal rotation method, the useful part of incident X-ray 
spectrum is the characteristic radiation that is monochromatic. The 
crystal rotates around an axis which effectively rotates the reciprocal 
axis about the same axis. Each point in the reciprocal lattice 
describes a circumference which will intersect the Ewald sphere in 
two symmetrical points. These intersections define the diffraction 
directions and the pattern is formed with the corresponding points.
 In the powder method, the radiation is also monochromatic. The 
sample is grinded into a fine powder and each grain has a random 
direction compared with its neighbors. This random distribution of 
directions results in a reciprocal space in which the points (h, k, l) 
will be distributed on a sphere of radius 



G( , , ) .h k l  The intersection 
of these spheres with the Ewald sphere corresponds to a series of 
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circumferences where the vectors 


k emanating from the center 
C whose end intersects these circumferences and defines the 
diffraction direction. The resulting pattern diagram is formed of 
concentric rings.
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Exercise 21a: Resolution sphere

 (a) A crystal is irradiated with a beam of monochromatic X-rays 
with wavelength, l. 

  Using the Ewald construction, show that when the crystal can 
take any possible orientation, the only possible reflections 
(h, k, l) correspond to the points in reciprocal space that are 
included in sphere (resolution sphere). Determine the radius 
of this sphere.
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  Numerical application: Consider a cubic crystal with a = 3 Å 
and an incident wavelength of l = 0.5 Å. Find the maximal 
value of h2 + k2 + l2.

  Consider a crystal with a fixed orientation. Show that the 
divergence angle of the incident beam and its variation 
from monochromaticity as well as small crystallite sizes or 
slight crystal misorientations enhances the probability of 
observation of Bragg reflections.

  Contrarily to X-ray diffraction, diffraction of mono-
energetic fast electrons by transmission through thin films 
(t ≈ 1000 Å) gives rise quite always to diffraction patterns. In 
order to explain this phenomenon, evaluate the associated 
wavelength of incident electrons of 100 keV kinetic energy.

  (h, m, e)

Solution:

When the radiation is monochromatic and the crystal orientation 
is fixed, the probability for a crystal plane satisfying the Bragg 
condition is exceptional (i.e., to find that the Ewald sphere passes 
by a point corresponding to the reciprocal lattice). Exploring all the 
angular possibilities between the incident radiation and the crystal 
orientation is equivalent to turning the reciprocal lattice around its 
center and in all directions, with the Ewald sphere remaining fixed 
(or equivalently the reciprocal lattice is fixed and the Ewald sphere 
is rotated around O). As shown in Fig. 25, this operation defines a 
sphere of radius 2k0 = 4p/l that allows the exploration of all Bragg 
conditions containing the points h, k, l in the interior of the sphere.
 We note that the geometry of the diffraction pattern reflects 
that of the reciprocal lattice and that the amplitudes of each point 
correspond to the Fourier components of the electronic periodicity 
in real space.
 Unfortunately, the diffraction experiments permit to obtain the 
intensities of the waves but losing their phase and they do not allow 
observation of all the points in reciprocal space. There is thus, a loss 
of information in the reflections that are not accessible.

 (a) The only accessible reflections are those that:

  G h k l h k l
a

2 2 2 2
2

2
2 4, , ( )( ) = + + Ê

ËÁ
ˆ
¯̃

£ Ê
ËÁ

ˆ
¯̃

p p
l

 or h k l
a2 2 2 2+ + £

l
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 The influence of these parameters is easily determined from the 
analysis shown in this exercise and the previous one. As shown in 
Fig. 26a, non-monochromatic radiations may be treated as in the 
Laüe method with two external Ewald spheres with interval km and 
kM. A finite divergence of a beam can be treated as a reduced rotation 
of the Ewald sphere around the origin of the reciprocal lattice. A 
sample composed of small crystallites corresponds to small pivots 
of the reciprocal lattice around its origin, as seen in Fig. 26b.
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Figure 26

 The size of the crystallites relaxes the angular constraints induced 
by the Bragg condition Dq µ -N 1  where N is the number of diffusing 
bases (see Ex. 16). This influence can also be treated as a broadening 
of the points of the reciprocal lattice.
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 l = 0.037 Å. The vector 


k0 will be much larger (2p/l ≈ 100 
Å–1) than the basis vectors of the reciprocal lattice 2l/a ≈ 1 Å. The 
probability that the Ewald sphere will pass through a point of the 
reciprocal lattice is thus increased.
 As shown in Fig. 27, in transmission experiments, one can 
associate this sphere to the tangent passing through the origin of the 
reciprocal lattice. In addition the diffraction conditions are relaxed 
by the fact that the number of participating atoms is reduced (N ≈ 
100s) in the direction of the film thickness which is equivalent to 
increasing the points of the reciprocal lattice in the corresponding 
direction. The combination of these two factors (in addition to 
the dynamic theories of the diffraction of electrons) results in the 
realization of a diagram consisting of a number of points for a single 
crystal or rings in the case of a polycrystalline material.

100000 200 300

k0

k

C

Figure 27
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 We note that the diffraction of slow electrons by reflection at the 
surface of single crystals also results in diffraction patterns, but for 
different reasons (see Pb. 3).

Exercise 21b: Crystal diffraction with diverging beams (electron 
backscattered diffraction, EBSD) 

Mono-energetic electrons, energy E°, are issued isotropically from a 
point source C. This point source is situated into a micro-crystal but 
near from one of its plane surfaces in front of which a fluorescent 
screen is set at distance, D. The corresponding diffraction patterns are 
displayed on the screen that is parallel to the exit crystal surface.

Phosphor screenCrystal
D

S: pattern centeramax~30°C

Figure 28

 (a) Evaluate the associated wave length l of the diffracted 
electrons for E°= 20 keV. Evaluate the first Bragg angles, q100; 
q110; q111; for a simple cubic crystal of parameter, a = 4 Å.

 (b) Again from the Bragg’s law, describe the expected shape of the 
diffraction patterns. With D = 0.2 m, represent them for the 
following crystal orientations:

 (1) The crystalline plane parallel to the screen is the (100) 
plane formed from the lattice rows [010], horizontal, and 
[001], vertical.

 (2) The crystalline plane parallel to the screen is the (111) 
plane formed from the lattice rows [111] and [111], 
horizontal and vertical respect. 

 (3) The crystalline plane parallel to the screen is the (110) 
plane formed from the lattice rows [110] and [001] 
horizontal and vertical respect.

 (c) In reality in the corresponding experimental arrangement 
(EBSD), a 20 keV incident electron beam is nearly parallel to 
the screen and it irradiates the sample surface with an incident 
angle of ∼70° but the crystalline orientations are unchanged. 
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Are there changes in the observed diffraction patterns? The 
atoms in materials scatter inelastically, a fraction of the 
electrons with small energy losses to form a divergent source of 
electrons close to the surface of the sample. Thus, this fraction 
of incident electrons is backscattered into the vacuum after 
having experienced diffraction effects on the lattice planes. 
The diffracted electrons are not mono-energetic electrons, 
strictly speaking. What is the consequence on the diffraction 
patterns?

Solution: 

 (a) From the solution (d) of Ex. 21, above the associated wave 
length of the diffracted electrons l is ∼0.086 Å for E°= 20 keV.

 (b) sin q100= l/ 2a= 10.8 mrad.∼0.6° ~q100
  sin q110 = l√2/2a= 15 mrad. ∼q110∼0.86°
  sinq111 = l√3/2a= 18.6 mrad. ∼q111~1.07°
  As shown in Fig. 29, the Bragg conditions are satisfied 

for electron beams describing conical surfaces of apex C’ 
(symmetric to C with respect to the diffracting lattice planes) 
and the diffraction patterns correspond to the intersections of 
the various cones with the screen. In theory such intersections 
are parabolic, elliptic, or hyperbolic but they are nearly straight 
lines as a consequence of the small values of the Bragg’s angles 
d¢.

 (B

D S

Screen

Lattice planes

Lattice planes C¢

C

Figure 29

 (1) When the plane parallel to the screen is defined by 
the lattice rows [010] and [001], the lattice row [100] 
is perpendicular to the screen. The first lines of the 
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diffraction pattern correspond to the planes (010) and 
(010), and also to the planes (001) and (001). Being 
perpendicular to the [100] direction the conical surfaces 
relative to the (100) reflections cannot intersect the 
screen. Similarly, the conical surfaces of axes making an 
angle a larger than amax to the [100] direction cannot 
intercept a screen of limited dimension. The observable 
reflections may be derived from the solution of Ex. 11 
where the angle Φ between two lattice planes (h1, k1, l1) 
and (h2, k2, l2) obeys to:

  cosF =
+ +

+ +( ) + +( )
h h k k l l

h k l h k l

1 2 1 2 1 2

1
2

1
2

1
2 1 2

2
2

2
2

2
2 1 2/ /

  Applied to the (010) planes this equation leads to 

cos cos maxF = + +( ) >k h k l2 2
2

2
2

2
2 1 2

/
/

a . A more precise 
evaluation may take into account the deviation induced 
by the small Bragg angles: Φ–q. In addition there are the 
reflections of order n = 2, 3, 4 such as (020) of Bragg angle 
nearly twice that of the (010) reflection. From sin q010 
=l/2a = 10 mrad. ∼ tgq100 = SA/D. One obtains SA = 2 mm. 
Then, the parallel lines corresponding to (001) and (001) 
are distant from 4 mm.  

S
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Figure 30

 (2) When the plane parallel to the screen is the (111) plane 
formed from the lattice rows [111] and [111], the lattice 
row [111] is thus perpendicular to the screen. The 
diffraction pattern is homothetic to that of situation 1 
with a multiplication factor of √3.
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  From sin q111=l√3/2a = 18.6 mrad.∼q111 one obtains 
SB∼3.5 mm and the parallel lines are distant from 7 mm.

 (3) When the plane parallel to the screen is the (110) plane 
formed from the lattice rows [110] and [001] horizontal 
and vertical respect, the lattice row [110] is perpendicular 
to the screen. The horizontal lattice planes of type (001) 
lead to diffraction lines similar to those obtained for 
situation 1. The vertical lattice planes of type (011) lead 
to vertical lines distant from each other of 2 SC∼6 mm.

 (c) The crystalline orientations being unchanged the main 
features of the diffraction patterns remain unchanged when 
the surface is not geometrically parallel to the screen. Due 
to the energy losses experienced by the BSEs, their spectral 
distribution is composed of a band of wavelengths slightly 
larger than the value evaluated for E°. The corresponding 
Bragg angles are slightly increased and broadened: the lines 
of the patterns are broadened into bands.

  Note that the geometry of patterns looks similar to a magnified 
projection of the planes with only a small shift due to the 
small values of the Bragg angles. Thus, this geometry is nearly 
independent from l or E° but not the intensity of the lines.

Comments: Kikuchi and Kossel lines; texture analysis with EBSD

The lines obtained in the diffraction pattern are named Kikuchi lines 
(S. Kikuchi (1928), Diffraction of cathode rays by mica. Japanese 
Journal of Physics 5, 83). The bombardment of a crystal target with 
10 keV incident electrons generates also characteristic X-rays of well-
defined wavelengths and the Bragg diffraction of these X-rays leads 
to patterns composed of fine lines that are referred to as Kossel lines 
(named after Walther Kossel).
 The goal of this exercise is to demonstrate the possibility to 
identify the orientations of small crystals from the use of diverging 
electron or X-ray beams. The old Kikuchi experiments have been the 
subject of a renewed interest very recently with the digital acquisition 
of the diffraction patterns via the use of electronic cameras back to 
the phosphor screen (instead of looking at photographic films) and 
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the automatic identification of the crystal orientations with specific 
software. Thus, the corresponding ESBD experiments are conducted 
using a scanning electron microscope (SEM) equipped with an 
EBSD detector containing at least a phosphor screen, compact 
lens and low-light, charge-coupled device (CCD) camera chip. The 
typical dimension of the irradiated volume is of a few microns. Next, 
the incident electron beam may be scanned across the surfaces 
of polycrystalline samples and the crystal orientation may be 
measured at each point micro-crystals leading to maps revealing the 
constituent grain morphology, orientations, and boundaries.
 As illustrated in the images, the applications concern metallurgy 
and semiconductors and also geological samples and nano-devices.
 Among many others, additional details may be founded in 
articles (F. J. Humphreys, P. S. Bate, P. J. Hurley (2001), Journal of 
Microscopy 201, 50; J. Basinger, D. Fullwood, J. Kacher, B. Adams 
(2011), Microscopy Microanalysis 17, 330) or books (W. Zhou and 
Z. L. Wang, Eds. (2007) Scanning	 Microscopy	 for	 Nanotechnology,	
Techniques and Applications. Berlin, NY: Springer, particularly the 
contribution of T. Maitland and S. Sitzman, Electron Backscattered 
Diffraction Technique and Materials Characterization, Section 2, 
p. 41. See also A. J. Schwartz, M. Kumar, B. L. Adams, D. J. Klumer, 
Eds. (2000) Electron Backscattered Diffraction. New York: Materials 
Science Academic/Plenum Press).
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Figure 31 Geometry of an EBSD system.
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1 mm

    (a)     (b)
Figure 32 (a) Example of an indexed EBSD pattern of a Si crystal (E° = 

40 keV). (b) Crystalline orientation map of a Ni-base alloy. The 
scale is colored considering the misorientation between each 
point and the <001> direction oriented along the normal.

Exercise 22: Atomic form factor

A beam of monochromatic X-rays with wavelength l propagates in 
a vacuum and encounters a spherical atom of radius R. The incident 

wave with wave vector 


k u0 0
2= ( )p

l  is partially diffused by the Z 

electrons of the atom, assumed to have a density distribution of r.

 (a) Find the amplitude of a wave diffused in the direction u0 by 
the electrons contained in the volume dV described by the 
radius vector 



r (with respect to the wave diffused by a point 
electron placed at the center 0 of the atom).

  In the form of an integral, deduce the expression for the form 
factor of an electron distribution with spherical symmetry.

 (b) Find the atomic diffusion coefficient of a uniform electron 
distribution at the interior of a sphere of radius R. These results 
should be expressed as a function of 

  

k k k= - 0 where,


k0 =
(2p⁄l) u0 and then, state the results in terms of the parameters 
sinθ/l which are more directly related to experiments.

Solution:

As shown in Fig. 26, the phase j between the wave diffused at point 
M in the direction u and the wave diffused at point O in the same 
direction is such that 

j pd l p l p l= = - = - = - = ◊2 2 2 0 0/ ( )/ ( / ) ( ) ( )OK MH


   



 

r u u k k r k rD
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 Compared to the diffused amplitude by an electron at 0, that 
diffused at M is proportional to the number of electrons rdv 
contained in the volume dv. Then, df = r dv exp(–i∆





k r◊ ).
 The diffusing power of an atom with respect to that of an electron 
is:
 f i dv= ◊ - ◊Ú r exp ( ).Dk r

 

Volume
 of atom

 For a spherical distribution r = r (r), the axis symmetry around 
k permits to select dv limited between two spheres of radiuses r and 
r + dr and semi-apex angles a and da:

 dv r dr d= 2 2p a asin  (see Fig. 33)

The form factor becomes 2
0

2

0

p r a a a( ) [exp( cos )] sinr r dr i r d
R R

Ú Ú - ◊Dk
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 If D


k  is replaced by 4psinq/l, as is accessible by experiment, the 

form factor becomes:

f
Z

R
R R R=

◊Ê
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Notes: • By modifying the integration limits, from the atom to the 
entire crystal, we may obtain the amplitude of the wave 
diffused by the entire crystal:

  A r i r dv( ) ( )exp( )D = - D ◊Úk k
 

r
Crystal
volume

  This is just the Fourier transform in reciprocal space of the 
electronic distribution of the crystal under investigation. 

 • Note that if the incident beam is extended q = 0, D


k  = 
0, all the diffused waves are in phase and the integral 
expression for f reduces to:

  f r dv( ) ( )D = = Úk


0 r
Atom
volume

  f is thus, equal to Z. Starting from this initial value the 
evolution of f as a function of q will depend on the way 
in which the Z electrons are distributed around the 
atom. Observe in particular that f(q) is constant if all the 
electronic charge is concentrated at O. This fact explains 
why f is called the form factor (see also Pb. 11).

Exercise 23: X-ray diffusion by an electron (Thomson)

A beam of X-rays with angular frequency w is polarized along the 
x-axis and propagates along the z-axis, irradiating a free electron 
situated at the origin. Under the electric field E0eiwt of this 
electromagnetic wave the electron vibrates at the same frequency w 
and therefore, acts like an oscillating dipole, P0eiwt.

 (a) Knowing that the electric field emitted by such a dipole at a 
distance, r = OM (r >> 2pc/w) is of the form (a = Ox OM

   

, ): 

  E
c r

P i t
r
cr = - -Ê

ËÁ
ˆ
¯̃

1
4 0

2

2 0pe
w a wsin exp
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  show that the ratio between the amplitudes of the diffused and 
incident electric fields is of the form Er/E0 = resina/r, where, re 
is a constant to evaluate.

 (b) Find the relation se between the intensity diffused over 4p 
rad. and the incident intensity.

 (c) In theory, the same mechanism also applies to the nucleus 
with atomic charge, Ze. Why can this effect be neglected?

 (d) The electron is bonded to the atom and its movement must 
include a friction force, which is opposite its velocity (–mv/t) 
and a restoring force (of the form -m xw0

2 , where x is the 
elongation). Show that the relation Et/E0 resembles that found 
in (a) when re is weighted by a complex factor 



f  that should be 
explicitly stated. (e, e0, m, m0)

Solution:

 (a) P0 = –ex0 and mg = –m0w2x0 = –eE0. Making this substitution, 
we find:

  E E
r
rr/ sin0 = e a ,

  where re is the classical radius of an electron, 
re = e2/(4pe0mc2) = 2.82 × 10–15 m.

 (b) s p a a p
p

e e e m= = = = ¥Ú -I
I

r d r
0

2 3

0

2 30 22 8 3 66 6 10sin / .

  se = 0.666 barn (10–24 cm2). This is the coherent diffusion 
cross-section of an electron.

 (c) The calculation is formally the same as replacing e by Ze and m0 
by M but in the most favorable case (the hydrogen atom) the 
amplitude diffused by the nucleus is 1840 times weaker than 
that diffused by an electron (because of the relation between 
m/M) and the corresponding intensity will be negligible.

 (d) The equation of motion of an electron is:

  m
d x

dt

m dx
dt

m x E i t
0

2

2
0

0 0
2

0+ + = -
t

w we e
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  Compared to the free electron treated in (a), it is sufficient to 
introduce here an anomalous diffusion factor f  that relates 
the different accelerations obtained in the two situations:

  f
i

=
- -

w
w w w t

2

2
0
2( ) /

  This diffusion factor is takes a complex form and on can easily 
separate the real and imaginary parts by multiplying by the 
complex conjugate of the denominator.

Comments: The interactions between X-rays and atoms

In coherent diffusion, the X-rays interact essentially with the electrons 
of the atom or of the solid. The weight of this interaction is relatively 
weak compared to the dominant interaction which is the absorption 
of a photon X by an atomic electron (the principle of radiography). 
The absorption cross section of an X-ray photon is several orders 
larger than the diffusion cross-section se evaluated here in b).
 Diffusion will only acquire a significant amplitude when the 
X-rays are reflected by ∼1023–1024 electrons contained in 1 cm3 of a 
crystal are in phase so that Bragg diffraction or small angle diffusion 
in almost the same direction as the incidence occurs.
 The calculation done here is not applicable to polarized incident 
X-rays, which is the case when using synchrotron radiation but 
not when using conventional sources of X-rays. When the incident 
radiation is not polarized, the weighted intensity is evaluated in 

(b) by the factor 1 2
2

2+Ê

ËÁ
ˆ

¯̃
cos q in which the angle 2q is such that 

2q = Oz OM
   

, . (For further details see Ref. [9].)
 Finally, the atomic electrons are not free and their binding energy 
w0 represents the energy necessary to remove them from their 
initial state (1s, 2s, 2p, etc.) The corrective term f  is nearly equal 
to 1 when w >> w0, corresponding to incident photons of energy hn 
greater than the binding energy of the atomic electrons. In this case, 
the atomic electrons diffuse the X-rays like free electrons. Conversely 
when w = w 0 + e (with e > 0) an anomalous diffusion related to the 
real part of f) and an absorption effect is observed, related to the 
imaginary part of f and directly correlated with the friction term, 
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–mv/t. For values w < w0, the classical approach seen here must 
be replaced with a quantum mechanical one. We will consider 
the influence of these phenomena in the propagation of X-rays in 
materials (see Chapter V, Ex. 27).

Problems

Problem 1: X-ray diffraction by cubic crystals

The powder method is used to record the diffraction pattern of 
the three cubic cyrstals, A, B, and C which crystallize in the body-
centered cubic, face-centered cubic, or diamond structures.
 The measured diffusion angles Φ (between the directly 
transmitted rays and those relative to the two first rings) give the 
following results:
 Crystal A: 42.2° and 49.2°
 Crystal B: 28.8° and 41°
 Crystal C: 42.8° and 73.2°

 • Determine the corresponding structure (bcc, fcc, diamond, 
etc.) of each crystal.

 • Find the lattice parameter a in each case using the wavelength 
of l = 1.5 Å.

 • Show that the information on the Φ value is insufficient when 
one of the crystals is simple cubic possibly.

Solution:

The measure angles Φ correspond to 2q.
 If the crystal is body-centered cubic, the forbidden reflections 
are such that h + k + l = 2n + l. The two first allowed reflections are 
(110) and (200). The relation between the corresponding sinq will 
be such that:

 sin /sin / / .q q200 110 110 200 2 2 1 414= = =d d

 If the crystal is face-centered cubic, the allowed reflections are 
indices with the same parity. The two first ones are (111) and (200). 
The relation with sinq is:

 sin /sin / .q q200 111 2 3 1 154= =
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 If the crystal is a diamond structure in addition to the forbidden 
reflections of the fcc lattice, one must consider those introduced by 
the two-atom basis of identical atoms at (000) and (1/4, 1/4, 1/4). 
The corresponding forbidden reflections are such that h + k + l = 
2n+2 = 2, 6, 10, …. The two allowed reflections are (111) and (220). 
The relation between the sinq is:

 sin /sin / .q q220 111 8 3 1 633= =

 The structures are thus the following: A is fcc, B is bcc, and C is 
diamond.
 Next, the lattice parameters can be determined using: 

 2
2 2 2

a

h k l+ +
=sinq l

a(A) = 3.608 Å; a(B) = 4.265 Å; a(C) = 3.56 Å which is clearly diamond, 
see Fig. 3d.
 If one of the crystals was cubic simple, the relation of the two 
first allowed reflections (100) and (110) would be equal to 2  and 
one could not distinguish between body-centered cubic without 
taking into account the angles related to the seventh reflection, that 
is the (220) in the case of a simple cubic and the (321) in the case of 
a body-centered cubic.

2
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 Figure 34 summarizes the different allowed reflections in the 
different cubic structures and in the hcp structure with an ideal c/a 
ratio. (This figure is inspired by Ref. [7] and the description by Ref. 
[1].

Problem 2: Analysis of an X-ray diffraction diagram

Figure 35 shows the intensity profile of a powder diagram obtained 
from X-ray diffraction by a cubic crystal.
 • Find the Bravais lattice of the corresponding crystal and index 

the observed reflections. 
 • Determine the lattice parameter a knowing that the Kα 

radiation of copper was used (l = 1.54 Å).
 • Taking a two-atom basis with Z1 at (000) and Z2 at (1/2,0,0), 

find the approximate ratio of atomic numbers Z1/Z2.
 The material shown in Fig. 28 is in fact KBr (Z1 = 19; Z2 = 35). 
What are some of the possible differences between the theoretical 
and experimental determination of the ratio of atomic numbers?

80° 70° 60° 50° 40° 30° 20°
2q

Figure 35
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Solution:

The two first reflections are located at 2q ≈ 23.6° and 27.1°. The 
relation between sinus of the angles q is ∼1.145. It is very close to 
the expected result for a fcc Bravais lattice (1.154) (see Pb. 1: X-ray 
diffraction by cubic crystals). The allowed reflections have indices of 
the same parity. The sequence of reflections on the diagram is (111); 
(200); (220); (311); (222); (400); (331); (420); (422); and (333). 
The lattice parameter a can be found from the measure of the angle 

2q422 ≈ 70°, which results in 2
24
a sinq  = 1.54 Å and a = 6.57 Å. The 

structure factor of the basis is f f eZ Z
i h

1 2
+ - p  which implies that the 

intensities, I of the reflections relative to the values of h (k and l) odd 
are weaker than the ones corresponding to the even indices.
 To the first approximation the relation I(200)/I(111) corresponds 
to:

 ( ) /( ) ( ) /( )f f f f Z Z Z Zz z z z1 2 1 2

2 2
1 2

2
1 2

2+ - ª + - .

 The measure of I(200)/I(111) (≈ 4.9) leads to an estimation of 
Z1/Z2 of order 2.56, which is rather far from the expected value of 
1.84. In fact the value must take into account that the crystal is ionic 
(K+ and Br–). The expected theoretical relation is thus ∼2. This charge 
transfer explains the fact that crystals of K+Cl– (19–1 = 17 + 1) show 
odd reflections h + k + l which are quite forbidden.
 Other causes of this disparity are due to:

 (i) Atomic diffusion factors are proportional to the atomic number 
of the corresponding atoms (Z1 and Z2) only for a diffusion 
angle of zero (which is the direction of the transmitted wave). 
Outside of this direction, the atomic diffusion factor decreases 
when the angle of diffusion increases. This change is a result 
of the non-negligible size of the atoms compared to the 
wavelength l, which introduces a phase difference between 
the various diffused waves by the Z electrons (see Ex. 22).

 (ii) Thermal vibrations of atoms induce a decrease in the diffused 
intensity as the order of the reflections increases.

 (iii) In the powder method the reflections intensity is proportional 
to the number of equivalent planes responsible of the 
corresponding reflection. There are eight for the 111 and six 
for the 200.
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 All of these considerations explain the decrease with 2q of 
the reflection intensities of the same parity. It is also important to 
consider how the intensities are taken: profile along a radius or 
integrated intensity along the perimeter of each ring.

Problem 3: Low-energy electron diffraction (LEED) by a 
crystalline surface: absorption of oxygen

Accelerated by a voltage V of ∼156 volts, a beam of mono-energetic 
electrons strikes a single-crystalline surface. As shown in Fig. 36 the 
diffraction diagram is obtained by reflection.

Grids

Crystal

Electron gun Screen

Figure 36

 (1) Show that the reciprocal lattice of such a surface is composed 
of rods. Using the Ewald construction and after having 
determined the associated wavelength of incident electrons, 
show that the diffraction diagram is always formed of points 
independently of the incidence angle.

 (2) (a) Consider a normal incidence and a crystalline surface such 
as the (100) face of Ni with a fcc Bravais lattice and with 
lattice parameter, c = 3.52 Å.

  Represent the corresponding reciprocal space in the plane 
of vectors 

 

A B,  containing the origin 00.
  Using a graphic construction, state the order of the different 

reflections, which are accessible in an experiment where a 
hemispherical screen is centered on the crystal.

 (b) Same as in part (a) but now consider the (111) face.

 (3) The (111) and (100) faces are exposed to a partial pressure of 
oxygen and the oxygen atoms form a lattice superimposed on 
the lattice of the crystalline nickel. The diffraction diagrams 
undergo the modifications shown in Figs. 37 and 38.
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  Considering only the geometry of these diagrams, characterize 
the new elemental cell relative to the (111) face and the two 
successive lattices relative to the (100) face.

 (4) We would like to determine the position of the oxygen atoms 
relative to the nickel atoms taking into account that both are 
regularly distributed. Restricting the study to the (100) face 
that is exposed to oxygen for the longest time, there are two 
possible hypotheses:

 (a) The oxygen atoms are on the top of some of the nickel 
atoms. 

 (b) The oxygen atoms are located at the center of certain 
squares formed by the atoms of nickel.

 Determine the corresponding structure factor. To simplify the 
problem, assume that the presence of the oxygen atoms does not 
change the amplitude diffused by the nickel atoms. 
 Considering the intensities shown in Fig. 38c, which model is the 
best, a or b? (h, e, m0)

Solution

 (1) In the case of a 2D lattice (see  Ex. 19) the reciprocal lat-
tice will consist of lines perpendicular to the plane 
(




a b, ) (which is also the plane 
 

A B, ) and the traces of the lines 

in the plane are determined from the origin with the help of 
the translations vectors 

 

A and B .
  One can also note that the reciprocal space is the Fourier 

space (in 3D) of the direct space. In direct space, the surface 
results in a Dirac function in the direction normal to it. Thus, 
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the corresponding direction in reciprocal space is a constant. 
The intersections of the lines of the reciprocal lattice with the 
Ewald sphere (such as D in Fig. 39a) determine the direction 
of the diffused beams giving rise to constructive interferences, 
that is, to say to points on the diffraction diagram. In the 

 

A B,  
plane, the observed reflections are contained in the circle of 
radius k0 2= p l/  and are shown as lines in the plane (Fig. 
39b).

K

K0
C

C¢ 00

D

B

C¢
K||

00

A

K||0

(a) (b)

D¢

Figure 39

  l = +h m eV eV m c/[ ( / )] /2 1 20 0 0 0
2 1 2

  l( ) . / .Å Åª ª12 26 0 98V
  The last result holds because the relativistic effects are 

negligible.
 (2) (a) The (100) face of a fcc lattice is a square lattice with 

constant a = c/ 2 = 2.49 Å because the square centered 
lattice is not a Bravais lattice in 2D (see Ex. 17). The length 
of the basis vectors 

 

A B,  of the reciprocal lattice is such 

that 


A = =2 2 52p
a

. Å–1.

  The experimentally accessible reflections (h, k) corres- 
pond to the points of the reciprocal lattice included in the 
projection of the Ewald sphere on the surface:

  ( )( / ) /h k a2 2 22 2+ p p l£ ( )2

  In total, we can only visualize the nine reflections of the 
type 01 and 11 because h2 + k2 ≤ 2.5: 10, 10, 01, 01, 11,  
11, 11, 11 including the specular reflection at 00.

 (b) See Fig. 40.
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 (3)  After examining the change of the diffraction pattern that 
results by the contribution of oxygen, one can say that the 
some of the oxygen atoms are regularly distributed on the 
surface because the diagram is made up of points and not of 
rings. When the (111) or the (100) faces of nickel transform 
from being free of oxygen to being covered with oxygen (first 
stage for the (100) face, the basis vectors of the reciprocal 
lattice (that is to say the diffraction diagram) are reduced by 
2. This implies that the inter-reticular distances are doubled 
in each direction of the direct lattice and that there is one 
oxygen atom for four atoms of nickel. In the case of prolonged 
exposure in the Ni(100) face, each reciprocal basis vector has 
been reduced by 1/ 2 (or equivalently that the simple square 
lattice as become a centered square lattice). This implies that 
the number of oxygen to Ni is 1 to 2 and that the translation 
vectors of the direct lattice are multiplied by a factor 2
This result is expected: when the direct lattice increases, 
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the reciprocal lattice decreases proportionately. (This is a 
property of Fourier space.)

 (4)  To decide between the two hypotheses, it is sufficient 
to consider the structure factor for each case, as shown 
in Fig. 41 (a and b). For the situation where Ni(100)— 
p( 2 2 45¥ ∞) —0, for example, and taking 



as and 


bs as the 
primitive vectors, hypothesis (a) corresponds to a centered 
lattice with a basis of one oxygen atom at 00 and two nickel 
atoms at 0,0 and ½,½.

(a)

Ni(100) p( 2 2)45 0- ◊ ∞ -

Ni(100) – c(2.2) – 0

or
bs

bs

as

as

bs

as

as

bs

bs
as

as

(b)
bs

Figure 41

  The factor of structure will be such that: 
  F h k f f e i h k( , ) ( )( )= + + - +

0 1Ni
p

  This leads to two types of diffractions spots with inequal 
intensities: those corresponding to h + k even which are strong 
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≈ (f0 + 2fNi)2 and those corresponding to h + k odd which are 

weak ≈ f0
2 .

  In the hypothesis (b), the lattice is the same as in (a) but the 
basis consists of an atom of oxygen at 00 and two atoms of Ni 
at ½,0, and 0,½. The corresponding structure factor is:

  F h k f f e ei h i k( , ) ( )= + +- -
0 Ni

p p

  This structure factor leads to three types of intensities:
 (i) h and k are odd: I ≈ (f0 – 2fNi)2

 (ii) h and k are even: I ≈ (f0 + 2fNi)2 where the intensity is the 
strongest

 (iii) h and k have opposite parity, I ≈ f0
2

 Taking into account the diagrams shown in Fig. 38c, it is the last 
hypothesis that explains the data with (i) x, (ii) ∑, (iii) ∑.

Comments: LEED and crystallography of surfaces

 (1) Incident electrons are charged particles and therefore, are 
sensitive to the crystalline potential of the crystal periodicity.

  The first experiment was conducted on Ni by C. Davisson and 
L. Germer in 1927, which confirmed the de Broglie hypothesis 
saying that particles of matter such as electrons have wave-
like properties.

  Having a relatively weak kinetic energy, the penetration depth 
of incident electrons is very weak and they can only penetrate 
the first few atomic layers of the surface. The diffraction 
diagram is thus related to the surface layer and can be very 
different from that obtained by transmission (see Fig. 27, 
Ex. 21).

  As a result of this sensitivity, it is necessary to maintain an 
ultra-high vacuum pressure (lower than 10–10 torr or 1.33 × 
10–8 Pa) in the diffraction apparatus. The product pressure 
× exposure time defines the unit of a Langmuir (10–6 torr 
× second), which corresponds in general to the coverage 
of a monoatomic layer of residual gas on all surfaces and 
in particular on that of the investigated sample when the 
sticking coefficient for atoms and molecules of the specific gas 
is unitary.
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  The controlled admission of oxygen in the apparatus relies on 
this mechanism and is easily explained by the kinetic theory 
of gases. The obtained covering rate (q = ¼ or ½) corresponds 
therefore sensitively to the exposure of ¼ or ½ Langmuir.

 (2) The surface system the most widely investigated in the past 
was that of sulfur on nickel because of the surface migration 
(or segregation) of impurities of sulfur when nickel is raised 
to temperatures greater than 800°C. The detailed analysis of 
the diffused intensities has established that the sulfur atoms 
are regularly and spontaneously interposed between nickel 
atoms (situation b).

  The system analyzed here has been studied to elucidate the 
position of the oxygen sites at the first steps of the oxidation 
process of nickel.

  Even if in the present problem the qualitative interpretation 
of intensities was sufficient to resolve the present problem, 
in general the use of just the structure factor is insufficient. 
Opposite to X-ray diffraction, the analysis of the diffraction 
intensity of electrons needs to include dynamic theories, not 
just kinetic theories, because of the strong interaction between 
electrons and matter.

 (3) To represent a system corresponding to a substrate in the 
presence of superstructures created by the adsorbed atoms, 
the following notation is often used:

  M h k l
a
a

b
b

Ss s( , , )- ¥Ê
ËÁ

ˆ
¯̃

-a z

  where, M(h, k, l) represents the face h k l of the substrate M, 
S is the chemical symbol of the adsorbed atoms, a indicates 
if the lattice is primitive (p) or centered (c); (as/a) × (bS/b) is 
the relation between the unitary vectors of the adsorbed atom 
lattice and that of the substrate, and z is the angle between as



 
and a



, which is omitted when the angle is zero.
  As an example, the legend in Fig. 41 uses this notation. 

Nevertheless, it may be confusing in certain cases and we refer 
to reader to the lecture by E. A. Wood (1964), Journal of Applied 
Physics 35, 1306. For slow electron diffraction in general, see 
R. L. Park and H. H. Madden (1968) Surface	Science 11, 188 or 
L. J. Clarke (1985), in: An Introduction to LEED, John Wiley.
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Problem 4: Reflection high-energy electron diffraction (RHEED) 
applied to epitaxy and to surface reconstruction

The Bravais lattice of gallium arsenide and that of aluminum is face-
centered cubic. The crystalline parameters are a (GaAs) = 5.635 Å 
and a (Al) = 4.05 Å, respectively.
 (1) Surface	crystallography: Adopt a common scale and represent 

the distribution of arsenic atoms (in GaAs) and thus, also of 
aluminum atoms (in Al) in the (001) plane. The basis of GaAs 
consists of an atom of As in the 000 and an atom of Ga in the 
¼, ¼, ¼.

 (2) Lattice	matching: Consider the epitaxy of Al on GaAs, that is to 
say the growth of single crystal of Al on a GaAs single crystal. 
To realize such an operation successfully, it is necessary that 
the two crystals have a lattice mismatch, ∆a/a, smaller than a 
few percent. Show graphically that the epitaxy of Al (001) on 
GaAs (001) is nevertheless possible if the [100] axis of GaAs 
and that of Al form an angle of 45°.

  Because of the difference in size of the different atoms, the 
atomic sites of Al must not coincide with those of As and the 
surface density of Al atoms must be close to that bulk Al. 
Thus, the fit of the Al lattice to that of AsGa leads to its slight 
contraction or dilation. Evaluate the corresponding relative 
variation ∆a (Al)/a (Al).

 (3) Diffraction: Epitaxy is realized by sublimating metallic 
aluminum under ultra-high vacuum conditions on a single 
crystalline substrate of GaAs at an appropriate temperature, 
using the molecular beam epitaxy (MBE) technique.

  The operation is controlled by irradiating the sample at a 
grazing angle (q ∼ a few degrees) with a beam of fast electrons 
(∼10 keV). The diffraction pattern of reflected electrons is 
observed on a screen perpendicular to the plane of the sample 
and to the plane of incidence. Taking into account the weak 
electron penetration in the material, this diagram indicates a 
perfectly flat surface or a surface with roughness.

 (a) Using the Ewald construction (take l = 0.12 Å), explain 
why the surface diffraction diagram (2D lattice), and in 
particular the specular reflection at (0,0), consists of 
elongated spots. Give the direction of the elongated spots.
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 (b) The plane of incidence, which is vertical, contains the 
row [100] of the (001) plane, which is horizontal, of 
GaAs. Show in the sample plane the different points of 
reciprocal space of GaAs (001) and those of Al (100) when 
this last has been epitaxial (see part 2 of this problem). 
In the horizontal plane of the sample, deduce the angular 
separation between the specular reflection point and the 
first diffraction spot in the case of the initial virgin surface 
of GaAs and when this surface is covered by a single layer 
of Al.

 (4) Reconstruction: The surfaces considered up to now are ideal 
surfaces in which the atoms conserve their ideal positions 
from the bulk crystal. However, such surfaces are 1 unstable 
and their energy can be diminished when they are rearranged 
(or reconstructed) at the surface. Compared to an ideal surface 
of GaAs, the atomic sites are often practically unchanged in the 
surface plane, but certain atoms have moved slightly deeper 
in the bulk, while others appear to be raised. In the case of the 
(100) surface of GaAs, lightly doped with arsenic for stability, 
the As atoms emerge 1 under certain conditions to form a 
periodic over-layer having a lattice four times larger in the 
[110] direction and two times larger in the [1 



as 0] direction 
compared with the ideal primitive surface lattice. This type of 
reconstruction is called (2 × 4). (For the notation in the general 
case see commentary no. 3 of the preceding problem).

  Show the 2 × 4 reconstruction of GaAs (001) in direct and 
reciprocal space. State the influence of this reconstruction on 
the diffraction diagram taking into account that the emerging 
atoms will have an atomic diffusion factor slightly greater than 
the atoms that are located further down from the ideal.

 (5) Intensity oscillations: When the epitaxy of aluminum is formed 
layer-by-layer (Franck, Van der Merwe model as opposed to 
growth by pyramidal islands), the intensity of the central 
spot (specular reflection) evolves sinusoidally as a function of 
the coverage rate, q, of the substrate. It is maximal when the 
number n of deposed single layers is an integer and minimal 
when q = n + ½ (see Fig. 42). Can you explain simply why this 
result is true regardless of the incident angle a with respect to 
the surface?
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Solution:

 (1) See Fig. 43, left panel. Note that the (001) face of a fcc crystal 
has points distributed on a square centered lattice of side a, 
but that such a lattice is not a 2D Bravais lattice (see Ex. 17). 
The Bravais lattice is a simple square with parameter a/ 2 of 
which the sides, for GaAs, are parallel to the [110] and [110].

[010] [110]

[100][001]

Al As Ga As
(z = 0) (z = –1/4) (z = –1/2)

(AsGa)

a (A
l)

a

Figure 43
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 (2) (See Fig. 43, right panel) The atoms of Al must be inserted 
between the atoms of As such that the surface density of 
Al and As are nearly conserved ns(Al)/ns(As) = a2(GaAs)/
a2(Al) = 1.936 ∼ 2. The Al atoms on the (001) GaAs face form 
a simple square lattice with parameter a (Al)/ 2. The edges 
of this lattice are parallel to the [100] and [010] axis of GaAs 
and therefore, form a 45° angle with their equivalents in the 
arsenic lattice.

  In bulk aluminum the distance between two atoms in contact 
is a(Al)/ 2 = 2.864 Å; however, in the epitaxial layer a(Al)= 
a(GaAs )/2 = 2.817 Å. The epitaxied Al layer is thus trained by 
∆a/a ≈ –1.6%.

 (3a) The reciprocal lattice of a 2D lattice is a lattice formed with 
vertical rods perpendicular to the surface (see Ex. 19 and 
previous problem). In the surface plane, the reciprocal 
square lattice is characterized by 

 

A B= = 2p/ .d  For the 

(001) face of GaAs 


A
As Ga

= ª
2

2
p

a( )/
1.57Å–1; its direction 

is parallel to the [110] row. For epitaxied aluminum on this 

face, A


¢  = 2.23 Å–1 (A


¢ [ ])100 . The radius of the Ewald sphere 

k 1
0

2 52
 

= = = -k
p
l

Å , is more than 20 times larger than the 

primitive vectors of the reciprocal lattice.
  Taking into account this different dimension, at grazing 

incidence the Ewald sphere will be practically tangent to the 
rod passing through the origin of the reciprocal lattice. The 
spot, 00, of specular reflection will therefore be an elongated 
form with its principal axis being perpendicular to the sample 
plane. (See the representation in Fig. 44). If there is surface 
roughness, the grazing electrons crossing these prismatic 
crystals will give a diffraction pattern formed with points. In 
this case the reciprocal lattice will be formed of points and 
not rods because it is relative to a 3D lattice. In particular, the 
points situated normal to the surface at point 00 (Fig. 44) will 
be equidistance from 2p/c and will not form a continuous 
line.

 (3b) Figure 45 shows the different points of the reciprocal lattice in 
the plane of the sample.
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  The screen displays the intersections of the Ewald sphere with 
the different rods of the reciprocal lattice postulating that the 
directions thus, defined are contained within the useful solid 
angle defined by the point source C and the screen. For arsenic 
and for aluminum, there are the two symmetric lines at 11 and 
11 (using the vectors 

 

A B,  of the 2D lattice of As on the (001) 
face of GaAs). Moreover, for As the 10 spot situated below 
the 00 spot appears—although it is forbidden for aluminum. 
Relative to the direction of k



 (0,0), the angular separation 
b between these two symmetric spots (common in the two 

diagrams) will be given by b ∼ tanb = 
A

k



0
= 0.03 rad = 1.73°.

 (4) Figure 46a shows the direct lattice and the reciprocal lattice 
of the reconstructed (001) face of GaAs. Conditioned by the 
reciprocal lattice, the form of the diffraction diagram presents 
additional spots related to the reconstruction. The incident 
beam containing the axis [110], is essentially of periodicity of 
order 2 along the axis [110] and it appears as two satellite 
spots with a smaller intensity and situated between the spot 
associated with (11) and (10) for one case and (10) and 
(1 1) for the other case: spots marked with a B in Fig. 46b. 
An azimuth rotation of the sample of 90° would lead to the 



73Problems

appearance of three equidistant satellite spots between the 
two principle spots (11) and (10) instead of a single one. 

(a) (b)
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Figure 46

 (5) The specular reflection of electron waves on terraces are all in 
phase because they all have a zero phase difference between 
them: Rays 1 and 2 in Fig. 46c. Conversely, the phase difference 
between the electron waves reflected on a terrace and the 
valley of another region (Rays 1 and 3) is 2d sina where the 
grazing angle a is not a Bragg angle except accidentally. Then, 
the interference between these waves is destructive and the 
effects more pronounced when d approaches the condition 
2d sina = (n + ½)l. Consequently, the specular spot, 00, is 
bright initially when the initial surface is atomically flat. Its 
intensity decreases with the increase in the areas of terraces 
during atom deposition by MBE. Its intensity vanishes when 
the area of terraces is equal to the area of valleys q = 1/2. 
Its intensity starts to increase again when the valleys are 
progressively filled with evaporated atoms and the specular 
spot is bright again when the coverage q is unity. During 
a layer-by-layer growth the specular reflection oscillates 
in intensity and the number of oscillations is equals to the 
number of atomic layers deposited on the initial surface. 
Finally, the automatic recording of the oscillations permits to 
monitor the number of atomic layers being deposited and it 
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permits to stop the evaporation when the required number 
of layers is attained. This simplified explanation does not 
take into account refraction effects due to the inner potential 
that have to be combined to purely geometrical shadowing 
effects. The key result is that the intensity oscillations of the 
specular spot are characteristic of layer-by-layer growth: 
Franck, Van der Merwe model (see Surface	Science 168, 1986, 
423, for more details concerning these oscillations as well 
as Turco et al. Revue de Physique Appliquée 22, 1987, 827). 
Besides its great interest for fundamental surface science, 
epitaxy is also of interest in applied science, most notably for 
the semiconductor industry. It allows the realization of most 
devices used in microelectronics and optoelectronics, ranging 
from metal-semiconductor contacts (ohmic or Schottky) 
to more complicated structures such as superlattices and 
quantum wells (see Pb. 10 and Chapter V, Pb. 9).

Additional Remark: In fact even in the case of a surface plane at 
the atomic scale all the electrons are not susceptible to interference. 
Their spatial and temporal coherence is limited by the energetic 
dispersion of the incident beam ∆E/E and by the beam divergence 
on the sample b. For the spatial coherence ∆x one obtains ∆x = l/2b 
[1 + ∆E/2E]1/2 which is typically of order 1000 Å.

Comments: Surface reconstruction and stepped surfaces

 (1) Surface	reconstruction:	The presence of the surface modifies 
the position normally occupied by the atoms in a 3D crystal. 
One distinguishes in fact two types of displacements illustrated 
in Figs. 47–49.

 (a) A surface relaxation is characterized by a variation 
of the spacing between the last atomic plane and the 
penultimate one. In most of the cases the spacing, d1-2, 
between first and second atomic layers contracts relative 
to bulk spacing, dbulk. There is no change in the periodicity 
parallel to surface.

  This situation happens mainly in metals where the density 
of the conduction electron gas, n(z), in the bulk decreases 
suddenly when approaching the surface (see Chapter IV, 
Pb. 2). Then the surface atoms have lost electrons and 
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they tend to move in the direction of optimum density. 
In some case positive ions are attracted toward the 
bulk region of large electron density. However, in some 
cases, for example, Al(100) and (111) surfaces, the most 
densely packed planes undergo no contraction or a slight 
expansion. For ionic crystals, the relaxation effects are 
easier to evaluate from the calculation of the Madelung 
constant (see for instance Chapter II, Ex. 7).
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Figure 47 Side view of relaxation (left), driving force (right), resulting 
from the in-depth evolution of the electron density, n(z).

  The surface undulation can occur in ionic crystals as in 
ionocovalent materials like GaAs when the anions and the 
cations are subject to an alternating vertical displacement 
(here, As goes toward the exterior and Ga toward the 
interior. The driving forces are Coulomb forces where the 
surface ions of a given sign are attracted toward the bulk 
by ions in excess of opposite sign or are pushed toward 
the exterior by ions in excess of the same sign.

d

d

Figure 48 Side view of a surface undulation.

  The situation described in Pb. 4 above combines in fact 
reconstruction and undulation. For details on this point, 
see Ref. [26].



76 Crystal Structure and Crystal Diffraction

 (b) A surface reconstruction occurs when two neighboring 
surface atoms move closer to form a “dimer” bond. 
This reconstruction may occur on metal surface but 
its mechanism is understood more easily in covalent 
crystals. In such crystals, diamond or Si, the atoms on an 
ideal surface would have two dangling bonds because of 
the missing atoms in the vacuum side. In reconstructed 
surfaces each atoms has one dangling bond instead of 
two as it may be seen in Fig. 49 for Si(001) 2 × 1 surface 
reconstruction.

Dangling bonds

Top view

Side view

Si(001)2 1
reconstruction

¥

2a

Figure 49 Side view and front view of Si(001) 2 × 1 surface reconstruction 
(left). Its driving force (right) results from the formation of 
dimer bonds.

 (2)	 Surface	defects:	Stepped	surfaces
  There are many deviations to ideally flat surface such as 

terraces, steps, kinks, and adatoms. At the atomic scale, the 
names of some of them are indicated in Fig. 50 for cubic 
crystals. The investigation of these surface defects are of prime 
importance in surface science topics such as crystal growth, 
surface diffusion, roughening, and vaporization as well as in 
catalysis where the reactivity of foreign atoms on a crystalline 
substrate is a function on their position. The thermodynamics 
of crystal surface formation, transformation, and reactivity 
is describes simply with the terrace ledge kink (TLK) model. 
This model is based upon the idea that the energy of an atom’s 
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position on a crystal surface is determined by its bonding 
to neighboring atoms and where transitions simply involve 
the counting of broken and formed bonds. For instance, the 
layer-by-layer homo-epitaxy is easily understood from the 
thermally assisted migration of a weakly bounded adatom 
toward monoatomic steps or kinks.

terrace
monoatomic step

adatom (mobile)

step-adatom

step-vacancy (mobile)

kink
Figure 50 Names for the various atomic positions in the TLK model.

 A correlated topic is that of stepped surfaces and their description. 
Example of such a stepped surface is shown in the top of Fig. 42. 
Illustrated in the bottom of Fig. 51, this description is often of the 
form S-[m(h, k, l) × n(h¢, k¢, l¢)], where S denotes a stepped surface, 
m(h, k, l) denotes a h, k, l terrace m atoms width and n(h¢, k¢, l¢) 
denotes the step height (omitted if n = 1). For additional details the 
readers are referred to Refs. [27] and [28].

(755) (100)

(111)

Figure 51 Top: View of a stepped surface. Bottom: Stepped surface of 
platinum described by Pt S-[7(111) × (100)] for a (111) terrace 
seven atoms wide and a (100) step, one atom high. Another 
description would be Pt (755).
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Comment: Surface imaging (LEEM and STM)

It has been seen that diffraction experiments permit to access directly 
to the reciprocal space. The use of low-energy incident electrons at 
normal incidence or the use of high-energy incident electrons at 
grazing incidence permits to access to the 2D reciprocal space of 
surfaces because of the low penetration depth of these electrons. A 
direct visualization of surfaces at (or close to) the atomic resolution 
is possible from the use of microscopes based also on low-energy 
incidents electrons.
 In particular there is the low-energy electron microscope 
(LEEM) which has been invented by Bauer (E. Bauer, Surface	Review	
and Letters 5, 1998, 1275, and Reports	 on	 Progress	 in	 Physics 57, 
1994, 895). LEEM is a technique used by surface scientists to image 
atomically clean surfaces, atom–surface interactions, and thin 
(crystalline) films. For instance its use permits to visualize terraces 
of monoatomic steps on a Si(100) surface from the constructive 
interferences of 6 eV electrons reflected from the two terraces: a 
mechanism similar to that giving rise to oscillations of the specularly 
reflected spot (0,0) as described above. An important aspect of this 
surface microscopy is that it is very fast. Videos of the evolution of the 
surface with nanometer resolution (∼10 nm) can be acquired in real 
time to follow thin film growth such as, the growth of Co islands on 
Ru. Many other microscopy techniques have been developed based 
upon LEEM. These include photo-excitation electron spectroscopy 
(PEEM); mirror electron microscopy (MEM); reflectivity contrast 
imaging; spin-polarized LEEM (SPLEEM). In PEEM, upon exposure 
to electromagnetic radiation (photons), secondary electrons are 
excited from the surface and imaged. PEEM was first developed in the 
early 1930s, using ultraviolet (UV) light to induce photoemission of 
electrons (see Chapter IV, Pb. 4). However, since then, this technique 
has made many advances, the most important of which was the 
pairing of PEEM with synchrotron radiation. 
 With a slightly different performance, there is also the scanning 
tunneling microscope (STM) invented by G. Binning and H. Rohrer 
(Nobel Prize in physics, 1986). Its principle is the subject of Chapter 
IV, Pb. 5, where it is shown that the resolutions of this microscope 
are ∼1 Å, lateral resolution, and ∼0.1 Å depth resolution. With these 
resolutions, individual atoms on surfaces are routinely imaged 



79Problems

and manipulated. The STM can be used not only in ultra-high 
vacuum but also in air, water, and various other liquid or gas 
ambient, and at temperatures ranging from near 0 K to a few 
hundred degrees centigrade (see R. V. Lapshin in H. S. Nalwa, ed., 
Encyclopedia	 of	 Nanoscience	 and	 Nanotechnology 14, 1994, 105). 
Many other microscopy techniques have been developed based 
upon STM. There are considered briefly in Chapter IV, Pb. 5, and 
other STM methods involving manipulating the tip in order to 
change the topography of the sample or the atomic deposition of 
metals with any desired (pre-programmed) pattern are indicated 
in Chapter II, Ex. 11. The atomic force microscope (AFM) and the 
STM are two early versions of scanning probes that launched the 
wide field of nanotechnology. See also Chapter II, Ex. 11, and Chapter 
IV, Pb. 5.

Problem 5: Identification of ordered and disordered alloys

Following the elaboration conditions, the alloy Cu3Au (type L12) 
can be obtained in an ordered or in a disordered phase. The ordered 
phase corresponds to a cubic crystal having an atom of gold at 000 
and three atoms of copper at ½ ½ 0, ½ 0 ½, and 0 ½ ½. In the 
disordered phase all the preceding sites are randomly occupied by 
either Au (PAu = 25%) or by copper atoms (PCu = 75%).
 Determine the structure factors of each of these two phases. 
Identify the reflections relative to the different rings relative to in 
the powder diagrams shown in Fig. 52a and b below. Which pattern 
corresponds to the ordered phase?

(a) (b)

Figure 52 Powder patterns of Cu3Au.

 In reality, depending on the temperature of formation, the alloy 
can be obtained in intermediate phases between the two extremes 
just mentioned. Each phase is characterized by an order parameter at 
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large distance, S, such that, S = (PA–NA)/(1–NA), where NA represents 
the fraction of atoms A of the alloy and PA is the probability for this 
type of atom to occupy the expected sites of the ordered phase. 
State briefly how the X-ray diffraction experimentally allows the 
determination of the order parameter S and why the method will 
not work for the case of brass b (type L2) of which the ordered phase 
is simple cubic with one atom of Cu at 000 and one atom of Zn at ½ 
½ ½.

Solution:

The structure factor of the alloy Cu3Au in the ordered phase has the 
form:
F h k l f f i h k i h l i k l0( , , ) {exp ( ) exp ( ) exp ( )}= + - + + - + + - +Au Cu p p p

 It is different from zero for all the reflections of simple cubic 
crystals. In the disordered phase, the structure can be considered as 
a fcc crystal having an average basis of one atom, resulting from the 
association of ¾ of Cu and ¼ of Au. The structure factor is thus:

F h k l f i h k i h l i k lD Cu Au( , , ) { exp ( ) exp ( ) exp (( )/= + - + + - + + - ++3 4 1 p p p ))}

 The reflections for which the indices h, k, and l are not the 
same parity will therefore be forbidden and their absence in the 
experimental diagram will therefore, characterize the disordered 
phase.
 The expected intensities in the two extreme situations can easily 
be deduced from the table given by the structure factor for the 
different reflections.

Cu3Au Reflections
F0(h, k, l)–

Ordered alloy
FD(h, k, l)–Disordered 

alloy

(100) fAu–fCu (SL) 0

(110) fAu–fCu (SL) 0

(111) fAu+3fCu  4 3
4

1
4

f Cu Au+

(200) fAu+3fCu  4 3
4

1
4

f Cu Au+

(210) fAu+fCu (SL) 0
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Cu3Au Reflections
F0(h, k, l)–

Ordered alloy
FD(h, k, l)–Disordered 

alloy

(211) fAu–fCu (SL) 0

(220) fAu+3fCu  4 3
4

1
4

f Cu Au+

 221
300

( )
( )

Confound
fAu–fCu (SL)
fAu–fCu (SL)

0
0

 The measured intensities of the lines normally forbidden by the 
fully disordered structure (known as superstructure lines (SL) in 
the table) allow therefore to experimentally determine the order 
parameter S of Bragg and Williams. This parameter varies between 
0 and 1 when going from the disordered to the ordered phases.
 The X-ray diffraction is relatively ineffective in the case of Brass 
b because the lines of the superstructure (corresponding to h + k + l 
odd) have a very weak intensity even for the ordered phase (fZn – fCu 
∼ Z(Zn) – Z(Cu) = 30 – 29). In such a case, already discussed for KCl 
(see Pb. 2), the use of neutron diffraction will be more precise (see  
Pb. 7).

(a) Disordered Cu Au3 (b) Ordered Cu Au3

222 311 220 200 111 220 100 110 111 200 211 310 222
210 311300

221
Ê ˆ
Á ˜Ë ¯

Figure 53 Indexed diffraction rings.

Problem 6: X-ray diffraction study of an AuCu alloy

The crystal structure related to the ordered phase of AuCu (type 
L10) is shown in Fig. 54.
 Describe (Bravais lattice and basis) this structure. State the 
sequence of first non-equivalent reflections relative to the lattice 



82 Crystal Structure and Crystal Diffraction

in the order corresponding to increasing Bragg angles. Determine 
the structure factor and the intensities of the different reflections 
(strong, weak, and forbidden).
 The disordered phase of this alloy is cubic (c = a). The Cu and Au 
atoms are randomly placed on the different sites. Describe the new 
crystal structure. Eliminate the forbidden reflections and then list 
the order of the first non-equivalent allowed reflections.

a a

Au Cu

0.93 =a c

Figure 54

Solution:

The lattice shown in Fig. 54 is not a primitive cell. It is of order 2 as 
it may be seen by taking the origin on a Cu atom at a corner and by 
pointing out that all the other lattice points are on all the other Cu 
atoms including those situated at the center of the top and bottom 
squares. Like for a centered square lattice in 2D, a tetragonal Bravais 
lattice with one face centering does not exist. Thus, the correct 
description is simple tetragonal with a’ = a 2 /2, c¢ = c with a basis of 
one Cu at 000 and one Au at ½ ½ ½.
 The distance between the forbidden inter-reticular planes is 
given by:

 d
h

a

k

a

l

ch k l, , = + +
È

Î
Í
Í

˘

˚
˙
˙

2

2

2

2

2

2

1
2

¢ ¢

 It is used to establish the order of the non-equivalent reflections 
of increasing q (corresponding to decreasing dh,k,l: (001), (100), 
(101), (111), (002), etc.
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 All the reflections are allowed and those such that h + k + l are 
odd will be less intense than the others. Nevertheless, anticipating 
the description of the disordered fcc phase, one can also consider 
that the represented structure is a non-primitive quadratic cell with 
a’ = a, c’ = c with a basis of two Cu at 000 and ½ ½ ½ and two Au at 
½ 0 ½ and 0 ½ ½.
 The increasing sequence of non-equivalent reflections would 
then be (100), (001), (110), (101), (111), (200), (002), (210), (201), 
(102), (211), (112).
 The structure factor is given by:

 F h k l f e f e ei h k i h l i k l( , , ) ( ) ( )( ) ( ) ( )= + + +- + - + +
Cu Au1 p p p

 The forbidden reflections correspond to values of h and k having 
different parity. In addition the corresponding reflections with h, k, 
l of the same parity will be strong, FM = 2fCu + 2fAu, and those having 
h, k, and l of a different parity will be weak, FM = 2fCu–2fAu). The 
sequence of allowed reflections are thus (001) and (110): Fm; next 
(111), (200), and 002): FM; (201) (112): Fm; (220) and (202): FM, 
etc.
 One finds the same results to build the reciprocal space if 
one takes care to remove the forbidden reflections and the same 
intensities at the same Bragg angles. The final result is independent 
from the initial description: primitive or non-primitive cell. Only the 
notation of the points will be different because the vectors 



a, 


b in 
the square plane will be changed and thus the orientations 



A, 


B  will 
change as a result.
 The ordered phase is fcc with an atom Cu/2 + Au/2 at 000. 
The reflections for which h, k, and l do not have the same parity 
are forbidden. The sequence of allowed reflections is (111), (200), 
(220), (311), (222), etc. Compared to the description of reflections 
relative to the quadratic lattice of order 2, one observes that the weak 
reflections have disappeared and that two previously non-equivalent 
reflections (example, 200 and 002) have become equivalent.

Problem 7: Neutron diffraction of diamond

The figure below is adapted from a neutron diffraction pattern 
of diamond (fcc lattice with 2 C atoms at 000 and ¼ ¼ ¼; lattice 
a = 3.56 Å, see Fig. 3d). Corrected from some experimental factors 
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such as the temperature effects, this figure represents the angular 
variation of the scattered intensities, by postulating that they are 
uniquely proportional to the square of the structure factor F(h, k, l).
 • Give the indices of the three reflections shown in the figure.
 • Explain why they have unequal weight.
 • Deduce the associated wavelength l and the kinetic energy, Ek 

(in eV) of incident neutrons. 

I(a.u.)

4020 60 2q
0

Figure 55

 • With respect to X-rays with comparable wavelength value (see 
Pb. 2, Fig. 35), one can observe that the atomic form factor of 
neutrons f(n) does not depend on q. Why is this? (M, h, e)

Solution:

F h k l f
e e e

i h k l i h k i

( , , )
( ) ( )

= +
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

+ +
- + + - + -

c   
Basis

1 12
p

p p(( ) ( )h l i k le+ - ++Ê

ËÁ
ˆ

¯̃

p

fcc lattice

 The first three allowed reflections are (111), (220), and (311) 
(see Fig. 34). In intensity their weight is given by F(h, k, l) × Fx(h, k, 
l). The results are 2(4fc)2; 8(4fc)2, and 2(4fc)2 where the coefficient 
of two results from (1 + i)(1 – i). The angle 2q311 is exactly equal to 
58°.
 The Bragg’s law for this reflection leads to l = 1.04 Å from 
l = h/Mv.
 The kinetic energy of incident neutrons is:

 Ek = (1/2)Mv2 = h2/2Ml2 or Ek(eV) = [0.28/l(Å)]2

 Ek = 72.5 × 10–3 eV
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 The atomic diffusion factor of neutrons is isotropic because the 
neutrons are neutral particles interacting with the atomic nucleus 
and not with the electrons, as it is the case for X-rays. The dimension 
of this nucleus is smaller than l whereas, the electron cloud was 
comparable to l. The phase composition that is taken into account 
in the atomic form factor for X-rays (see Pb. 2) and therefore does 
not need to be considered for thermal neutrons.

Comments: Neutron diffraction

The neutrons considered here are called thermal (or cold) neutrons 
because their energy is of the order kBT (around 25 meV at ambient 
conditions). They are obtained by nuclear reactors, such as the ISIS 
neutron source in England, or the at the Spallation neutron source at 
Oak Ridge national laboratory in the United States. Incident neutrons 
interact with the nucleus of atoms in the target either elastically 
or in elastically. Elastic collisions change the direction of incident 
neutrons without energy exchange between the projectile and the 
target atoms. The corresponding application is neutron diffraction 
or elastic neutron scattering and it is the subject of the present 
exercise. In addition to these elastic interactions (that is, l is not 
changed and the process is coherent), there are also collisions that 
involve a change in energy with phonons and magnons. In inelastic 
collisions, the incident neutrons lose or win energy as a consequence 
of atomic vibrations (phonons) or of atomic spin (magnons): the 
corresponding application is neutron spectroscopy (discussed in 
Chapter III, Pb. 7: Phonons in germanium and neutron diffusion). C. 
G. Shulland and B. N. Brockhouse shared the Nobel Prize in physics 
in 1994 for pioneering contributions to the development of neutron 
scattering techniques for studies of condensed matter, in particular, 
“for the development of neutron spectroscopy”.
 Here, the technique of neutron diffraction is similar to X-ray 
diffraction but due to their different scattering properties, neutrons 
and X-rays provide complementary information. Whereas in 
crystalline diffraction using X-rays the amplitude is proportional 
to Z, the advantage of neutron diffraction is that the diffused 
amplitude has no correlation with the atomic number. Thus the 
diffused amplitude of light elements such as H and C is comparable 
to that of other elements, which is important when distinguishing 
two neighboring elements. The applications of neutron diffraction 
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concern the structural analysis of materials such as polymers (C–H 
chains) or alloys of the type CuZn, which in X-ray diffraction give 
rise to certain reflections that are nearly forbidden in their ordered 
phase; fCu–fZn because Z(Cu) = 28 and Z(Zn) = 29 (see Pbs. 5 and 11 
and also Pb. 2 when applied to KCl).
 Although neutrons are uncharged, they carry a spin, and 
therefore interact with magnetic moments, including those arising 
from the electron cloud around an atom. Neutron diffraction can 
therefore reveal the microscopic magnetic structure (ferro, ferri, 
antiferro, etc.) of materials (http://en.wikipedia.org/wiki/Neutron_
diffraction). In the reverse to non-magnetic materials, magnetic 
scattering does require an atomic form factor as it is caused by the 
much larger electron cloud around the tiny nucleus. The intensity 
of the magnetic contribution to the diffraction peaks will therefore, 
dwindle toward higher angles.

Problem 8: Diffraction of modulated structures: application to 
charge density waves

Consider a row of N atoms equally spaced by a (N is a very large 
even number). The electronic charge carried by each atom is the 
sum of a term common to all the atoms and of a term that varies 
sinusoidally with the position of the atom in the row. The periodicity 
of the modulation is d where d > a. For an atom in position ma, the 
atomic form factor is given by:

 f m f f m( ) cosa q a
  

= + ◊1 2 , where q d= 2p/  and 
 

q a .

 (1) Taking into account the term of phase difference, e i_ D




k r◊  (see 
Chapter II, Course Summary, Section 4) find the expression 
giving the amplitude diffused by N atoms in the direction 



k  
when these atoms are irradiated with an incident beam of 
wave vector 

    

k k and k k k0 0 0( = = -k D ). Deduce the condi-

tions imposed on D


k  for the diffused amplitude different from 
zero. Show these results in reciprocal space.

  Verify that when the modulation is zero, the typical diffraction 
conditions are recovered, D





k a◊ = 2pn , and show that the 
presence of this modulation results in satellite lines in the 
diffraction pattern. (Hint: Express the cosine using Euler 
notation.)
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 (2) Consider the hypothesis d = 2a. Where are the satellite lines 
located? What is their amplitude? What is the amplitude of the 
principle lines? Compare with the results established directly 
using the structure factor of arrow of alternating atoms. 
Consider in particular the results relative to D



k = 2p/a  and 
D


k = p/a.
 (3) The sinusoidal modulation has an incommensurable period 

with that of the lattice, that is, to say that d/a is an irrational 
number. For the present case, give the position of the satellite 
lines compared to the principle lines for d/a = 3.6.

 In a lamellar crystal such as graphite (see Ex. 17), the charge 
density wave is of the form D D Dr r rr( ) = +( ( )cosq r cosq r

   

1 3  and it 
is incommensurable. Show schematically the form of the diffraction 
pattern (or the reciprocal lattice) obtained by the transmission 
electron experiments at normal incidence, knowing that |q1| = |q2| = 
|q3|= 2p/3.6a; that these three vectors are parallel to the plane of the 
layer at 120° from one another and directed parallel to the principle 
axes of the lattice.

Solution:

 (1) A f m e
m

N
i m=

=

- D ◊Â ( )a k a

 

1

  Expanding f(ma), the first term f e
m

N
i m

1
1=

- D ◊Â k a
 

 corresponds 

to the amplitude diffused by the unperturbed lattice. This 
amplitude will be non-zero (and equal to Nf1 only when 
D




k a◊ = 2pn where n is a whole number. This is the usual 
condition: D

 

k G=  (see Course Summary).
  Using Euler notation for trigometric functions, the second 

term reduces to: 

  ( / )( )f e e e
m

N
i m i m i m

2
1

2
=

- - DÂ +






  

q a q a k a

  It will be nonzero for ( )D


 

k q a± = 2pn. The amplitude of the 
corresponding satellite lines will be equal to Nf2/2.

  Figure 56 shows the electronic distribution in direct space (top 
of the figure) and the weighted amplitude of the diffraction 
spots in reciprocal space (bottom of the figure).
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  For the principle lines, D




k a◊ = 2pn  corresponds to Dk n a


= 2p /  
(where Dk



is the projection of D


k  on the axis Ox 


a ). 

0 a 6a
x

d/2

+
+

f1
f2

2p/2/d a

– – –
+

Figure 56

  For the satellite lines ( )D


 

k q a± = 2pn  leads to 
Dk a n a d



◊ = 2 2p p / . These lines, weighted by Nf2/2 disappear 
when f2 is zero.

 (2)  When d = 2a, the adjacent satellite lines will merge and 
difficult to distinguish. Their amplitude will be Nf2, and that of 
the principle lines will not change. This result can be directly 
obtained by considering a lattice with d = 2a consisting of an 
atom Z1 at 0 such that f f fZ1 1 2= +  and an atom Z2 at position 
d/2 such that f f fZ2 1 2= - .

  This is the same situation that was seen in Ex. 18. There are N/2 
bases and the reciprocal lattice has periodic steps of n/a. The 
amplitude associated to the even points (such that Dk a



= 2p/ ,  
for instance) will be A (even n) = (N/2) ( )f fZ Z1 2

-  = Nf1. 
The amplitude associated to the odd points (such that, e.g., 
Dk a



= p/ ) will be A (odd n) = (N/2) ( )f fZ Z1 2
-  = Nf2. (See Ex. 

18 for an easy calculation of the structure factor F(h)).
 (3) The satellite lines are found at D

 



k G q= ±  with 


q = 2 3 6p/ . a.
  The charge density waves can materialize on electron 

diffraction patterns. These patterns correspond most 
prominently to the reciprocal lattice (the large black dots in 
Fig. 57). The effect of the charge density waves correspond to 
smaller satellite spots (the small black dots). The observation 
of such a pattern shows the incommensurability of the 
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charge density waves (refer Ex. 17 for the construction of the 
reciprocal lattice of the graphite type).

q2

q1q3

Figure 57

Remarks: There are numerous composed materials with reduced 
dimensions that have structural transitions at low temperature, 
known as Peierls transitions. These show up as a sinusoidal 
modulation of the crystal lattice which is related to a similar 
modulation of the electronic density (also known as a charge density 
wave). This incommensurability has been observed by electron 
microscopy of the trichalcogenides of transition metals, NbSe3 and 
TaS3.
 This phenomenon of incommensurability can also be observed 
by diffraction in a number of other situations: condensation of rare 
gases on graphite or magnetism of MnAu2 for instance. (For further 
information, see Société Française de Physique (1978) Solid State 
Phase Transformations in Metals and Alloys: Ecole d’été d’Aussois. 
Editions de Physique, p. 523; in particular, the article by Pouget on 
modulated structures).

Problem 9: Structure factor of GaxAl1–xAs

The Bravais lattice of GaAs, like that of AlAs is face-centered cubic 
with an atom of As at 000 and an atom of Ga (or Al) at ¼ ¼ ¼ (see 
Fig. 3c, Ex. 1, the equivalent structure of ZnS). The two lattices have 
practically the same lattice parameter a and starting from AlAs, it is 
possible to progressively substitute atoms of Al for those of Ga. On 
the initial Al sites, this substitution is random such that a ternary 
composition is formed that can be crystallographically defined as 
having x atoms of Ga and (1–x) atoms of Al (with 0 ≤ x ≤ 1) in the ¼ 
¼ ¼ position.
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 (1) Find the structure factor F(h, k, l) of AlAs (x = 0) and of GaAs 
(x = 1). Find the first five non-equivalent allowed reflections 
as a function of their atomic form factors fGa, fAl, and fAs. Next, 
evaluate F(h, k, l) numerically taking fZ ∝ Z, such that fAl ∝ 13, 
fGa ∝ 31, and fAs ∝ 33.

  All the sites are now occupied by Si atoms: determine the 
forbidden reflections in silicon (or in diamond).

 (2) In the case of GaxAl1-xAs, state the general expression of 
F(h, k, l) and indicate the evolution of F(2 0 0) as a function of 
x. Explain what is observed.

Solution:

 (1) F h k l f i hu kv lwj j j j
j

( , , ) exp ( )= - + +Â 2p

  It becomes 
  

F h k l f f e i hu kv lw
i h k l

j j j
j

( , , ) exp
( )

= +
Ê

Ë
Á

ˆ

¯
˜ - + +( )- + +

As Al

p

p2 2 ¢ ¢ ¢
¢¢

Â
  The first term between large parentheses is the contribution 

of the basis and the summation is that of the fcc lattice with:
  u v wi i i¢ ¢ ¢, , , ( ),( / / ),( / / ), ( / / )= 000 1 2 1 2 0 0 1 2 1 2 1 2 0 1 2 and 
  The reflections for which h, k, and l do not have the same parity 

are forbidden and the following table is obtained:

hkl (111) (200) (220) (311) (222)
F(h, k, l) fAs+ifAl fAs–fAl fAs+fAl fAs–ifAl fAs–fAl 
AlAs 33 + i13 20 46 33–i13 20
GaAs 33 + i31 2 64 33–i31 2

  For silicon instead, in addition to the forbidden reflections 
resulting from the fcc lattice, there are the reflections such 
that h + k + l = 2 + 4n that are also forbidden because the two 
identical atoms form the basis (see Pb. 1).

 (2) F h k l f xf x f e
i h k l

ji

( , , ) [ ( ) ] (
( )

= + + -
Ê

Ë
Á

ˆ

¯
˜ ◊

- + + ÂAs Ga Al cfc latt1 2
p

iice)

  F(200) = fAs–xfGa–(1–x) fAl. When x changes from 0 to 1, 
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F(200) decreases linearly from 20 to 2. The (200) reflection 
of GaAs becomes almost forbidden when the partial electron 
transfer from As to Ga atoms is taken into account. The 
measured intensity of this reflection (FFx) therefore allows 
the determination of x and establish the composition of this 
ternary semiconductor (see also Chapter V, Ex. 30).

Problem 10: Structure factor of superlattices

Consider a 1D infinite crystal with lattice constant d = Na of which 
the basis consists of N atoms chemically different but equidistant by 
a. (The atomic form factor of an atom at position j is fj).
 (1) Derive the structure factor F(h) from the general expression 

of the structure factor F(h k l)?
 (2) In fact the basis consists of N1 atoms of species A (fj = fA) 

followed by N2 atoms of species B (fj = fB) in such a manner 
that the crystal structure is now a 1D superlattice (with N = 
N1 + N2). From the resulting summation in F(h), rewrite F(h) 
in function of fA, and fB and a = exp-i(h2p/N).

 (3) Determine the expression of F(h) for the following three 
hypothesis:

 (a) h = nN (where, n is whole number)
 (b) h = nN/N1 ≠ n¢ N (where n¢ is whole number)
 (c) h = (2n + 1) N/2 (where N is even and N1 is odd) 
 (4) State the order (h) of the forbidden reflections when N1 = N2 

and next when N1 = N2/2. Verify the validity of the results for 
the simple case where, N1 = N2 = 1. Show that it is possible to 
determine N1 and N2 from the results established in (3) and 
from the order of the maximal reflections and of the forbidden 
reflections.

 (5) In the general case express the quantity FFx, which governs 
the intensity of the X-ray diffraction of such a structure. To 
simplify the problem assume that fA and fB are real and state the 
results using multiples and sub-multiples of the trigonometric 
functions of the angle 2p/N. In the hypothesis where, N1 = N2 
= N/2, establish the law of the intensity variation of the first 
allowed reflections when N is very large compared to the 
order of the reflections.
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 (6) With fA = 3fB, represent the comparative table of the reflection 
intensities as a function of h (1 ≤ h ≤ 13) for the three following 
situations: (a) N1 = N2 = 6; (b) N1 = 5; N2 = 7; (c) N1 = 6; N2 = 7 
with fA = 3fB. Comments are provided on the result.

 (7) The crystalline structure, now a 3D structure, can be deduced 
from the row described before in (2) by perpendicular 
translations of this row of type n





a b+ m  (where 


a  is in 
the y-direction and 



b is in the z-direction with 




a b= ).  
Thus, the resulting crystal consists of N1 atomic layers of 
element A (simple cubic with lattice parameter a) followed 
by N2 layers of element B (also simple cubic with lattice 
parameter a) repeated infinitively (see Fig. 58). What is the 
general expression of the structure factor for this superlattice? 
Is there a significant change compared to the 1D description?

d

N a1 N a2

Figure 58

 (8) Represent the diffraction pattern of the superlattice limited 
to the plane xOy when N1 = N2 = 6. (Hint: Starting from a 
cubic reciprocal lattice, associate to each point a spot size 
proportional to the intensity of the X-rays scattered by the 
reticular planes of the corresponding indices.)

Solution:

 (1) The general 3D expression of the structure factor is: 
  F h k l f i hu kv lwj j j j( , , ) exp ( )= - + +Â 2p

  In 1D and using reduced coordinates (in unit of  
d = Na where the position of an atom j is uj = j/N), F(h) takes 
the form:

  F h f i h Nj
j

N

j( ) exp ( / )= -
=

-

Â
0

1

2p
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 (2) Applied to a basis composed of N1 atoms A followed by N2 
atoms B, the expression of F(h) becomes: 

  F h f i h j N f i j N
j

N

j N

N

( ) exp ( / ) exp ( / )= - + -
=

-

=

-

Â ÂA B2 2
0

1 11

1

p p

  Writing a = e–ihΦ with Φ = 2p/N, the sum of the two geometric 
progressions is:

  F h f f
N

N
N

( ) = -
-

+ -
-A B

1
1

1
1

1
1

2a
a

a a
a

 (1)

  This expression is undetermined when 0/0, which occurs 
when a = 1 [see 3(a) below], otherwise, since aN = 1, it can be 
written:

  F h f f N( ) ( )( )/( )= - - -A B 1 11a a  (2)

 (3) (a) When the order of reflections, h, is such that h = nN (where 
n is an integer), Eq. (1) is undetermined. To find the result, we 
determine the relation between the derivatives with respect 
to n or h and find F(h = nN) = N1 fA + N2 fB. The corresponding 
amplitude is maximal when h = N).

 (b) When h = nN/N1 ≠ n¢N, the numerator goes to zero (Eq. 2) 
and the corresponding reflections are forbidden.

 (c) When N1 is odd and N is even, Eq. 2 can be simplified: 
F(h)= fA – fB for h = (2n + 1) N/2 because the exponentials 
are equal to –1.

 (4) When N1 = N2, the even reflections will be forbidden (see 3(b) 
above) except for the reflection h = n(N1 + N2) which will be 
maximal [see 3(a) above].

  When N1 = N2/2 = N/3, for which h is a multiple of 3 the 
reflections are forbidden with the exception of the multiple 
reflections of N.

  When N1 = N2 = 1, we find the result established in Ex. 18 F(h 
even) = fA + fB; F(h odd) = fA – fB.

  Consequently, the order of reflections giving the maximal 
intensity (and in particular the first ones) allows one to find 
the number N of atoms corresponding to the basis [see 3(a) 
above]. Next, the order of the forbidden reflections allows one 
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to calculate N1 [see 3(b) above]. If N1 and N are not too large, it 
is possible to determine the geometry of the superlattice from 
a simple examination of the diffraction pattern. The analysis 
of the corresponding intensities also allows one in some cases 
to find the chemical identification of the superlattice from fA 
and fB which are sensitively proportional to Z(A) and Z(B) (see 
Pb. 9).

 (5) By multiplying by the complex conjugates, functions of the 
type (1–eiΦ) become:

  2 2 2 4 22- - = - =e ei iF F F Fcos sin ( / )

  Thus

  F h F h
f f N h N

h N
x( ) ( ) ( ) sin ( / )

sin ( / )
◊ =

-A B
2 2

1
2

p
p

  This result only applies when there are no indeterminate 
values (h = Nn). Otherwise one obtains:

  F h F h nN N f N fx
A B( ) ( ) ( )= = +1 2

2

  When the number of atoms forming the superlattice is large 
and when the different sub-layers have the same thickness, 
the intensity of the first reflections orders obeys:

  F h F h
N

h
f fx( ) ( ) ( )◊ @ -

2

2 2
2

p A B

  Only odd orders are allowed and their intensity decreases as 
l/h2.

 (6) See the table (in units of fB
2).

h 1 2 3 4 5 6 7 8 9 10 11 12 13

N1=N2
=6 60 0 8 0 4.3 0 4.3 0 8 0 60 580 60

N1=5
N2=7 56 4 4 4 0.3 4 0.3 4 4 4 56 484 56

N1=6
N2=7 51 1.4 8 1.3 3 1.8 1.8 3 1.3 9 1.4 51 625

  This numerical application confirms the general analysis done 
in point 3 above). A look at the diffracted intensities allows 
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one to deduce the numbers N1 and N2 layers of the superlat-
tice. In particular the order for which the intensity is maximal 
allows one to find N = N1 +N2 (h = 12 for the cases a and b; h 
= 13 for the case g). Moreover, the even reflections (with the 
exception of h = nN) are forbidden when N1 = N2.

 (7) From the crystallographic point of views the superlattice is 
quadratic (d = Na; b = c = a; a = b = g = 90°). In this super-cell 
the coordinates vj = wj = 0 so that F(h, k, l) = F(h) regardless of 
the particular values taken by k and l.

 (8) The reciprocal superlattice can be built from the three vectors 


A, 


B, 


C orthogonal such that B  = C  = 2p/a; A  = 2p/d. Limited 
just to the plane (A, B), the successive points along the row (h, 
0) will therefore, be N times closer than those of the direction 
(0, k).

 Figure 59 shows a part of the corresponding reciprocal lattice. 
Having weighted the points of this lattice in function of the 
corresponding intensities this figure also represents the diffraction 
pattern of such a superlattice.
Note: We have adopted a methodology which starts directly from 
a superlattice to the diffraction pattern. Another approach would 
consist of starting from the diffraction pattern of the elementary 
lattice (here a simple cubic) and to exploring the appearance of the 
satellite lines associated with the super-periodicity created by the 
stratification A/B/A/B.

(91)
_

(01) (12.1)

(90)
_

* * * * *+ + + + + +

* *+ + * * + + *

+ < <<* <<

(60) (12.0)
(00)

B

A
Symbols:

Figure 59
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Comment: The characterization of the superlattices

Multilayer structures (N1 layers of material A, N2 layers of material B) 
are prepared by repeated sequential deposition of the constituents 
A and then B using MBE for instance (see Pb. 4).
 The periodicity of these structures (from 10 to 2000 Å) makes 
these objects particularly interesting to realize monochromators 
and neutron polarizers as well as X-ray mirrors operating at normal 
incidence (as well as other systems; see Chapter IV, Ex. 30).
 Finally, for solid state physics, semiconducting superlattices have 
been of wide interest from a fundamental point of view as well as 
applications since they have been first proposed by Esaki and Tsu in 
1970. The effect of the superlattice periodicity on electronic states 
will be considered in Pbs. 9a and b of Chapter V.
 Regardless of their constituents (magnetic–nonmagnetic such 
as Fe/Ag or Ni/Cu or two semiconductors), their characterization 
can be done during their elaboration using RHEED (see Pb. 4). 
Another method is based on the use of transmission electron 
microscopy. The purpose of the present exercise was to illustrate 
the power of diffraction of X-rays which allows the determination of 
the number of constituent layers and of their chemical composition 
from the inspection of their X-ray diffraction patterns. When the 
epitaxy conditions are not strictly satisfied, the deformations of 
the lattice imposed by the lattice matching can also be analyzed by 
this method. (See Chapter II, Pb. 5 for an elementary study of these 
deformations.)

Problem 11: Diffraction of X-rays and neutrons from vanadium

(I) Investigation by X-ray diffraction

 (1) When a sample of powdered vanadium is exposed to 
monochromatic X-rays of wavelength l = 1.54 Å, the 
characteristics of the resulting diffraction pattern are given in 
the following table: 

Line number 1 2 3 4 5 6 7
Bragg angle 22.1° 30.5° 38.5° 46.0° 53.5° 61.7° 72.0°
Amplitude 32.6 30.2 23.6 22.4 19.2 17.8 16.6

  Express the Bragg formula in terms of a and of the Miller 
indices (h, k, l) of each line for a cubic system.
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  Starting from these parameters, show that vanadium 
crystallizes in a bcc structure and calculate the parameters of 
the lattice and the index of the lines.

  What are the values of fx, the atomic structure factor, for each 
of the observed lines? Can you give qualitative reasons for 
which fx is a function of the angle q and l?

 (2) Establish the relation between fx and the electronic density 
supposed to be of spherical symmetry. What is the phase 
difference between the diffused ray that which passes through 
the center O of the atom and that which passes by the point M 
with the coordinates r and a defined in Fig. 60.

z

M
r

O
q q Crystal

planes

a

Figure 60

  If r(r) represents the electronic density at M, show that 
the expression of fx, defined as the relation of the diffused 
amplitude by an atom and that by an electron, has the form:

  f U r
r

r
drx = ◊

◊
◊

•

Ú ( ) sin

0

m
m

 (1)

  U(r) dr representing the number of electrons contained 
between the two spheres of radius r and r + dr, give the 
expression of m as a function of q and l.

(II) Investigation by neutron diffraction

 (1) The sample of vanadium is now irradiated with a beam of 
neutrons issued from a nuclear reactor where the internal 
temperature is 27°C. What will the associated wavelength be? 
(Hint: The neutron kinetic energy is Ec =(3/2) kBT).

 (2) The diffraction pattern of the neutron beam is very similar to 
that of Section I above, with the exception of two points: the 
lines are shifted toward weaker Bragg angles and an additional 
line appears. Comment on these results. 
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  All these lines have the same amplitude equal to +0.35. We 
define fN as being the nucleus form factor. What is its value? 
Why is it independent of l and q?

 (3) From now, we consider that fN is negative as would show 
considerations out of the present problem. 

  The beam of neutrons is polarized, that is to say that all their 
spins are parallel to each other. In addition the Vanadium 
sample is immersed into a magnetic field and a depolarization 
of the neutrons of the beam results. The depolarization factor 
R being defined as the ratio of the intensities of the two 
polarizations (parallel and antiparallel), the following values 
of R for the first lines are obtained:

Line number 1 2 3 4 5
R 0.9880 0.9920 0.9968 0.9980 0.9988

  Show that the ratio R is equal to 1 4+
f
f
M

N
 where fM is the 

magnetic form factor of the V electrons that is smaller than fN, 
(which should be verified). 

 (4) Since fx can be related to U(r), state why fM can also be 
represented by a formula analogous to Eq. (1) What is the 
new physical signification of U(r)? U(r) can be expressed by a 
Fourier series using: 

  U r r A mxm
m

( ) sin= ◊Â 2p

  In the expression for fM, is it possible to replace sinq/l by 
another value, taking into account the Fourier series?

  State the value of x in the expression found for fM. What does m 
correspond to in the transformed expression of sinq/l? Show 
that the replacement of sinq/l suggests a reasonable upper 
limit for the integration. What is this limit and why? Calculate 
the value of Am.

  Among the observed lines, select the ones to be taken into 
account? Find the values of U(r) relative to the following 
points:

  r = 0.2 Å, r = 0.4 Å, r = 0.8 Å, r = 1.0 Å.
  Draw the curve U(r). (h, kB, M)
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Solution:

(I) Investigation	by	X-ray	diffraction

 (1) In the cubic system, the distance d between two reticular 
adjacent planes of index (h, k, l) is d(h, k, l) = a/(h2 + k2 + 
l2)1/2. The Bragg formula becomes sin q(h, k, l) = l (h2 + k2 + 
l2)1/2/2a.

  The structure F h k l f i hx ky lzj
j

j j j( , , ) exp ( )= - + +Â 2p factor, 

goes to zero for a bcc lattice. The reflections are such that h + 
k + l = even. Compared to a cubic simple lattice the amplitude 
of the scattered waves is doubled for a bcc lattice (F = 2fj). In 
these conditions, we find the following table:

Reflection 
n° h, k, l

q (h, k, l) 
in degrees sin q (h,k,l)

a(Å ) 
(calculated) fx

1 1 1 0 21.1 0.360 3.025 16.3

2 2 0 0 30.5 0.507 3.034 15.1

3 2 1 1 38.5 0.622 3.030 11.8

4 2 2 0 46 0.719 3.028 11.2

5 3 1 0 53.5 0.804 3.029 9.6

6 2 2 2 61.7 0.880 3.029 8.9

7 3 2 1 72 0.951 3.029 8.3

  The atomic form factor decreases with q because the atoms 
cannot be considered as point atoms with respect to the 
wavelength of the incident X-rays (see Ex. 22).

 (2) The phase difference between the diffused rays in O and M is: 

  j p
l

p
l

q a= ◊ = - ◊ = ◊Dk r u u r
    2 4

0( ) sin cosr

  This phase difference is the same for all the points of a ring 
around the axis Oz and the elementary volume is equal to 
dv = 2pr2∙sina da ∙ dr. 

  The atomic form factor, fx, corresponds to the integral over the 
volume of the atom: 
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  f r i dvx = Úr j( )exp .

  Then

  f r r dr i
r

dx = Ê
ËÁ

ˆ
¯̃

◊
•

Ú Ú2 42

0 0

p r p q a
l

a a
p

( ) exp sin cos sin .

  or

  f r r
r

r r
drx = ◊

•

Ú4 4
4

2

0

p r p q l
p q l

( ) sin( sin )/
( sin )/

  which has the form of the proposed integral when U(r) is 
chosen as: 

  U r r r( ) ( ) sin /= =4 42pr m p q l and 
(II) Investigation	by	neutron	diffraction

 (1) The wavelength associated with neutrons is l = h/p with Ec = 
p2/2M, which gives l (Å) = 0.286/ E eVc( ) . Here, Ec = 3kBT/2 
≈ 40 meV (kBT/2 per degree of freedom). Then, l ≈ 1.42 Å. 

 (2) With respect to the investigation with X-rays, the lines bring 
nearer each other because the neutron wavelength is slightly 
shorter. Then the reflection (4 0 0) is also possible: sinq(400) 
= 2l/a = 0.94 < 1.

  Excepting the sign, the nucleus form factor is equal to half 
the amplitude of the scattered waves from a bcc lattice, fN = 
–0.175.

  It is independent of l and q because if the electron cloud 
scatters the X-rays, the nucleuses scatter neutrons and 
the size of the nucleuses is small compared to the incident 
wavelengths. There is no phase difference between different 
scattering points in the same nucleus (the same atom). 

 (3) The polarized incident neutrons interact with atoms of 
vanadium which are, themselves, polarized in the magnetic 
field. The depolarization is related to the fact that the spin of 
the electrons of vanadium will be parallel or anti-parallel to 
the spin of the incident neutrons. If we call fM the magnetic 
form factor of the V electrons the scattered amplitude is 
proportional to fN + fM in one case to fN – fM in the other case. 
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Thus, the ratio R of the intensities is:

  R
I
I

f f
f f

= ≠≠
Ø≠

=
+
-

Ê
ËÁ

ˆ
¯̃

( )
( )

N M

N M

2

  When fM is small compared to fN: R ≈ 1 + 4fM/fN and the 
evolution of fM for the various crystallographic planes is the 
following: 

h k l (1 1 0) (2 0 0) (2 1 1) (2 2 0) (3 1 0)
 

f
f
M

N

 
- ¥ -3 10 3

 
- ¥ -2 10 3

 
- ¥ -0 8 10 3.

 
- ¥ -0 5 10 3.

 
- ¥ -0 3 10 3.

fM 5.25 ¥ 10–4 3.5 ¥ 10–4 1.4 ¥ 10–4 0.875 ¥ 10–4 0.525 ¥ 10–4

  One may observe that fM is effectively small compare to fN.
 (4) Like fx, fM is decreasing because the spin of atoms of vanadium 

results from the combined spins of electrons in the V atom. 
The resulting electronic spin is due to the 3d electrons in the 
outer shell of vanadium. The magnetic diffusion is therefore, 
related to this diffusion of electrons which is represented by 
U(r) from which:

  f U r r r drM = ◊ ◊
•

Ú ( ) (sin / ) .
0

m m

  On the one hand, one has (see Ex. 1): 
  sin / ( ) /

q l = + +h k l
a

2 2 2 1 2

2
  On the other hand the electronic distribution of the crystal 

may be re-written as: 

  r r r p( ) exp exp ( ) /r i i
m

a
h k l rG

G
m

m

= ◊ = + + ◊Â ÂG r
  2 2 2 2 1 2

  Taking into account that G(h, k, l).d(h, k, l) = 2p, in the 
expression proposed for U(r) we can identify x to be the 
dimensional quantity: 

  
r

d
r h k l

ah k l, ,

/( )= + +2 2 2 1 2

  Ιn the sum, the whole number m would represent the order of 
the various reflections. 
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  Finally, taking into account the fact that the integration over 
the volume of the atom can, to a first approximation be limited 
up to the inter-reticular distance along each of the directions 
(that is to say dh,k,l/2), the following expression for fM is 
obtained:

  

f r A
mr
d

nr d
nr d

dr

d
n

A

m
m

d

m
m

d

M = ◊ ◊

=

ÂÚ

ÂÚ

0
2

0
2

2 2
2

2
2

sin sin /
/

.

cos

p p
p

p
p(( ) cos ( )m n

d
r

m n
d

r dr
- - + ◊È

ÎÍ
˘
˚̇

2p

  The integrals lead to a null result except when m = n. Then:

  f
A d

n
A a

n h k l
A

f

d
nm m

mM
M or =

◊
=

◊
+ +

= ◊
2 2

2 2 2 28 8
8

p p
p

( )
  The (110) and (220) reflections permit to obtain the first two 

terms of the expansion of U(r), instead of only one.
  A1 = 2.87 × 10–3 Å–2 and A2 = 0.958 × 10–3 Å–2 in the development 

of U(r) of the form:

  U r r A
r

d
A

r
d

( ) sin sin= + +Ê
ËÁ

ˆ
¯̃1 2

2 4p p


  Finally, the following table and graph can be derived:
r (Å) 0 0.2 0.4 0.6 0.8 1

x 0 0.093 0.187 0.28 0.373 0.487
U(r) 

10–3 Å–1 0 0.494 1.36 1.49 0.874 0.026

¥10 Å ( )
–3 –1 U r

1

0.5

0
r(Å)

1

Figure 61

Remark: The probability of the presence of r(r) of an electron 
between r and r + dr is proportional to U(r) where the coefficient 
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of proportionality C can be deduced from c U r dr( )Ú = 3  (electrons/

atom). Here, C = 3 × 103. See also Chapter III, Pb. 7.

Problem 12: X-ray diffraction of intercalated graphite 

Graphite crystallizes in a hexagonal system with a = 2.455 Å; c 
= 6.7 Å and a basis consisting of four carbon atoms of which two 
are localized on the plane A at 000 and 2/3 1/3 0 (to create a 2D 
structure in the form of a honeycomb; see Ex. 17) and two C atoms 
are in the intermediary plane, B, at 0 0 1/2 and at 1/3 2/3 1/3 (see 
Fig. 62).

 (1) Give the expression of the structure factor F (h, k, l) of graphite. 
Deduce the rule corresponding to the reflected amplitude on 
different planes of the lattice and state in particular the order 
of the forbidden reflections. 

A

B

A
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000

000
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1
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1
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2
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1
3 0x

z

y

00

0

00 1
22

3
1
3

1
2

2
3

1
2

Figure 62

 (2) Using the goniometric arrangement (combining a the rotation 
of q for the sample and a rotation of 2q of the detector) 
describe the diffraction diagram of a single crystal of graphite, 
limiting first to reflections of the type (001) to simplify the 
problem and then next to reflections of type (h00). State the 
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sequence of numerical values for the successive Bragg angles 
q(001) and q(h00) when the wavelength is l = 1.54 Å.

 (3) Potassium atoms are inserted into the leaflets of graphite to 
obtain the first insertion stage KC8 (Fig. 63). The goal is now to 
explore the changes in the reflections in the (001) and (h00) 
considered before in (2). Find the structure factor F(0, 0, 1) 
and F(h, 0, 0) in order to determine the modifications to the 
Bragg angles and to the amplitudes of these reflections. Note in 
particular that the distance between the two successive planes, 
A and B, of carbon has changed from 3.35 Å to 5.51 Å and the 
two planes are now of the same type A. Also, the plane of the 
inserted K atoms is hexagonal with lattice parameter a¢ = 2a.

4.91 Å

Graphite Stage 2 Stage 1
A
A
A
A
A

5.41 Å

3.35 Å A

BA
B
A
B

A
A

A
A

B

B

Figure 63 Intercalation of K into graphite (front and top views).

 (4) For a synthesis of all these results, draw the diagrams of 
F(001) and F(h00) as a function of q. Assume that the atomic 
form factors fc and fK are real and independent of q.

 (5) To study a laminar material is it necessary to consider all the 
points (h, k, l) accessible in reciprocal space? 

Solution:

 (1) Starting from the general expression of F(h, k, l) one obtains:

  F h k l f e e eC

i h k i l i h k
( , , )/
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  When l is even, the contribution of the intermediate plane is 
added to that of the base plane because e–ipl = 1. The weight 
of these contributions will be maximal, F(h, k, l) = 4fc, when 
h + 2k (or h–k or k–h or 2h + k) = 3n. It will be reduced to F(h, 
k, l) = fc (2 – 2cos60°) = fc when h – k = 3n ± 1. 

  When l is odd, the contribution of the intermediary plane 
subtracts from that of the base (e–ipl = –1) and the reflections 
of type h – k = 3n are forbidden. The reflections of type h − k= 
3n ± 1 correspond to the structure factor, such that F(h, k)/fc = 
2isin(2p3) = i 3  and the corresponding intensity is real I(h, k, 
l) = 3fcfc

x.
 (2) When considering the Bragg angles of type q(0, 0, l), the 

reciprocal lattice along the 


C  axis is investigated and thus 
the stratification of graphite has to be considered. The only 
allowed reflections are of the type (002), (004), (006), … and 
their amplitude is maximal (4fc) because for odd reflections 
there is destructive interference between the diffused waves 
of two adjacent planes. The application of the Bragg’s law, 2c 
sinq(001) = ll results in q(002) = 13.3°; q(004) = 27.4°; q(006) 
= 43.6°. Explorations of Bragg angles of the type q(h00) can 
be considered as explorations along the reciprocal axis 



A  and 
thus, the distribution of atoms in a layer. All the reflections 
are allowed (l = 0 is even), but reflections where h = 1, 2, 4, 
5 are weak (F = fc) whereas, those of type h = 3, 6, 9 have the 
maximal amplitude 4fC. The corresponding angles q(h00) 
obey the rule 2a sin q(h00) = hl or q(100) = 18.28°; q(200) = 
38.85°; q(300) = 70.2°.

 (3) The new crystalline structure is hexagonal with a =4.91 Å; 
and c = 5.41 Å. Choosing the origin at a K atom in the plane of 
carbon atoms, the basis can be described by 1K at 0 0  and 8C 
at:  0;  0;  0;  0;  0;  0;  0; and  0.

  The reflection amplitude of type 001 will be given by 
F(001) = 8fC + fK e-ipl.

  They will be strong for l even and weak for l odd, which is 
easily seen by simply considering that the phase difference of 
waves diffused by the atomic planes of K and those of C will be 
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p compared with waves diffused by two consecutive planes of 
C atoms that will be 2p.

  The corresponding Bragg angles will be q(001) = 8.18°; 
q(002) = 16.53°; q(003) = 25.27°; q(004) = 34.7°.

  As was obvious previously, the change in the interlayer 
distance due to K insertion narrows the sequence of Bragg 
angles.

  The reflection amplitude of type h00 is given by: 

  F h f f
h h( ) cos cos00 4
4

3
4

= + +Ê
ËÁ

ˆ
¯̃K C

p p

  The reflections such that h = 4n will have the maximal 
amplitude (F = fk + 8fC) and all others will have the minimal 
amplitude (F = fK). The lattice parameter a having doubled, 
the sinq values will be halved q(100) = 9.02°; q(200) = 18.28°; 
q(300) = 28.6°; q(400) = 38.85°; q(500) = 51.64°

 (4) See Fig. 64
 (5) Concerning the intercalation effect, the complete analysis of 

the diffraction diagram does not bring any new information 
compared to that following the 



C  axis. Therefore, the study 
of the diagram may be limited to the exploration along the 
direction of diffraction spots that is perpendicular to the 
plane, a fact already formulated in Pb. 10. 

Comments: Intercalations in layered materials 

It is possible to insert some elements or molecules that are partially 
ionized between the different layers of lamellar crystals, for instance 
Li, K, H2SO4 in C; NH3, I2 in MoS2. This is done essentially by chemical 
processes or by electrochemistry. The resulting composite modifies 
the physical properties of both the lamellar material and that 
inserted.
 Besides the 2D behavior of these synthetic materials, they 
are interesting from the fundamental viewpoint because of their 
anisotropic character is adjustable depending on the species inserted 
and the insertion stage, corresponding to the number of lamellar 
crystals separating two layers of the inserted species (see Fig. 63).
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Figure 64

 A certain number of applications can be envisioned based on 
the electronic particularities of these materials and in particular 
the excellent electric conductivity that runs parallel to the layers. 
Catalytic applications based on the selective modification of the 
chemical reactivity of the insertions are also considered as well as the 
storage of electrical energy associated with the insertion–extraction 
reactions.
 Outside of the specific case of insertion, the present problem 
illustrates a common theme in materials science which is that the 
understanding of a new material is followed necessarily by its 
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structural characterization. This characterization serves to control 
and refine the materials processing but is also indispensable for 
understanding the specific physical properties and deduce the 
atomic arrangements. In the arsenal of techniques available for 
structural characterization, X-ray diffraction holds a privileged place 
even if the prediction or the analysis of the results is not always as 
easy as in the simplified examples chosen here. 

Questions

 Q.1: Give the order of magnitude of the interatomic distance d in a solid, 
the atomic density of a crystal NV, the surface density, NS, and the 
linear density, NL?

 Q.2: In diffraction experiments of crystals what do the following 
techniques “see”: (a) incident X-rays, (b) incident electrons, and (c) 
incident neutrons?

 Q.3: Why, at normal incidence, does one see always a diffraction pattern 
with electrons that are “slow” by using reflection from and “fast” 
when using transmission through thin films? 

 Q.4: Monochromatic and parallel X-rays beam irradiated a perfect crystal 
at any incidence angle. What happens from the point of view of 
diffraction effects?

 Q.5: In diffraction experiments, what does the 000 reflection correspond 
to?

 Q.6: Are the diffraction conditions more favorable when the atomic 
planes are closer and closer to each other?

 Q.7: What is epitaxy?
 Q.8: What is the meaning of Ni (100) c (2 × 2)0?
 Q.9: In surface science, what is a Langmuir?
 Q.10: What is a reconstructed surface? Give one cause of such a 

reconstruction.
 Q.11: What is a disordered alloy? How can a disordered and an ordered 

alloy be differentiated?
 Q.12: What is a superlattice? Give some examples.
 Q.13: What is the structure of a insertion compound in a lamellar crystal? 
 Q.14: What is the difference between the following two expressions:  

2d300 sinq = l and 2d100 sinq = 3l?
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 Q.15a: Not taking into account the different lattice parameter, what are the 
expected differences between an X-ray diffraction pattern of GaAs 
(zinc-blended structure as shown in Fig. 3c) and that of germanium 
(diamond structure shown in Fig. 3d)? [Z(Ga) = 31; Z(As) = 33; Z(Ge) 
= 32]

 Q.15b: In the X-diffraction pattern of KCl (fcc structure with 1 K at 000 and 
1 Cl at ½00, what are the quasi-forbidden reflections caused by the 
basis known that Z(K) = 19 and Z(Cl) = 17? 

 Q.16: Consider particles with wavelength l = 1.54 Å. State in eV, their 
energy depending on whether they are associated with:

  (a) Photons (X-rays); (b) electrons; (c) neutrons.
 Q.17: Show the reciprocal lattice and the first BZ of CsCl, NaCl, and CaF2 

(Fig. 3a, e, and f, respectively). What is the difference between the 
last two?

 Q.18: The following techniques are named often by their acronyms, what 
are their full name and their main characteristics:

  (a) LEED; (b) RHEED; (c) EBSD.
 Q.19: Give a definition for: (a) The first BZ; (b) the Kikuchi lines; (c) the 

Kossel lines.
 Q.20: How to produce the X-rays?
 Q.21: Why the results of the Laüe experiments were important when 

known in 1912?
 Q.22: Why Davisson and Germer were important in 1927?

Answers at the end of the book





Course Summary

A. Crystal Binding

1. Statement of the Problem

questions: It is natural to ask why a given solid chooses a particular 
crystal structure and what kinds of properties are connected with it. 
This topic is called “cohesion” and the questions are:

	 •	 What are the forces that result in the cohesive energy of a 
solid? What is their physical origin?

	 •	 Why do all materials (except He) become solids when the 
temperature is sufficiently lowered?

qualitative reply: Electronic forces are the main answer to these 
questions. They essentially affect the valence electrons and assure 
the crystalline cohesion. These forces overcome the repulsion 
between the overlap of electron clouds of neighbor atoms and the 
kinetic energy of the nucleus and of the electrons. 

definition: The cohesive energy of a solid is the energy required to 
break the atoms of the solid into isolated atomic species, that is,

E E Ec solid
A

A
isolated= -Â

Chapter II
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E r( = )•

Repulsive
forces

E r( = )r0

Attractive
forces

(electrons) Ec

r0 Interatomic distance 

Figure 1 Dependence of potential energy on interatomic distance.

 The calculated values of the cohesive energy are compared with 
experimental results, which can be obtained by measuring the latent 
heat of sublimation at various low temperatures, and extrapolating 
to zero Kelvin. The empirical parameters relative to the cohesive 
forces can be evaluated starting from the inter-reticular distance, r0, 
and the compressibility, b, of the solid: 1/b = –Vdp/dV. 
 The analysis of different types of solids can reveal the nature of 
different attractive forces. 
 Outside of these general considerations, detailed explorations of 
crystalline cohesion are generally complex and do not rely on a single 
rule for all solids. Usually the type of bonds may be classified into 
one of four general categories and each of them is treated by specific 
simplifications. We follow these general rules but it must be pointed 
out that the approach by Harrison provides a coherent theory taking 
into account covalent solids, crystals of rare gases, ionic crystals, and 
simple and transitions metals [12]. 

2. Rare Gas Crystals 

In addition to chemical bonding between atoms, there is another 
type of attractive force that exists between atoms, ions, or molecules 
known as van der Waals forces. These forces represent the main 
contribution to the cohesive energy for rare gas crystals, from Ne to 
Rn with eight outershell electrons/atom. 
 The attractive energy between two atoms results in an induced 
dipole–dipole interaction (called the van der Waals–London 
interaction) which varies as r–6: 

 W E P rp B A e e A
2P E= - ◊ = - µ

 

e a a0
2 6/

where a is the polarizability of the atom.
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	 •	 The repulsive energy due to the overlapping of orbital electron 
clouds varies even more abruptly as r–12 or as l exp – (r/r). 

	 •	 The total potential energy, neglecting the kinetic energy terms, 
is known as the Lennard-Jones energy (see Pb. 3) is:

  W r rT atom atom( ) [( / ) ( / ) ]- = -4 12 0e s s

in which e is the cohesive energy of a molecule and s is related to 
the equilibrium distance r0 between adjacent atoms by r0 = 1.12 s	
(see Ex. 10).
 For N atoms in a crystal, the potential energy is the sum of the 
first j neighbors:

 E
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 The cohesive energy is weak, 0.02 eV/atom or less, which results 
in a low melting temperature. 

3. Ionic Crystals

The cohesive energy results essentially from the electrostatic 
attraction between ions of opposite sign. U q rOn = - 2

0 04a pe/  in which 
a, the Madelung constant, represents the alternate summation of 
different types of ions with respect to the reference ion (q = 1.6 · 
10–19 C and r0: distance between nearest neighbors at equilibrium); 
As with rare gas crystals, the electrostatic repulsive energy at short 
distance is due to the overlapping of electronic orbitals between 
nearest neighbors. It is given either by an expression of the form 
λe–r/r (Born-Meyer type with constants l, r, see Pbs. 1 and 2) or by 
a Lennard-Jones type potential Ar–p (with p ≈ 9 or 10) (see Exs. 1–7 
and 10). 
 Excepting the ionization energy of the species and neglecting the 
kinetic energy terms, the cohesion energy of N pairs of ions takes 
one of the following forms:

 
E N z e q r

E N zAr q r

r

p

C

C

= -

= -

-

-

[ ( / )]

[ ( / )]

/l a pe

a pe

r 2
0

2
0

4

4
where z is the number nearest neighbors and r is the inter-atomic 
distance at equilibrium. 
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 The equilibrium condition, ( / )∂ ∂ ==E r r rC 0
0 allows the calculation 

of r0 as a function of A and p or r	and l.	Reciprocally it permits to 
evaluate one of the two constants as a function of the measured 
crystalline parameter. If necessary the other constant can be deduced 
from a measurement of the compressibility b (see Pbs. 1 and 2). 
 The major result is that the binding energy results essentially 
(80–90%) from the Coulomb attraction:

 E
q

r rC = - -
Ê
ËÁ

ˆ
¯̃

2

0 0 04
1a

pe
r  or E

q
r pC = - -

Ê
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ˆ
¯̃

2

0 04
1 1a

pe
 

in which the Madelung constant, a, depends on the crystalline 
structure considered. 
 Conventionally, here a is the multiplying factor of q2/4πe0r in the 
expression for the ion potential energy with q = 1.6 ¥ 10–19 C. In other 
conventions it is sometimes used as the multiplying factor of the 
quantity Z1Z2q2/4πe0r in the expression of the attractive potential 
energy of ions Z1q and Z2q. This last convention leads to a(MgO) = 
a(NaCl), which will modify certain expressions but does not change 
the physical consequences mentioned above. 
 This ionic structure gives high bond strength that provides brittle 
substances with high melting points and low electrical conductivity.

4. Metallic Bonds

Metallic binding constitutes the electrostatic attractive forces 
between the delocalized electrons, called conduction electrons, 
gathered in a mobile electron cloud (or a Fermi sea) and the positively 
charged metal ions that are fixed and immersed in this cloud (or 
sea). Whereas most chemical bonds are localized between specific 
neighboring atoms, metallic bonds extend over the entire molecular 
structure. The resulting cohesion is essentially the reduction of the 
total energy of conduction electrons in the metal compared to a free 
atom. In a simple metal (but not in transition metals), it results in 
certain plasticity when defaults can be neglected with also relatively 
low melting points and easy reshaping (bending, flattening). 
The delocalized electrons provide high electrical conductivity. 
The detailed study of this cohesion energy necessitates first the 
examination of behavior of free electrons as considered in Chapter 
IV, Ex. 24 and Pb. 1, or of the band structure theory (Chapter V) for 
transition metals (see Chapter V, Ex. 8). 
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Figure 2 Model for simple metals: Ions lattice in a Fermi sea.

5. Covalent Bonds

Covalent chemical bonds involve the sharing of a pair of valence 
electrons by two atoms, in contrast to the transfer of electrons in 
ionic bonds. Such bonds lead to stable molecules if electrons are acted 
upon by the electrons and nuclei of adjacent atoms as atoms come 
within close proximity. For each individual atom there are discrete 
energy levels that may be occupied by electrons and this causes each 
distinct atomic state to split into a series of closely spaced electron 
states in the solid, to form what is termed electron energy bands. All 
the atoms are bonded together into a giant molecule. 
 Even though this study will not be covered until Chapter V, with 
the tight binding approximation (see Course Summary of Chapter V 
and the related exercises), one can observe that the covalent bond is 
a strong bond that accounts for the hardness of diamond (as well as 
Ge and Si). This occurs despite a weak filling rate where a tetrahedral 
bond allows only four nearest neighbors. 
 Covalent bonds are formed when non-metallic atoms approach 
and share valence electrons. These are the strongest of all bonds. 
Covalent networks are very hard to disrupt, giving these substances 
very high melting points and low conductivity in any state. 

B. Elastic Constants

1. Introduction

This chapter is concerned with the elastic constants of single 
crystals. They are macroscopic parameters relating stress to strain 
in homogenous solids and they are of interest for their insight into 
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the nature of the binding forces in solids. They are also of importance 
for the velocity of sound and for the thermal properties of solids as 
investigated in Chapter III from the microscopic point of view. 

2. Stress

In continuum mechanics, stress is a measure of the internal forces 
per unit area, Pa or N/m2, acting within a solid. 
 There are nine stress components. Three are directed along x, Xx, 
Xy, and Xz where the subscript indicates the normal to the plane to 
which the force X is applied (see Fig. 2). The six others are directed 
along y and z, respectively. In equilibrium one has Yz = Zy, Zx = Xz, 
and Yx = Zy then the stress exerted on a solid can be described by six 
independent parameters. 
 For the simple case of an uniaxial stress, for example, a bar 
subjected to tension or compression, the stress tensor reduces to 

 
Xx 0 0
0 0 0
0 0 0
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 A different type of stress occurs when the non-diagonal 
components such as Xy or Yz differ from 0. They correspond to shear 
forces.

F1

F2 Fn

y
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z
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Figure 3 Example of stress components. 
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3. Strain

The application of stress results in deformation of the body’s shape 
or strain. Strain is the observable deformation of a sample relative to 
its initial shape.
 (a) 1d strain
  In 1D, for example, a bar subjected to tension changes in 

length: elongation. 
      

Force

Change in length = DL

L0 = Initial length

  1D strain is illustrated in the following figure where the top 
figure shows the system before and after strain application.
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  Elongation along the axes x, y, or z 
are written, respectively, as

  exx = ∂u/∂x

  eyy = ∂v/∂xy  
ezz = ∂w/∂z

 (b) 2d strain 
  Applied to the distortion of a vector PQ in a plane, a 2D strain 

corresponds to
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  The description of the deformation involves strain components 
of the form: exy = (∂v/∂x) + (∂u/∂y).

 (c) 3d strain
  Extended to 3D, the six components of the strain are 

  e
du
dx

e
dv
dy

e
dw
dzxx yy zz= = =; ; ;

  e
dv
dx

du
dy

e
dw
dy

dv
dz

e
du
dz

dw
dxxy yz zx= + = + = +; ; .

  Occasionally definitions of exy, eyz, and ezx are given which 
differ by a factor ½ from those given here. In the literature 
[Refs. 15 or 19] one finds also strain components expressed in 
a different form, e	i,j . These values are related by eii = eii and by 
e eij ji ij ji= = ◊ = ◊2 2e e  when (j ≠ i).

  For example, e
u
y

v
xxy xy= ∂

∂
+ ∂

∂
= 2e

  Although the table eij is not a tensor [19], we use this 
representation in subsequent exercises. This representation 
implies that the coefficients such as C44, C55, C66 in the Hooke’s 
law are two times smaller here than those deduced from the 
tensor definition. 

  The existence of these two definitions makes the interpretation 
of different numerical values coming from different sources 
difficult. Physically the diagonal elements eij (= eij) represent 
dilatation or linear strain. The off-diagonal elements eij where 
i ≠ j represent a shearing strain or the variation (half of eij) of 
the angle made by two vectors, that were respectively parallel 
to two of the three previous axes.

4. Hooke’s Law

The Hooke postulates that the strain is a linear function of the stress. 
Such approximation is only valid very below the limit of elasticity of 

the solid of interest applied in 1D, it is Xx = c ∂
∂

u
x

). In 3D it leads to the 

following series of linear equations: 

 e S X S Y S Z S Y S Z S Xxx x y z z x y= + + + + +11 12 13 14 15 16 ;
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 e S X S Y S Z S Y S Z S Xyy x y z z x y= + + + + +21 22 23 24 25 26 ;

 e S X S Y S Z S Y S Z S Xzz x y z z x y= + + + + +31 32 33 34 35 36 ;

 e S X S Y S Z S Y S Z S Xyz x y z z x y= + + + + +41 42 43 44 45 46 ;

 e S X S Y S Z S Y S Z S Xzx x y z z x y= + + + + +51 52 53 54 55 56 ;

 e S X S Y S Z S Y S Z S Xxy x y z z x y= + + + + +61 62 63 64 65 66 ;

or

 X C e C e C e C e C e C ex xx yy zz yz zx xy= + + + + +11 12 13 14 15 16 ;

 Y C e C e C e C e C e C ey xx yy zz yz zx xy= + + + + +21 22 23 24 25 26 ;

 Z C e C e C e C e C e C ez xx yy zz yz zx xy= + + + + +31 32 33 34 35 36 ;

 Y C e C e C e C e C e C ez xx yy zz yz zx xy= + + + + +41 42 43 44 45 46 ;

 Z C e C e C e C e C e C ex xx yy zz yz zx xy= + + + + +51 52 53 54 55 56 ;

 X C e C e C e C e C e C ey xx yy zz yz zx xy= + + + + +61 62 63 64 65 66 .

 The quantities Sij are called the elastic (compliance) constants 
and Cij are known as the elastic stiffness constants (or moduli of 
elasticity). They are expressed respectively in m2/N and in Pa (N/m2). 
The corresponding numerical values characterize the mechanical 
properties of the materials. Certain coefficients (Cij in particular) 
can be dependent on temperature as well as on residual impurities 
and dislocation densities. In fact, any thermal treatment can change 
these constants, most notably when the solid is metallic. 
 The matrices of Sij and Cij are symmetric. As a result, there are 21 
independent coefficients for a triclinic crystal, 3 for a cubic crystal 
(C11, C12, and C44), and 2 for an isotropic solid because 2C44 = C11–
C12.
 In an isotropic solid, one can use coefficients which have a more 
direct physical meaning such as the Young modulus, E, and the 
Poisson coefficient, s:
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 One also uses the Lamé coefficients, l	and m:	l	=	C12; m = C44 so 
that C11 = l + 2m.	The bulk modulus, B= –V(∂p/∂V) with p as the 
pressure and V as the volume, and its reverse, the compressibility, 
b	=	1/B	are also of frequent use. In cubic crystals one has B = (C11 + 
2C12)/3. 
 The goal of this subsection, elastic constants, is to correlate the 
macroscopic properties of solids with their microscopic causes such 
as the force constant between atoms and the suggested exercises 
will be limited to cubic crystals and to isotropic solids (Exs. 13, 15, 
16).

5. Velocity of Elastic Waves

 (a) In 1D, the equation of motion applied to an object of length ∆x 
is, in the Ox direction:

  rD ∂
∂

= D = D = ∂
∂

Dx
u

t
F c e c

u

x
x

2

2

2

2 .

  The general solution is of the form u f t
x
v
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x
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ˆ
¯̃s s

.

  The sinusoidal solutions are of form u = u0 exp i(ωt – kx) and 

the velocity is vs = c
r

. 

 (b) In 3D, the motion in the x direction of an element of volume  
∆x ∆y ∆z obeys the equation: 

  r ∂
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x y z

  Using the stress/strain relation, Hooke’s law, in the above 
equation and in the equations of motion relative to the Oy 
and Oz axes, one searches sinusoidal solutions of the form: 


 



u u exp r= -0 i t k( )w ¢ . These solutions correspond to waves, 
of wave vector k



 that may propagate along the different 
crystallographic axes. In the general case, the three normal 
modes of propagation are such that the polarization of these 
modes, u0

 

 (the displacement direction of the particles) is 
not strictly parallel or perpendicular to 



k . Nevertheless to 
simplify the analysis the present study would be limited to 
propagations along the axes such as the [100] or the [110] of 
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the cubic crystals where the motion is either purely transversal 
( 



u k^ ) or purely longitudinal ( 


u k). 

  

45°

[110]

k

y

L
x

T1

T2

z

  Thus in a cubic crystal when the longitudinal wave propagates 
along the [110] axis, one introduces solutions of the form 
u u i t k x k yx y= - -0 exp ( )w  and v v i t k x k yx y= - -0 exp ( )w . 
For a transverse wave polarized along the Oz direction and 
propagating in the [110] direction, the solution is of the form:
w w i t k x k yx y= - -0 exp ( )w . Taking into account that in each 

case kx = ky = 
k

2
, it can be shown that (see Pb. 4):

  V
C C C

V
C

L T1
[ ] ( ) , [ ]

/ /

110 2
2

11011 12 44
1 2

44
1 2

=
+ +

=
Ê
ËÁ

ˆ
¯̃r r

  Pb. 5 explores the elementary deformations introduced by 
hetero-epitaxy of materials (of semiconductors here).

Exercises

Exercise 1: Compression of a ionic linear crystal

Consider a line of equidistant ions of R with alternative charges 
equal to ±q. 

 (a) Evaluate the electrostatic potential energy Up and the repulsion 
energy Ur of an ion placed at the origin in the field of all the 
other ions. Assume that the repulsion energy between two 
atoms is of the form A/Rp. 
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  Find the expression for the total energy of 2N ions in the chain 
and deduce the expression of A in equilibrium.

 (b) A compression of the crystal transforms R0 into R0(1–d): show 
that the compressive work per unit length is approximately 
equal to ½ C d2	and find C.

Solution:

 (a) The potential energy of an ion placed at the origin is

  
U

q
R

q
R

q

i i
p

log

= ± = - + - + -Ê
ËÁ

ˆ
¯̃

= - ◊

Â
2

0

2

0

2

4
1 2

4
1
1

1
2

1
3

1
4

2 2

pe pe
( )

( )



44 0pe R

  2log2 = a, the Madelung constant of a linear ionic lattice. 
  The total energy UT of 2N ions will be 

  U R N
Az

R

q
RpT log( ) = - ◊

Ê

ËÁ
ˆ

¯̃

2

04
2 2 1

pe

  with z = 2 (i.e., only nearest neighbors). (Note that we include 
the mutual potential and repulsive energy only once.)

  At equilibrium:

  ∂
∂

Ê
ËÁ

ˆ
¯̃

= = - +
Ê

Ë
Á

ˆ

¯
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+
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1 2
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  which leads to

  A
q
p

R p=
◊

-
2

0
0

1

4
log2
pe

  Substituting the initial expression for UT, we find

  U
Nq

R p
N q

R pT
log2 == -

Ê
ËÁ

ˆ
¯̃

-
Ê
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ˆ
¯̃

2
4

1 1
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 (b) When the crystal is compressed, the compressive work 
increases the total energy. For a single ion this energy is

  u R
q R

pR R

p

p( ) = -
Ê

Ë
Á

ˆ

¯
˜

-2

0

0
1

4
1log2

pe
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  Its increase corresponds to

  u R u R
q

R
p[ ( )] [ ]0 0

2

0 0

21
4

1
2

- - = -Ê
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ˆ
¯̃

d
pe

dlog2

  The compressive work per unit length (1/R0) is therefore of 
the form (½) Cd2 where

  C
q

R
p= -

2

0 0
24

1log2
pe

( )

Exercise 2a: Madelung constant for a row of divalent ions

Determine the Madelung constant for ions placed at the center and 
at the end of a very long row of equidistant ions with alternating 
charges of ±2q, where q = 1.6 ¥ 10–19 C.

Solution:

By convention the Madelung constant is the multiplicative factor a of 
–q2/4πe0r in the expression of potential energy of attraction where q 
is the electronic charge and r is the distance between neighbors. As 
a result for a (2q) central ion, it will be four times larger than a (1q) 
ion at the same place but in a row of monovalent ions (see previous 
Exercise). We thus have 

	 a = 4(2log2) = 1.386 ¥ 4 = 5.545.

 If the ion 2q is located at the end of a chain, the Madelung constant 
will be half of this: a = 4(log2) = 2.773.
 It is thus easy to find the Madelung constant for a crystal of 
multiple charged ions from that of a crystal of single charged ions 
having the same structure. Consequently, assuming that the ionic 
radii are comparable, one may expect a significant increase in the 
cohesive energy and a less reduction in the inter-ionic distance at 
equilibrium. (See the case of MgO compared to NaCl in Ex. 8.)
 An ion situated at the end of the chain will have a cohesive 
energy two times less than that of the central ion and it will be more 
easily removed from the row. Its equilibrium distance with its first 
neighbor will be larger and its vibration frequencies will be weaker 
compared to ions of the same type but located far from the ends (see 
Ex. 6). 



124 Crystal Binding and Elastic Constants

Exercise 2b: Madelung constant of a row of ions –2q and +q

 (a) Consider a linear crystal with the following basis: at 0, an ion A 
with charge –2q and two ions B with charge +q symmetrically 
located relative to A at 1/3 and –1/3. Find the Madelung 
constant of each ion, a(A) and a(B).	

	 (b) Find the Madelung constant for crystal similar as that in (a) 
but with the ions B now located at ¼ and –¼.

 (c) What are the limiting values of a(A) and a(B)	 when the 
distance between the successive ‘molecules’ BAB increases? 
Comment on the result.

  Note: The evaluation of the summations can be simplified 
by regrouping the groups of 3 ions so that the successive 
contributions of the ‘molecules’ of BAB appears. 

  

( a )

( b )

Solution:

 (a) Taking into account the symmetry to the right and left, for the 
ion A of charge –2q, we find

  a( )A = ◊ + - + + - +Ê
ËÁ

ˆ
¯̃

2 2 1 1
2

2
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1
4

1
5

2
6

1
7


  Regrouping the terms to find the contributions of type BAB 
we have

  1
1

2 1
1

2
1 1n n n n n n-

- +
+

=
- +( ) ( )

  With n = 3, 6, 9 we have 

  1 2
2 3 4

2
5 6 7

1 093+
◊ ◊

+
◊ ◊

= .

  so that a(A) = 4.37.
  For ion B, the symmetry is broken and the left and right sum 

leads to

  a( ) .B = - + - - + - + =2 1
1

2 1
2

2
3

2 1
4

1 093

  We thus find that a(B) is four times weaker than a(A) within 
the convention given in Course Summary and in Ex. 8. 
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 (b) For ion A, we obtain the series:

  a( )A ª ◊ + - + + - +Ê
ËÁ

ˆ
¯̃

2 2 1 1
3

2
4

1
5

1
7

2
8

1
9


  which may be evaluated as in a) taking n = 4, 8, 12. The series 
is equal to 1.037 and a(A) = 4.15. 

  For ion B, the left and right sum is: 

  a( ) logB ª - + - +Ê
ËÁ

ˆ
¯̃

=2 1 1
2

1
3

1
4

1
5

2 2

	 	 a(B) = 1.386.
 (c) In the isolated molecule BAB, the Madelung constants are 

aΜ(A) = 4 and aM(B) = 1.5, which are the asymptotic values 
obtained when the molecules are separated from each other. 

  Starting from these molecules, it is logical to find that a(A)	
increases when the second nearest neighbors with opposite 
sign approaches whereas a(B) decreases as the repulsion 
acting on an ion of the same sign becomes closer. 

  The sum aΜ(A) + 2a(B)	is equal to 6.556 in (a) whereas it was 
6.922 in (b). It approaches the asymptotic value of 7 as the 
molecules are pulled further apart. We can take that difference 
between 7 and this sum as a measure of the cohesive energy 
of the crystal and thus see that such a crystal will have the 
tendency to dissociate to create additional bonds (such as 
hydrogen bonds in H O2

2+ - , for example). At minimum we 
would expect that the bonds A–B be shorter than the bonds 
B–B. 

Exercise 3: Cohesive energy of an aggregate of ions

Consider that an aggregate of NaCl forms a cube of side equals to a/2 
of the full fcc lattice, see Fig. 4. 
 Assume that the cohesion energy of an ion corresponds to 
the sum of the attractive Coulomb potential energy of form V1 = 
–aq2/4πe0r and the repulsive potential energy (related to the overlap 
of the electron clouds between nearest neighbors) of form V2 = zA/rp 
(where A and p are constants). 
 (a) Compare the cohesive energy of an ion in this aggregate U(ag) 

and the equilibrium distance which separates two consecutive 
ions r0(ag) to those corresponding to a diatomic molecule 
V(m) and r0( m) and those of a bulk crystal U(c) and r0(c).
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  Express the results in the form of ratios such as [r0(ag)/r0(c)] 
to emphasize the influence of the Madelung constant and the 
number z of neighbors. How the results change with the size 
of the aggregate? 

 (b) Give the numerical values of r0(ag) and U(ag) taking p = 
9 for all cases with r0(c) = 2.814 Å and a(c)=1.747, U(c) =  
–3.95 eV/ion. Evaluate r0(m) and compare with the 
experimental result r(m) = 2.51 Å. 

  Note: The cohesive energy also includes the ionization energy 
of the species but this term is the same for the three types 
of NaCl considered here and then it is not involved in the 
calculations of r0. 

a

Figure 4

Solution: 

 (1) The Madelung constant will be the same for each of the eight 
ions of the aggregate thus the repulsive potential energy is 
only felt by the z (= 3) first neighbors. 

  a( ) ( / ) ( / ) .ag = - + =3 3 2 1 3 1 456
 The cohesive energy of an ion of the aggregate is 

 U
q

z A r p( ) ( ) ( ) /ag ag ag= - +
2

04pe
a

 The energy of an ion located in the bulk crystal will be described 
by a similar expression with the substitution of a(ag) by a(c) and 
z(ag) by six (for the six nearest neighbors). In addition for the ion 
energy in a molecule a = 1 and z = 1.
 At equilibrium, ∂ ∂ =U r/ 0 one obtains

 r q pzA p
0

2
0

1
14= -[ / ]( )a pe  (1)
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 After substituting it into the equation for U one obtains:

 U q r
p

= -( / )( )a pe2
0 04 1 1  (2)

 This expression applies to all ionic crystals (in the limit that the 
expression for U is applicable) with the appropriate choice of a and 
r0. We thus have

 r r c c z zp p
0 0

1
1

1
1( )/ ( ) [ ( )/ ( )] [ ( )/ ( )]ag ag c ag= - -a a

	 Numerically we find r r c0 0 0 938( )/ ( ) .ag =  and r m r c0 0 0 857( )/ ( ) .= ,  
which results in r0 = 2.412 Å. Compared to the experimental value, 
r = 2.51 Å, this result is satisfying and could be improved by  
including the kinetic energy of ions: 

 U U c0 0 0 888( )/ ( ) .ag = , which gives U0 3 5( ) . /ag  eV ion= - .

 The calculation of the cohesive energy of an ion in the molecule 
is –2.6 eV, which is compatible with the result of a more detailed 
analysis (–3.47 eV/molecule by taking into account the formation 
energy of the ions which is UF = 1.43 eV).
 It is coherent to find that the cohesion energy of an ion in an 
aggregate is smaller than that of the ion in a crystal, otherwise the 
crystal would spontaneously form aggregates. It is also greater than 
that of a single molecule. The size effect is in fact more important 
in the cohesive energy than in the inter-ionic distance, because of 
the direct influence of a, compared to the inter-ionic distance where 
the exponent ~1/8 in Eq. 1 reduces its importance. When the size of 
the aggregate increases, the values of r0(ag) and U0(ag) move closer 
to that of the crystal. However, the calculation becomes more difficult 
when neither a nor the number first nearest neighbors is the same 
for all of the ions in the aggregate (see Ex. 5).

Exercise 4: Madelung constant of a 2D ionic lattice

Consider a lattice in 2D in which the ions +q and –q are distributed 
in the same manner as on the face of a (100) NaCl structure (see 
Chapter I, Fig. 3e).

 (a) Sketch the distribution of ions. Determine the Madelung 
constant, a(2d) of such a lattice using a direct method in 



128 Crystal Binding and Elastic Constants

adding contributions of successive neighbors up to the 7th. 
Comment on the convergence of the series.

 (b) Evaluate a(2d) using the Evjen method. This method consists 
of determining the contributions of ion fractions contained 
in each successive square in 2d (cubes in 3d) where the 
reference ion is placed in the center. Stop the summation when 
the precision of a reaches 10–2. Comment on why the Evjen 
method allows a faster convergence than the direct method. 

 (c) Include the repulsive energy between two nearest neighbor 
ions of the form Ar–p. Determine the distance r0 that separates 
the ions in equilibrium. 

 (d) Noting r0(3d) as the distance separating the two nearest 
neighbors in a cubic structure of type NaCl, find the value of 
the ratio r0(2d)/r0(3d) with a(NaCl) ≈ 1.75 and assuming 
that the constant A and the exponent p are the same for the 
two types of structures (p ≈ 9). Find the ratio Up(2d)/Up(3d) 
between the two total potential energies. 

  Summarize these results in showing the curves of Up (2d) and 
Up (3d) as a function of r and comment on the result. 

Solution:

1
4

1
2

3
4

1
4

1
2

1
4

3
4

1
2

1
4

--

1
2

1
2

– – –

–

–––

-

–

-

- -

--

Figure 5

 (a) Using the central ion (–) as the origin and noting r0 as the 
distance separating two nearest neighbor ions (Fig. 5), the 
attractive potential energy has the form:
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  U q rp attr( ) /= -a pe2
0 04  

  witha = - - + - + - +4 4 2 4 2 8 5 4 8 4 3 8 10( / ) ( / ) ( / ) ( / ) / ( / )  
  in which the contributions have been classed by increasing 

distances (first neighbors, second neighbors, etc.)
  It is clear that this series does not converge simply because 

the three first neighbors lead to a negative value of a (e.g., 
repulsion) and even the weight of the seventh neighbor 
(–2.53) is similar to that of the sixth preceding it (+2.75). 

 (b) Following the Evjen method, we obtain for the first square:
  a1 4 2 4 4 2 1 293= - =( / ) ( / ) .
  The contribution a2 for charges between the second square 

and the first square is:
  a2 4 2 3 2 1 4 5 1 8 0 314= - - + - =( / ) ( / ) ( / ) ( / ) .
  Finally, the contribution a3 for charges between the third 

square (not shown) and the second is: 

  

a3
3

1 4 5 3 8 2 3 4 10 4 13

1 18 3 6 10

= - + - + - +

- = ¥ -

( / ) ( / ) ( / ) ( / ) ( / )

( / ) .
  From this we find a = a1 + a2 + a3 ≈ 1.61.
  Even though we are considering the same summation as in 

(a), it is done in a different manner. This method leads to a 
faster convergence because the algebraic sum of charges 
contained between successive squares is zero and the polar 
contributions in r–1 are zero to first order with the exception 
of the first square. Therefore only dipolar contributions of 
order r–2, associated with alternate dipoles, are present. 

 (c) Calling z the number of first neighbors, the repulsive energy of 
2N ions in the lattice is N U r zNAr p( ) = - .

  Their attractive Coulomb energy is -N q ra pe2
04/ .

  Thus the total potential energy of an ion is given by 

  U zA r q rp
p = - ◊[( / )] ( / ) ( / )]a pe4 0

2

  In equilibrium we have ∂
∂

Ê
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ˆ
¯̃

=
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U
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 We find that the lattice parameter in an ionic plane is 4% smaller 
than that of the same crystal in 3D. 
 If we replace A by A q r pzp= ◊ -( / ) ( / )a pe2

0 0
14  in the formula for 

the total energy Up we find 

 U r q r pp( ) ( / )[( / ) ]0
2

0 04 1 1= -a pe

 The ratio of energies is thus 
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Figure 6

 The cohesive energy of the lattice plane will thus be smaller by 
4% than the 3D crystal lattice. 
 These results show that in equilibrium the attractive Coulomb 
energy contributes nearly 90% (ratio 1 – p–1 instead of 1) to the total 
energy in both 2D and 3D. If the total energy is logically smaller in 
2D compared to 3D, their only slight difference is due to the different 
Madelung constants. In addition, the 2D lattice is smaller than that in 
3D due to the smaller number of neighbors (four as compared with 
six) which proportionately reduces the repulsive energy. 

Exercise 5: Madelung constant of ions on a surface, an edge, 
and a corner

In a cubic ionic crystal of NaCl type we consider an ion situated 
successively on: (A) the surface of the lattice but far from the edges 
of the finite crystal, (B) on the edge of the straight dihedral formed 
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by two equivalent surfaces and (C) on the corner situated at the 
intersection of three faces (see Fig. 7). 
 Give the expression of the corresponding Madelung constants 
noted as	a(s), a(e), and a(c) as a function of the Madelung constants, 
a1,	a2,	a3 in 1D, 2D, and 3D, respectively, having ionic distributions 
analogous to that in a row, 2D plane, and crystal. 
 What are the numerical values for the (100) face and its 
intersections with the (010) and (001) faces of NaCl with a3 = 1.747; 
a2 = 1.615; a1 = 1.386.

 

C

A

B

Figure 7

Solution:

When the ion is centered on the surface its Madelung constant is
 a a a( )s = +2 ¢ witha a a3 2 2= + ¢ where a¢ is given by the 
contribution of continuous half-space in the plane containing the 
reference ion. We thus have:

 a a a( ) ( )/ .s = + =2 3 2 1 681

 When the ion is centered on an edge, a(e) is given by: a(e) = a2 + 
a¢¢ where a¢¢ is the contribution of ions in the interior of the dihedral 
but excluding those which are situated on the two adjacent faces.
 For the entire crystal one has: a3 = 4a¢¢ + 2a2 – a1.
 Therefore a(e) = (a1 + 2a2 + a3)/4 = 1.591.
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a

a

aS

a¢¢

a
}

Figure 8

 The Madelung constant of an ion situated at the intersection of 
three orthogonal planes a(c) is related to a(e) by a(e) = 2a(c) – a	¢¢¢ 
where a	¢¢¢ is the contribution of a quarter of the perpendicular plane 
of the dihedral that cuts through the reference ion: a	¢¢¢ = +a a2 14 2/ /
 In total we have

 a
a a a

( ) .c =
3 + +

=1 2 33
8

1 344.

Note: This type of calculation can be used to determine the 
energy necessary to cleave an ionic crystal following the different 
crystallographic planes. It also can be used to evaluate the decrease 
of the cohesive energy of an ion (and the increase of its reactivity) as 
it move away from the crystal. Note also that the Madelung constant 
involves e◊	er with a relative dielectric constant	er ~ 80 for ions into 
water leading to the decrease of the attractive energy in proportion 
and thus facilitating their dissolution. 

Exercise 6: Madelung constant of an ion on top of a crystal 
surface

 Figure 9 shows ions +q located above a crystalline surface A, 
along a step B and along a discontinuity C but always far from the 
edges.

 (1) Find the corresponding Madelung constants a(A), a(B), and 
a(C) as a function of their value in a row, in a 2D plane and in 
a 3D crystal, denoted as a1, a2, a3. The nearest neighbors of 
the ion +q have the opposite sign of the ion so that the system 
is electrically neutral. Assume that the ion has come from the 
interior of a crystal where it has left a vacancy. 

  Calculate the results for a (100) face of NaCl with a3 = 1.747, 
a2 = 1.615, a1 = 1.386.
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 (2) Taking the repulsive potential between two nearest neighbor 
ions to be of the form U2 = Ar-p (where p = 9), find the cohesive 
energy of the ion A above the surface and compare it to that 
of an ion placed at the center of a 3D crystal U(c). Find the 
ratio between the distance between the ion A at equilibrium 
and the surface, rA compared to the distance a/2 between two 
neighbor ions in the crystal. 

  U(c) = –3.95 eV/ion and a/2 = 2.814 Å
  Ion A is moved from its equilibrium position by a displace u 

normal to the surface such that u << rA. Show that it feels a 
restoring force of the form F = −bu and find the expression 
for b. Determine the frequency v0 of vibration of this ion, 
assuming for simplification that the surface ion to which it is 
attached is fixed. 

  Use M(Na) = 23 g for 6.02 ¥ 1023 atoms. Comment the best 
choice of temperatures to use for epitaxy.

  

A

C B

Figure 9

Solution:

 (1) The evaluation is easiest to determine in the reverse order: 
  For symmetry reasons it is easy to see that: a a( ) /C = 3 2

  
a a a a a
a a a a a a

( ) ( ) / ( )/
( ) ( ) / / ( )/
B C
A B

= - = -
= - + = -

1 3 1

2 1 3 2

2 2
2 2 2

  We may verify this last result evaluating the Madelung 
constant of an ion included on the surface, denoted a(s), see 
Ex. 5, to which one must subtract the contribution a2:
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  a a a( ) . ; ( ) . ; ( ) .C B A= = =0 8735 0 1805 0 066.
  Following the procedure in Ex. 3 [see Eqs. (1) and (2)], we find
  U q r p( ) [ ( ) / ][ / ]A A= -a pe2

0 04 1 1
  and
  r q r pA A= -[ ( ) / ][ / ]a pe2

0 04 1 1
  because here z = 1. 

  r
a

A
A/ ( )

.
/

2 6
1 203

1 8

=
È

Î
Í

˘

˚
˙ @

a
a

and U
U

( )
( )

. %A
C

= 3 2

  U(A) = 122 meV and rA = 3.39 Å
  The restoring force is 
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  where z = rA + u and F(rA) = 0.

  F u= -b with b a
pe

= -q
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  With each particular value of a, the vibration frequency 
of the ion depends on the site (A, B, or C) that it occupies. 
This vibration frequency is experimentally accessible by 
spectroscopy of low-energy electrons. 

Comments: Epitaxy

An epitaxial deposition on a single crystal surface is operated 
generally under high vacuum conditions. If the temperature of 
the single crystal substrate is too low, the deposited atoms will be 
distributed randomly on the surface as a function of their point of 
impact. The crystallization seeds will thus create a polycrystalline 
coating. If the temperature of the substrate is too high, the atoms such 
as A that are very weakly bounded to the surface will re-evaporate. 
The best strategy consists in choosing intermediate temperature to 
facilitate a surface diffusion of the deposited atoms in such a way 
that those on sites A can move towards B and next C where their 
cohesive energy is larger. Favorable conditions for epitaxy, that is 
mono-crystalline growth, are found if the flux of incident atoms is 
optimized and in the case of hetero-epitaxy, especially if the natural 
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lattice parameter of the deposition matches that of the substrate (see 
Chapter I, Pb. 4, and in particular Fig. 50 and related comments).
 Beside this specific calculation which concerns ionic crystals, the 
considerations above are very general and it is particularly obvious 
that the atomic bonds on the sites such as C, with two neighbors, will 
be stronger than those on sites such as A. One can thus ‘decorate’ the 
crystalline steps of a surface by a simple vaporization of Au atoms 
(see Y. Quéré, 21, p. 143.) 
 In the specific case of the alkali halides, the fact that the 
Madelung constant of the surface ions is less than unity implies 
that ions of opposite signs deposited simultaneously tend to form 
molecules (where a = 1) rather than remaining on their initial 
sites. The diffusion of molecules toward discontinuities assures 
the homoepitaxy. The present exercise allows the evaluation of the 
Madelung constant and of the cohesion energy of the molecules of 
the NaCl type on surfaces. 

Exercise 7: Madelung constant of parallel ionic layers

 (1) One considers two ionic monolayers, P1 and P2, parallel to 
each other. In a layer the ion arrangement is that of the (100) 
face of a NaCl crystal and each ion of the first layer is straight 
above the ion of opposite sign in the second layer. The distance 
between the two is a/2 (see Fig. 10). Find the Madelung 
constant of an ion in P1. Use the Evjen method two times to 
find the contribution of the plane containing the ion, a(P1), 
and then of the adjacent plane, a(P2). 

 (2) Same question when three consecutive planes are considered 
in distinguishing two possibilities: an ion placed on the middle 
plane	a(M) and ion placed on an exterior plane a(E). Describe 
qualitatively the changes in a(M) and	a(E) with the increases 
of the number of ionic monolayers.

  Note: The Madelung constant of an ion in the center of a face is 
a(f) = 1.681 as compared a(v) = 1.747 when it is in an infinite 
crystal (see Ex. 4). 

 (3) For a semi-infinite crystal determine how a changes when 
the reference ion is on the surface (first layer) and then on 
subsequent layers (the second, third, etc.) of the crystal. 
Suggest an explanation for the surface relaxation (in-depth 
variation of the monolayer spacing) in NaCl.
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Figure 10

Solution:

 (1) The contribution to the crystalline plane P1 containing the ion 
was discussed already in Ex. 4. Limited to the first two squares 
this contribution is

  a( ) .P1 4 4
2

4
2 2

8
2 5

4
4 8

1 607= - -
◊

+ - =

  The contribution of the homologous ions in the plane P2 
appears as a change in sign and a unitary increase of the 
measured distance in z:

  a( ) ( )P2
4
2

4
3

4
2 5

8
2 6

4
4 9

1= - + + - + +

  The addition of +1 takes into account the ion of opposite sign 
straight below the reference ion to obtain a global neutrality 
of the charges. 

	 	 a(P) = 0.076 or a = 1.683 
 (2) a(M) = a(P1) + 2a(P2) =1.759
  To evaluate a(E) one must include the contribution from the 

third plane following an analogous procedure used for a(P2):

  a( )P3
34

5
4
6

4
2 8

8
2 9

4
4 12

1
2

7 10= + - - + - -Ê
ËÁ

ˆ
¯̃

= - ¥ -

  a a a a( ) ( ) ( ) ( ) .E P P P= + + =1 2 3 1 676
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  when there are four layers and the reference ion is found in 
the two intermediate layers, its Madelung constant will be 
such that

  a a a( ) ( ) ( ) ( ) . .M P P P= + + =1 2 32 1 752
  This constant becomes smaller for N = 5 because in addition 

to the two negative contributions of the external planes of 
type P3: a(M) = a(P1) + 2a(P2)+ 2a(P3) = 1.745.

  The general tendency is shown in Fig. 11. The contribution 
of every even neighboring planes (second, fourth, sixth, etc.) 
is negative because the most strongly effect of the equivalent 
ion of the same sign as the reference ion. But the effect of 
successive planes, regardless of whether their contribution 
is positive or negative, decreases very quickly as distance 
increases. The asymptotic value a(s) for ions in E and a(v) for 
ions in M are practically reached for the first layers (N = 3, 4, 
5), depending on the desired precision. On must nevertheless, 
note that the Madelung constant of an ion in a double layer (a 
= 1.681), as well as that located in the intermediate plane of a 
triple layer (a ~ 1.759) is greater than that in the bulk crystal 
[a(v) = 1.747].
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1.7

1.8

a(s)

M
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a(s)
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N
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Figure 11

 (3) Starting from the surface (N = 1), we find successively: 

  a a a a a
a a a

( ) ( ) . ; ( ) ( ) ( ) . ;
( ) ( ) (
N N

N

= = = = = + =
= = +

1 1 681 2 1 757
3

2

2

s s P
s P )) ( ) . .+ =a P3 1 750
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 The corresponding evolution is represented by dashed lines in 
Fig. 11 with the analogous remarks to those in the preceding section: 
the rapid change from a(s) to a(v) where the value of a	exceeds that 
of a(v) for the nearest layer situated above the surface layer. 

Comment

The significant variation of a associated with changing number of 
nearest neighbors (from five to six) when considering the surface 
of an ionic layer and that of the next one, suggests the existence of 
surface constraints when assuming that the ions occupy ideal sites 
of the 3D crystal because these sites do not strictly correspond to the 
minimum of potential energy. 
 Even though the calculation of the exact configuration taken 
at equilibrium is complex (the existence of the surface imposes a 
different calculation for the displacements parallel or perpendicular 
to the surface), one can nevertheless consider that the top surface 
layer is going to move slightly from its ideal position (when a	
decreases, r0 increases) and thus give rise to a tetragonal type 
first layer (where a = b and c > a) so that the surface tension is 
relaxed. Other configurations are possible also, such as the surface 
reconstructions see Chapter I, Pb. 4, Fig. 49. 
 The above considerations may be applied to other types of 
crystals. If these perturbations affect only the first few atomic 
layers they can still greatly influence the physical properties of the 
materials (such as their catalytic activity for instance.)

Exercise 8: Cohesive energy of a MgO crystal

The crystalline structure of MgO is identical to that of NaCl (fcc with 
an ion at 0 0 0 and one of opposite sign at ½ 0 0) but the charge 
carried by each ion is +2q, where q is the electronic charge. Find the 
Madelung constant of an ion 2q and its cohesive energy U0, which is 
the sum of the Coulomb attractive energy and the repulsive energy 
between two nearest neighbors of the form Ar–p. Find the expected 
ratio between these parameters and those of NaCl assuming that A 
takes the same value in both crystals. 
 Give the numerical values with: 

a( ) . ; ( ) . ; ( ) ( ) .NaCl NaCl Å NaCl eV/mol= = = -1 747 5 63 7 90a U and p = 9.

 From X-ray diffraction, a0 (MgO) is found to be 4.21 Å.
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Solution:

By convention here a is the coefficient in the quantity q2/4πe0r in 
the expression of the attractive potential energy of ions. Since the 
ions have a double charge (Mg2+O2–), the Madelung constant will be 
four times that of NaCl which consists of ions with a single charge 
(see Ex. 2 and comments at the end of this exercise):

 a a( ) ( )MgO NaCl= 4

 Using equations (1) and (2) of Ex. 3, we find 

 a a p
0 0MgO NaCl NaCl MgO( )/ ( ) [ ( )/ ( )]= -a a

1
1

and

 U U a a( )/ ( ) [ ( )/ ( )][ ( )/ ( )]MgO NaCl MgO NaCl NaCl MgO0 0= a a

 Numerically one obtains

 a a0 0MgO NaCl( )/ ( ) .= 0 841 and U U( )/ ( ) .MgO NaCl = 4 76

which corresponds to

 U0 MgO  eV mole( ) . /= -37 5 cule.

 The expected lattice parameter would be a0(MgO) = 4.73 Å; a 
value relatively far off from the real value of a0(= 4.21 Å) because of 
the difference of the ionic radius (see next exercise) but the general 
tendency is correct due to the contraction of the lattice when the 
ions increase in charge.

Comments

Despite the obvious simplifications this exercise shows relatively 
well the influence of charge ions on inter-ionic distances, which 
decrease when the charges increase, and also on the cohesive energy 
which increases in proportion to the product of the charges carried 
by each ion species. This exercise explains how crystals of type MX2 

(where M is a divalent metal and X is a halogen) can have values of a	
greater than four (see Ex. 2b).
 In this exercise the numerical values of the cohesion energy (–37.5 
eV/molecule) is remarkably close to the generally accepted value 
(–40.8 eV/molecule; see Ref. [18]) even though the accepted value 
for p (which describes the interionic repulsion at short distances: 
Lennard-Jones) would be 4.82. 
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 Finally, the interested reader may try doing the exercises in this 
chapter that use parameters of NaCl using MgO instead. For certain 
systems (such as a homogenous chain or cubic aggregates), one can 
compare the results obtained to those of Moukouri and Noguera (Z. 
Phys. D 24, 1992, p. 71). 

Exercise 9: Ionic radii and the stability of crystals

In the alkali halides one can assume that the ions are hard spheres of 
radius r+ (cation) and r– (anion). 
 (a) What inequality should the ratio r–/r+ satisfy so that in a simple 

cubic structure of CsCl type (see Fig. 3a in Chapter I, Ex. 1) 
the + and – ions are in contact along the diagonal without the 
overlapping of the largest ions of the same sign at the corners 
of the cube? What is the optimal packing parameter, t? 

 (b) What inequality should the ratio r–/r+ satisfy so that in a fcc 
lattice of the NaCl type (Fig. 3e, Chapter I, Ex. 1) the ions of 
opposite signs located along the [100] rows are in contact 
without the overlap of the biggest ions of the same sign 
located along the [110] rows? What is the optimal packing 
parameter?

 (c) Suppose that CsCl can crystallize in either a simple cubic 
lattice either or a fcc lattice. For both hypotheses, find the 
distance r0 between nearest neighbors of opposite signs, the 
lattice parameter a of the cube and the corresponding packing 
parameter. Same question for NaCl. Comment on the results. 

  Use r+ (Na+) = 0.98 Å; r+ (Cs+) = 1.67 Å; r– (Cl–) = 1.81 Å. 
 (d) In the alkali halides the cohesive energy Ec can be approximately 

described by (see Course Summary in Chapter I, Section 3):

  E e r
rc 0 0= -

Ê
ËÁ

ˆ
¯̃

( / )a pe r2

0
4 1 , where a is the Madelung constant 

and r	= 0.345 Å.
  For CsCl, find the value of the ratio of cohesive energies,  

Ec(sc)/Ec (fcc), for the two hypotheses considered in (c).
  Same question for NaCl, a (sc) = 1.7626; a(fcc) = 1.7476.

Solution: 

 (a) 2 3( )r r a+ -+ =  and 2 2r r a+ - £, .
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  Thus 3 1 0 732 1
3 1

1 366- = £ £
-

=-

+
. .r

r

  t
r r

r r
p p=

+
+

= ◊ - ++ -

+ -

( / )( )
( / )( )

[ /( ) ]4 3
8 3 3

3
2

1 3 1
3 3

3
2p p  with p

r
r

= -

+

 ∑ t is minimal when r– = r+. It takes the value tm = p 3
8

0 68= . ,  

corresponding to a bcc lattice (see Chapter I, Ex. 9). It is 
maximal for the limiting values of p so that: 

  tM = - =p[ ( / )] .3 3 2 0 729

 (b) 2 4 4 2( ) ,r r a r r a+ - + -+ = £and which leads to  
2 1 0 414 1 2 1 2 414- = £ £ - =- +. / /( ) .r r  

t r r r r p p= + + = - ++ - + -( / )( / )( )/( ) [ /( ) ]1 2 4 3 2
3

1 3 13 3 3 2p p

 ∑ t is minimal for r+ = r– where it is tm = =p
6

0 524.
  This minimal value corresponds to a simple cubic lattice 

(see Chapter I, Ex. 9a). 
  It is maximal for the limiting values of p so that tM = 

0.793. 

 (c) ∑ r

r

( )
( )

.Cl
Cs

-

+ = 1 08

  CsCl must obey the two inequalities in (a) and (b). It can 
crystallize in the two lattices with the overlap of the nearest 
neighbors of opposite signs which leads to

  r r r0 3 48= + =-
-

+( ) ( ) .Cl Cs  Å+ and 

a a= =4 02 6 96. ( ) . ( ); Å sc or  Å fcc  t
t

( )
( )

.sc
fcc

= ª3 3
4

1 30

 ∑ r

r

( )
( )

.Cl
Na

-

+ ª 1 85 

  NaCl obeys the inequality in (b) but not that in (a). When 
crystallized in a simple cubic system, the neighboring ions of 
opposite sign cannot be in contact and the lattice parameter 
will be determined by the contact of the Cl– ions (the largest 
ones) along the rows [100]: 
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  sc: a = 2r– = 3.62 Å, r0 = a 2 /2 = 3.14 Å, t = 0.606
  fcc: a0 = 5.58 Å, r0 = 2.79 Å, t = 0.662
  which results in

  t
t

( )
( )

.sc
fcc

= 0 915

  Remark: Under the action of Coulomb forces, ions of opposite 
signs tend to move nearer to each other and the most stable 
equilibrium corresponds to the most compact configuration 
taking into account the ion volume. From this simple model, 
one can therefore predict that NaCl will crystallize in a fcc 
lattice and that CsCl will crystallize in a simple cubic lattice.

 (d) For CsCl, r0 is the same for the two structures so the ratio of 
cohesion energy is directly related to the ratio of the Madelung 
constants: 

  E
E

( )
( )

.sc
fcc

= 1 0086

  For NaCl on the other hand we find:

  E
E

r

r

r
r

( )
( )

( )
( )

( )
( )

( )
( )

cs
fcc

sc
fcc

fcc
sc

sc
fcc
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-
-

=a
a

r
r

0
2

0
2

0

0
00 91.

Comments

One of the most important (and most difficult) problems in physics 
of crystals is the determination of the relative stability of different 
types of structures. If it is easy to determine that the most stable 
lattice is that which has the smallest free energy, its evaluation in the 
different situations is very delicate even for the alkali halides. The 
energy taken into account in the present exercise is valid at 0 K and 
in addition to the kinetic energy terms, it neglects corrections due to 
van der Waals bonds (see Pb. 3) which lead to uncertain results if the 
two possible structures are energetically very close to each other. 
 The approach to ionic radii is still rather coarse because the 
repulsive term due to the overlapping of electronic orbitals (in 
exp (–r/p) is based on a model of hard spheres. This explains the 
differences between the values of a thus calculated and those 
determined experimentally (CsCl : a = 4.11 Å, NaCl: a = 5.63 Å).
 Although schematic, this exercise gives nevertheless the correct 
reply to the following question: “Why does sodium chloride crystallize 
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in a face-centered cubic lattice when cesium chloride crystallizes 
in a simple cubic lattice?” We refer the reader to Ref. [25], Chapter 
2, p. 83 for further details on the physics of alkali halides and also 
the excellent article of J. C. Phillips (Rev. Mod. Phys. 42, 1970, p. 
317) on the “Spectroscopy theory of the chemical bond” relative to 
compounds of type ANB8–N. See also Ref. [12]. 

Exercise 10: Lennard-Jones potential of rare gas crystals

The potential energy of attraction between two atoms of rare gas 
separated by a distance r is of the form A/r6, van der Waals attraction, 
and the repulsive energy due to the overlapping of electronic orbitals 
is of the form B/r12. The Lennard-Jones potential is of the form: 

 U
r r

= Ê
ËÁ

ˆ
¯̃

- Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

4
12 6

e s s

 (a) Show that one can express A and B as a function of e and s so 
that these expressions are equivalent.

 (b) Find the physical meaning of the parameters e and s by 
expressing the distance r0 separating two atoms in equilibrium 
as a function of s and by expressing the cohesive energy which 
results as a function of e.  

 (c) The Bravais lattice of rare gas crystals is fcc with lattice 
parameter a = 4.46 Å(Ne); a = 5.31 Å(Ar); a = 5.64 Å(Kr) and 
a = 6.13 Å(Xe). The respective cohesive energies are 20 meV 
(Ne), 80 meV (Ar), 116 meV (Xe). Find the values of s and e 
and state the relative errors of e that arise because second 
neighbors have been neglected. 

Solution:

 (a) B r A r r r/ / ( / ) ( / )12 6 12 12 6 64 4- = -es es so that B = 4es12 and  
A = 4es6.

 (b) ( / )∂ ∂ =U r r0 0, which results in 12 612 13 6 7s sr r0 0
- -= or 

r0 = =2 1 121 6/ .s s

  Ec = -È
ÎÍ

˘
˚̇

=4 1
4

1
2

e e

  The Lennard-Jones parameter e has the advantage of directly 
expressing the cohesive energy and s is proportional to the 
distance r0 at equilibrium. In addition Ec = 0 when r = s. 
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 (c) In fcc crystals r0 = a/ 2  = 1.12 s or s = 0.631a and each atom 
has 12 nearest neighbors. The cohesive energy of an atom in 
the crystal is thus 6e because the Lennard-Jones formula is 
in fact the mutual energy between two atoms, thus the factor 
N/2, and not the factor N for the cohesive energy of N atoms 
(see Course Summary). We find the following table:

Ne Ar Kr Xe
s(Å) 2.81 3.35 3.56 3.87
e(meV) 3.33 13.33 19.33 28.33

  The number of second neighbors is six at a distance a. 
  The relative error of e (and Ec) essentially involves the r6 term 

and its weight is 1/24 ≈ 6%.
  For more details see Pb. 2. 

Exercise 11: Chemisorption on a metallic surface

Under certain conditions the binding energy of an atom on the 
surface of a metal (essentially transition metals) may take the form: 

 E zAe zBepr qr
L = -- -

in which the first terms describes repulsion (of the Born–Mayer 
type) due to the overlapping of electronic orbitals and the second 
term is related to interatomic attraction (in the tight-binding ap-
proximation); z is the number of nearest neighbors (or coordination 
number) between the adsorbed atom and the atoms of the substrate. 
The parameters A, B, p, and q are positive. 
 (1) What inequality between the exponents p and q must hold so 

that the adsorbed atom can take a stable equilibrium position 
r0 with respect to its z neighbors. Find an expression for the 
equilibrium distance r0 as a function of p, q, A, B, and z. 

 (2) Show that the binding energy EL can take the form EL = Cza. 
Find explicitly the range of variation of the exponent a when p 
varies between 2q and 4q. 

  Assume that the nature of the atom is such that p = 4q and that 
the bond energy is ~7 eV when it occupies the most stable site 
on the (100) face of a bcc metal. Find the atomic distribution 
on the (100) and (110) faces of this metal. Determine the most 
favorable site (point C). Also find other possible sites and the 
associated binding energies. 
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 (3) In the hypothesis that p = 2q, indicate if there is preferred site 
and if so, which one? 

 (4) Determine the angular vibration w of the ad-atom on the 
surface as a function of its equilibrium bond energy EL (r0), 
knowing that the force constant b is such that 

  b =
Ê

ËÁ
ˆ

¯̃ =

d E

dr
r r

2

2
0

  Using EL = 7 eV, p = 8 Å = 4q, find the energy of the quantum 
vibration ħw for an oxygen atom (A = 16). (ħ, N)

Solution:

 (1) The equilibrium condition is obtained by evaluating dEL/dr  
which must vanish at a distance r0 positive. In addition 
( / )d E dr r r

2 2
0L =  must be positive in order for the equilibrium 

to be stable.
  One obtains successively: 
  zpAe zqBepr qr- -=0 0 which leads to e z

pA
qB

p q r( )- =0  from 

which we find r
p q

z
pA
qB0

1 1
2

=
-

+
Ê
ËÁ

ˆ
¯̃

log log . 

  The condition on the second derivative implies p – q > 0. The 
inequalities that must be satisfied are thus p > q and pA > qB 
(when z = 1). The equilibrium distance r0 increases as the co 
ordinance number z. 

 (2) Regrouping terms in the expression for EL we find 

  E r z
q
p

Be qr
L 0

0( ) = -
Ê
ËÁ

ˆ
¯̃

-1 or E r z
p
q

AeL
pr( )0 1 0= -

Ê
ËÁ

ˆ
¯̃

- .

  Taking the logarithm of one of these two expressions and 
using the expression for r0, one finds

  l l l lL 0og ( )
( )

og og ogE r
p q

p q
z B

q p
p

q
p q

pA
qB

= -
-

+ -Ê
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¯̃

-
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2
2

  Thus EL is of the form EL = Cza with

  a = -
-

p q
p q

2
2( )

and C B
q
p

pA
qB

q
q p

= -
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ˆ
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-
1

  When p = 2q, a = 0 and EL = C¢.
  When p = 4q, a = 1/3 and EL = C¢¢z1/3.
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 (3) In the hypothesis where p = 4q, a	=	1/3 and the binding energy 
increases when the coordination increases. On the (100) face 
it will be maximal at the point C where z = 4. 

B1

B2

A
T

(110)

B

A

C

(100)
Figure 12

  As shown in Fig. 12, the other possible sites are found at 
points such that B (z = 2) and A (z = 1). On the (110) face the 
most stable site is in T (z = 3). The points B1 and B2 are the 
equivalent of point B on the (100) face.

  The binding energies vary as z1/3 so that one easily obtains 
C¢¢~ 4.4 eV; EL(C) = 7 eV; EL(T) = 6.35 eV; EL(B) = 5.55 eV;  
EL(A) = 4.4 eV.

  If the binding energy increases with the coordination number 
z, this increase is relatively weak. The good part is, when p = 
2q, one has a = 0. This means that the position of the atom is 
indifferent since its binding energy is independent of z. 

 (4) w	=	 b
m

	with b =
Ê

ËÁ
ˆ

¯̃ =

d E

dr
r r

2

2
0

or b = - = -( )p q zqBe qr0,

  taking into account EL(r0), b = –pqEL(r0). The vibration 
frequency of the adsorbed atom will vary as E rL( )0 or as 
za/2 . This frequency depends therefore on the site chosen by 
this atom if p > 2q (see Ex. 6). 

	 	 b is, of course, positive because EL is negative if one takes the 
origin of energies to be r = ∞. 

	 	 b	=	18	Ν/m; w	=	2.6	¥	1013 rad/sec; ħw = 17 meV. 

Comments: Physi- and chemisorption; atom manipulation

When a polarized atom is located in a vacuum e0	near the surface its 
equivalent dipole is subject to the action of its dipolar image which 
will be attractive regardless of whether the surface is metallic or 
insulating. But in the latter case the attraction will be smaller. 
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 Effectively, to a real charge q set in the vacuum in front of a 
semi-infinite medium, it corresponds an image charge Kq, where K 
= (e0 – e)/(e0 + e), that is, symmetrically located into the medium of 
dielectric constant e (Fig. 13a). For a metal, e = ∞ and K = –1. For an 
insulator, e0 < e < ∞, K < 0 with |K| < 1.
 An adsorbed atom on a surface is subjected to physisorption 
(or physical adsorption) when it does not exchange electrons (e.g., 
if it does not form a chemical bond) with the substrate. Its binding 
energy, of van der Waals type, is weak and the distance r0 of the 
atom–substrate is relatively large. An example is the condensation 
of rare gases on graphite surfaces. From a theoretical point of view, 
weak coupling between the atom and the substrate occurs when the 
electronic states of each partner (discrete level and band) will not be 
disturbed by one another. It is this hypothesis on which the present 
exercise is based and which concerns the absorption of metallic 
atoms on a metal. 

P

+q –q
e

0

e
1

e
0

+q –q
P

insulator

K P

metal

–EL

0
r0

r 0¢

physisorption

–q +q
P

� �K q K q
chemisorption

	 	 	 (a)     (b)
Figure 13

 In chemisorption the electronic bonding atoms or molecules 
is changed and covalent or ionic bonds are formed from electron 
transfer of an electron (chemical bond. It results in a greater bond 
energy and a smaller distance r0 (see Fig. 13b). When the formation 
of a superficial molecule with the appearance of bonding and anti-
bonding states is considered the corresponding tight binding is more 
difficult to treat from a theoretical point of view.
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 From an experimental point of view, the occupied site of the ad-
atoms may be visualized from the use of scanning probe microscopes 
(SPM) such as a scanning tunneling microscope (STM; see Chapter 
IV, Pb. 5, for details). Another powerful STM capability is the ability 
to move atoms and molecules. This is achieved by placing the tip 
close enough to the surface adsorbate so that the tip-adsorbate 
attraction is comparable to the surface corrugation barrier. In this 
regime, the molecule will follow the tip wherever it is moved along 
the surface, see Fig. 13c. One can then retract the tip, without causing 
the molecule to desorb from the surface. A fair example of such atom 
manipulation is shown in Fig. 13d and the interested readers are 
referred to C. Julian Chen [29]. 

(c)

(d)
Figure 13

 The examination of the diffraction diagram in LEED is also 
possible when the observed structure is periodic. The energy of 
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quantum vibration of the ad-atom ħw can be deduced from a measure 
of the energy gain or loss when an electron beam of slow and very 
mono-energetic electrons (Ec ~ 5 eV). 
 For further details, see M. C. Desjonqueres and D. Spanjaard [26] 
and J. Phys. C., Solid State Physics 15, 1982, 4007, which provided the 
inspiration for this exercise as well as C. Noguera [18].

Exercise 12: Anisotropy of the thermal expansion of crystals

Aragonite is a calcium carbonate crystallized in an orthorhombic 
form (a ≠ b ≠ c and a = b = g	=	p/2). Its thermal expansion coefficient 
in volume, av, is 62 ¥ 10–6/°C. When the temperature of the crystal 
changes from 0°C to 100°C the angle d between the (100) and (110) 
planes decreases by 1¢14 and the angle e between the (001) and 
(011) planes increases by 2¢24. 
 Knowing the ratio of the crystalline parameters at 0°C is such 
that a/b = 0.6224 and c/b = 0.7206, find the value of the 3 linear 
coefficients of thermal expansion (aa, ab, ac) of the crystal. 

Solution:

Figure 14a shows the aragonite crystal before (solid line) and after 
(dashed line) expansion. After expansion the volume of the crystal is  
V + ∆V = a (1 + aa) ∙ b(1 + ab) ∙ c (1 + ac) or av =  D = ¥ = + +-V

V
62 10 6 a a aa b c

 

b

o a

µ

d D+ S

d

(a) (b)

c

a

b

Figure 14

 The angle d between planes (100) and (110) shown in Fig. 14b is 
at 0°C such that tand = a/b. At 100°C one has

 tan( )
( )
( )

d d
a
a

+ D =
+
+

a
b

1 100
1 100

a

b
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which after simplifying becomes

 a a d
a b- = +

Ê

ËÁ
ˆ

¯̃
= - ¥ -D

100
1 7 4 10

2

2
6

a
b

a

b
.

 In the same way we find that the angle e between planes (001) 
and (110) is such that tan = c/b from which

 a a e
c b- = +

Ê

ËÁ
ˆ

¯̃
= ¥ -D

100
1 17 4 10

2

2
6

c
b

c

b
.

 As a result we find

 a a aa b c= ¥ = ¥ = ¥- - -9 9 10 17 3 10 34 7 106 6 6. , . , .

Exercise 13: Tension and compression in an isotropic medium: 
relations between Sij, Cij, E (Young’s modulus) and s (Poisson 
coefficient), l and m (Lamé coefficients)

A bar of length l and cross section S is shaped out of a homogenous 
and isotropic solid. When the bar is submitted to a longitudinal force 
F along l, its length variation ∆l follows an algebraic variation of 
D Da
a

b
b

=  in each traversal dimension. 

 (a) Find the Young’s modulus E E
F
S

l
l

= ◊Ê
ËÁ

ˆ
¯̃D

 and the Poisson 

coefficient s s = -
Ê
ËÁ

ˆ
¯̃

D
D
a a
l l
/
/

 as a function of the elastic 

compliance coefficients Sij and alternatively in terms of the 
elastic stiffness coefficients Cij. 

  Starting from the expression: 

  F
S

V
V

l
l

= +l mD D2

  in which DV
V

 represents the relative variation of the volume 

of the bar when subject to the stress F
S

, find the Lamé 

coefficients l and m. 
 (b) The bar is now subject to a hydrostatic pressure ∆p which 

results in a volume variation of ∆V. What is the expression for 
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the coefficient of compressibility b = -
Ê
ËÁ

ˆ
¯̃

1
V

V
p

D
D

?

  Express the results as a function of (a) s and E, (b) Sij, (g) Cij, 
and (d) l and m. 

 (c) Numerical application: For aluminum C11 = 1.07 ¥ 1011 N/m2  
and C12 = 0.61 ¥ 1011 N/m2. What are the corresponding 
numerical values of E and s, l and m, and B?

Solution:

 (a) In the simple situation of an isotropic solid, the useful relations 
between the stress and strain reduce to

  

e
l

l
S

F
S

e
a

a
S

F
S

e
b

b
S

F
S

xx

yy

zz

= =

= =

= =

fi

D

D

D

11

12

12

1

2

3

( )

( )

( )

or equivalently: S
E11
1= and S

E12 = - s

  In terms of the elastic stiffness constants one obtains:

  ( '):

( ') ( '): ( )

1 2

2 3 0

11 12

12 11 12

F
S

C e C e

C e C C e

xx yy

xx yy

= +

= = + +
  or equivalently, 

E C C

C C C

= -
= - +

11 12

12 11 12

2
0

s
s( )

  The isotropy leads to eyy = ezz or C12 = C13 = C21 = C31. Then one 
obtains 

  E
S

C C C C
C C

S
S

C
C C

= =
- +

+
=

-
=

+
1 2

11

11 12 11 12

11 12

12

11

12

11 12

( )( ) ,s  

  and S C C
C C C C

S
C

C C C C11
11 12

11 12 11 12
12

12

11 12 11 122 2
=

+
- +

= -
- +( )( )

,
( )( )

.

  These results may be obtained directly by identifying term by 
term the matrix of Sij 

  
S S S

S S S

S S S

11 12 12

12 11 12

12 12 11

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
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  with the corresponding matrix 

  1
1

1
1

E

- -
- -
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

s s
s s
s s

with E and s. 

  The stress F
S

 results in a volume variation of 

D D D DV
V

l
l

a
a

b
b

e exx yy= + + = + 2 from which may be written as 

  F
S

V
V

l
l

e exx yy= + = + +l m m l lD D2 2 2( )

  Comparing this with the equality 1¢ above, one finds 

  l = C12 and m =
-C C11 12
2

  l s
s s

= = -
- +

=
+ -

C
S

S S S S
E12

12

11 12 11 122 1 1 2( )( ) ( )( )

  m
s

=
-

= ◊
-

= ◊
+

C C

S S
E11 12

2
1
2

1

11 12

1
2 1

 (b) Under hydrostatic pressure, the relative volume variation of 
the sample is subject to normal stress in three main directions. 
The results are multiplied by three compared to that above:

  D D D DV
V

l
l

a
a E

p= - +Ê
ËÁ

ˆ
¯̃

= - -3 2 3 1 2( )s

  (the negative sign comes from p F
S

= - ).	One also obtains

  b s
l m

= - = + =
+

=
+

3 1 2 3 2 3
2

3
3 211 12

11 12

( ) ( )
E

S S
C C

  The result b = 3(S11
 +	 2S12) could be obtained directly by 

observing that the volumetric change caused by the pressure 
corresponds to the addition term by term of the equalities 
(1), (2), and (3) for the tension exerted in each of the three 
directions. 
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 (c) The numerical values are

  
s

l m

= = ¥

= ¥ = ¥

0 363 0 627 10

0 609 10 0 23 10

11

11 1

. , .

. , .

 N/m  (Pa)

N/m  

2

2

E
11

111 31 10

N/m  (Pa)

m /N.

2

2b = ¥ -.

Exercise 14: Elastic anisotropy of hexagonal crystals

Using Cartesian co-ordinates Oxyz, one considers a homogenous 
hexagonal crystal, in the form of a rectangular parallelepiped, having 
its c-axis parallel to Oz as shown in Fig. 15. A tension Tz collinear to 
Oz is exerted normal to the face axb and parallel to xOy, the effect is a 
contraction of the lateral dimensions such that ∆a/a = ∆b/b. On the 
other hand, a tension Ty that is exerted normal to the face axc and 
parallel to xOz results in different relative contraction so that ∆a/a 
≠ ∆c/c. 

 

z
Tz

c

o b

a

Ty

x

y

Figure 15

 (a) In the Hooke’s approximation and taking into account 
the symmetries of the problem, find the table of elastic 
compliance constants Sij relating the stress components, eij, to 
the strain components, Xx, Yy, Zz, postulating that the Sij tensor 
is symmetric (Sij = Sji). 

 (b) Find the linear compressibility b^c and b||c of the sample 
in terms of Sij with a linear coefficient of compressibility of 

the form bl l
l
p

= -
Ê
ËÁ

ˆ
¯̃

1 D
D T

and with the volume coefficient of 

compressibility of the form: b = -
Ê
ËÁ

ˆ
¯̃

1
V

V
p

D
D T

.
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 Application: The compliance coefficients of zinc are S11 = 8.4;  
S12 = 1.1; S13 = –7.8; S33 = 28.7 (all units are in 10–12 m2/N). Find the 

numerical values of Young’s modulus E^c and E||c E
T
S

l
l

= ◊Ê
ËÁ

ˆ
¯̃D

 of the 

different Poisson coefficients s	 s = -
Ê
ËÁ

ˆ
¯̃

D
D

a a
c c
/
/

 and of the linear and 

volumetric compressibilities.

Solution:

 (a) The isotropy of the elastic properties in the xOy plane results 
in the Ox and Oy axes playing the same role so that S11 = S12 and 

S13 = S23. Thus under the single stress, T
ab

Zz
2 =  one obtains

  D Da
a

e S Z
b

b
e S Zxx z yy z= = = = =13 23 .

  When the same stress, T
b c

T

a c
Xx y

x◊
=

◊
= , is applied successively 

normal to the axc and next to bxc faces, the corresponding 
strain components are identical : exx = S11Xx = eyy = S22Yy. 

  The resulting symmetric tensor reduces to 

  
S S S

S S S

S S S

11 12 13

12 11 13

13 13 33

  It is completely determined from the knowledge of S11, S12, 
S13, and S33. 

 (b) When the sample is submitted to a hydrostatic pressure ∆p, 
the relative length change is

  D D D Da
a

S p S p S p= - - -11 12 13 .

  We thus find b^ = - = + + = -c
1 1

11 12 13a
a
p

S S S
b

b
p

D
D

D
D

 and 

b||c = - = +1 2 13 33c
c
p

S S
D
D

.

  In addition, the volume change is
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  D D DV
V

a
a

c
c

= +Ê
ËÁ

ˆ
¯̃

2

  and b = 2b^c + b||c  = 2S11 + 2S12 + 4S13 + S33

 (c) E
S

E
S||c

||c

N/m Pa N/m Pa= ∫ ¥ = = ¥

=

^
1 0 35 10 1 1 2 10
33

11 2

11

11 2. ( ), . ( )c

s -- = - = = - = - =^
D
D

D
D

a a
c c

S
S

c c
a a

S
S

/
/

. , /
/

.13

33

13

11
0 27 0 93s c

  s^ = - = - = -c( ) /
/

.b
b b
a a

S
S

D
D

12

11
0 13

  and 

  b b

b

^
- -

-

= ¥ = ¥

= ¥

c 1 75 10 13 1 10

16 5 10

12 2 12 2

12 2

. / . /

. /
||m N, m N,

m Nv

c

Exercise 15: Shear modulus and anisotropy factor

A bar made from a homogenous cubic crystal in the form of a 
rectangular parallelepiped has the following dimensions: OA = a 
along Ox, OB = b along Oy, OC = c along Oz and the face OABD is 
fixed. A tangential force Fx is exerted on the opposite face CA¢B¢D¢, 
resulting in a strain measured by the (small) angle a due to the tilt of 
the segments OC, BB¢, AA¢ and DD¢, as shown in Fig. 16. 

 

C
B

B¢ D¢

D

A

A¢ Fx

o

z

y

x

Da

a

Figure 16

 (1) The shear modulus m is defined as: m
a

= 1 F
ab

x

  After determining a	as a function of the displacement ∆a of 
the CB¢D¢A¢ face, find the expression for m as a function of 
the elastic compliance constants S44 and the elastic stiffness 
constants C44. 

 (2) The bar used here has been cut from a cube with side l, of 
coordinate axes Ox¢y¢z¢ where the axis Oy¢ is parallel to Oy 
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and the base plane O¢x¢z¢ coincides with Oxy following the 
arrangement shown in Fig. 17 where OC= c << a ≈ l 2.

  When the cube is subject to the force F0 exerted normal to 
on the side PMP¢M¢, the line O¢M changes by length Δl and 
results in an algebraic variation Δe in each of the transverse 
directions. 

 (a) Find the angular variation a of the angle CÔA as a function 
of l , Δl, and Δe, noting that the angle CÔA is equal to the 
angle PÎM. Deduce the expression for the shear modulus µ 
of the initial bar. 

 (b) Find the elastic compliance constants S11 and S12 and the 
elastic stiffness constants C11 and C12. Deduce the isotropy 
relation: S44 = 2(S11 – S12). 

 (c) Find the expression for m as a function of Young’s modulus 

E E
F
S

l
l

=Ê
ËÁ

ˆ
¯̃

0
D

 and the Poisson coefficient σ s = -
Ê
ËÁ

ˆ
¯̃

D
D

e e
l l
/
/ .

  Compare µ to the Lamé coefficient µL which obeys (see Ex. 13),  

the relation: m
sL = ◊

+
1
2 1

E  and comment on the result. 

 (3) Numerical application: C11 = 1.07 ¥ 1011 N/m2, C44 = 0.28 ¥ 
1011 N/m2 (or Pa) for Al. If the crystal was isotropic, what 
would the value of C44 be? What is the anisotropy factor A? 

A
C

C C
=

-
Ê
ËÁ

ˆ
¯̃

2 44

11 12

 

N C P

A¢
M

A

N

A M

A¢

F0

P
C

o

o

z¢ z¢z

(a) (b)Before strain After strain

x¢
x

x¢

o

o

1

Figure 17

Solution:

 (1) In this simple case, the useful relation between stress and 
strain reduces to 
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  Da
c

e
u
z z

S Xxz z= = ∂
∂

+ ∂
∂

=w
44 with X

F
a bz =

◊

  or the inverse relation: Xz = C44 exz. 
  Because a is small, one obtains a = Da

c
and 

m
a

= ◊
◊

= =1 1

44
44

F
a b S

C . 

 (2) We notice that we can always write CÔA = PÎM = POM

2
. 

 (a) Before strain: tan( ) ; .PO M  PO M ¢ ¢= = =l
l

1
4
p

  After strain: 

tan( ) tanPO M ¢ = +
+

= + - = -Ê
ËÁ

ˆ
¯̃

=
-

+

l e
l l

e
l

l
l

D
D

D D1
4 2

1
2

1
2

p a
a

a

  Then a = -D Dl
l

e
l

. For the face CA¢B¢D¢, the shear stress is 

the relation between the projection of F0 on this face, F0 

cosφ, and the area of this face is S
l¢ =
2

sinj
. 

  The result thus is 

  m
a

j j
= ◊

◊
= ◊

-Ê
ËÁ

ˆ
¯̃

1 1

2

0
2

0
2

F

l

F

l l
l

e
l

cos sin
D D

,

  where the last relation holds because φ = p
2

.

 (b) When a single force is exerted normal to the side of the bar, 
the relations between the stress and the strain are reduced to 
(see Ex. 13): 

  e
l

l
S

F

lx x¢ ¢ = =D
11

0
2   and  e e

l
S

F

ly y¢ ¢ = =D
12

0
2   so that 

  m =
-

1
2 11 12( )S S

. 

Directly or by matrix inversion we also obtain (see Ex. 13):  
C11 – C12 = 1/(S11 – S12) which, on taking into account the 
initial results, gives

  
m =

-
= = =

-1
2

1
211 12 44

44
11 12

( )S S S
C

C C
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  The isotropy relation can be written as: 2C44 = C11 – C12 or 
S44 = 2(S11–S12) with the indicated conventions in the Course 
Summary (Sections 3 and 4). An alternative convention would 
lead to C44 = C11 – C12. 

 (c) It is sufficient to express the results of 2(a) as a function of E 

and σ, m
s

=
+
E

2 1( )
.

  This expression identifies the shear modulus as the Lamé 
coefficient, illustrating its physical meaning. 

 (3) If the relations established in 2(b) above were satisfied for Al, 
we would have C44 = (C11 – C12) /2 = 0.23 ¥ 1011 N/m2. Then 
the anisotropy factor is A =0.28/0.23 = 1.21.

Exercise 16: Elastic waves in isotropic solids

 (a) As a function of the elastic stiffness constants, Cij, give the 
expressions for the velocity of longitudinal acoustic waves, VL, 
along the [100], [110], and [111] directions of a cubic crystal. 
Same question for the velocity of the transverse waves, VT 
[100] and VT [110] along the [100] and [110] axes when the 
displacement of particles is only along the Oz [001] direction. 

 (b) How are the expressions simplified when the isotropy 
condition (2C44 = C11 – C12 ) is satisfied? 

  How is the compression modulus B changed when in addition 
the Cauchy condition C12 = C44 is satisfied? 

  What is the relation between the velocity of the longitudinal 
versus transversal elastic waves?

Solution:

 (a) According to the relations demonstrated in Pb. 4 the following 
expressions are obtained: 

  V
C

L 100 11
1 2

[ ] =
Ê
ËÁ

ˆ
¯̃r

/

; V C C C
L 110 2

2
11 12 44

1 2

[ ] =
+ +( ) ;

/

r

 V
C C C

L 111 2 4
3

11 12 44
1 2

[ ] =
+ +Ê

ËÁ
ˆ
¯̃r

/

; V C
VT T1 2 1

100 11044
1 2

,

/

[ ] =
Ê
ËÁ

ˆ
¯̃

= [ ]r
.

  In addition, B = 1/b = (C11 + 2C12)/3 (see Ex. 13).
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 (b) When the isotropy condition is satisfied, all the longitudinal 
velocities are equal to VL = (C11/ρ)1/2 and the transverse 
velocities become VT = (C44 /ρ)1/2. If in addition, the Cauchy 
condition, C12 = C44, is satisfied, then VL/VT = (C11/C44)1/2 = 3,  
with C11 = 3· C44 = 3· C12.

  Note that the transverse waves propagate less quickly than 
the longitudinal waves. This is a consequence of the fact that 
the interatomic spring constants b relative to a shear are less 
than those relative to a compression (see Chapter III, Ex. 2b, 
for instance), so that C44 < C11. 

Problems

Problem 1: Cohesion of sodium chloride

The crystal structure of NaCl is shown in Fig. 1e, Ex. 1, Chapter I. 
A small part of this structure is also shown in Fig. 18 in which the 
position of the Na+ and Cl– ions of charges of +q and –q are situated 
relative to Cartesian co-ordinates of Ox, Oy, and Oz axes parallel to 
the edges of the elementary cube. At the origin O, there is a Na+ ion. 
The smaller distance between a Na+ and a Cl– ion is denoted by r. A 
kilomole of NaCl contains N molecules and 2N ions. For the following 
questions, use q = 1.6 × 10–19 C and N = 1.602 × 1026. 

Na
+

z

yNa
+

Na
+

Na
+

Cl
–

Cl
–

Cl
–

x
Figure 18 Structure of a NaCl crystal.

 (1) The first step is to evaluate the electrostatic potential V 
created at O by all the other ions in the lattice, V(O). For this 
step, the effect of ions in a sphere centered at O with radius µr 
is considered and the symbol ω is used, where ω is 
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4 0pe

w
rV
q

( )O
=  

  Evaluate ω as a function of µ2 for 1 ≤ µ2 ≤ 12. Show the results 
in the form of a table and show graphically ω as a function of 
µ2. 

 (2) The above method does not allow a rapid evaluation of V(O) 
with the increase of µ2. Another method, due to Evjen, may be 
used. This method takes into account only the effects of ions 
or fractions of ions contained in the interior of cubes centered 
at O with edges of length 2µr parallel to Ox, Oy, or Oz where 
µ is a whole integer and positive. The ions are assumed to be 
spherically charged and centered at their respective sites. 

  Evaluate ω for µ = 1 and for µ = 2. With these conventions, 
what is the total charge of ions and fractions of ion contained 
in the cube with edge 2µr for µ = 1 and µ = 2? For what physical 
reasons is this calculation more satisfying than that in para 1 
or Pb. 1, Point (1)? 

 (3) A more complete calculation gives ω = –a = –1.7467, where 
a is the Madelung constant. Find the expression for the 
electrostatic energy U1 of all the N ions per kilomole. Be careful 
not to count the mutual energy of two ions twice and neglect 
the finite dimensions of the crystal. Write U1 with the form U1 
= AN/r.

  Numerical application: Calculate A.
 (4) The energy U1 corresponding to the electrostatic forces tends 

to move the ions closer to one another. These forces are 
opposite to repulsive forces which are necessary to maintain 
the stability of the crystal. Assume that the repulsive forces 
are only exerted between nearest neighbors of Na+

 and Cl– 
and that the mutual repulsive energy of a couple of ions can 
be represented by the form U2 = λe–r/ρ where λ and ρ are 
constants. 

  Find the expression for the total repulsive energy U2 of all the 
N ions (per kilomole) having the form U2 = BNe–r/ρ. 

  Express B as a function of λ. 
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 (5) The cohesive energy of a crystal, U, is represented by the sum: 
U = U1 + U2. Knowing r0, the distance between two neighboring 
ions Na+ and Cl– in equilibrium and b, the coefficient of 
compressibility of the crystal, one wishes to evaluate the 
constants λ and ρ, with the help of the following formulas:

  P
U
V

V
P
V

= - ∂
∂

= - ∂
∂

, 1
b

  P is the hydrostatic pressure applied to the crystal and V is the 
volume of a kilomole. Assume that P = 0 for r = r0. 

  Find the explicit relation from which r0/ρ can be expressed as 
a function of 1/b and of other data in the problem. Finally find 
the relation that allows the calculation of λ.

  Numerical application: r0 = 2.814 ¥ 10–10 m; b = 4.26 ¥ 10–11 
(N/m2)–1. Calculate r0/ρ, ρ and λ. 

 (6) Calculate the energies U1 (r0), U2 (r0), U (r0) in kilocalories per 
mole. Compare this last result to the experimentally value: 
Uexp(r0) = 184.7 Kcal-mole–1, 1 kilocalorie = 4180 J. 

Solution:

 (1) The potential created at the origin by point charges qi distant 
from ri is: 

  V O
q
r

i

ii

( ) .= Â1
4 0pe

  For the case of NaCl the distance ri between an ion M (mr, nr, 
pr) and the origin is ri = (m2 + n2 + p2) 1/2r = µr where m, n, and 
p are integers. The Cl– ions occupy the sites for which µ2 is odd 
while Na+ ions occupy the sites for which µ2 is even. 

  The partial potential Vi created by ni identical charges situated 
at the same distance µr from the origin is such that:

  V
q n

ri
i=

±( )
4pe m0

 or equivalently 4 1
2

pe mm
0rV q ni i/ ( ) / .= -

  Successive addition of different spheres of a given radius ri 
allows to find the evolution of ω = 4pε0rV(0)/q as a function 
of µ2. Shown in Table 1 and Fig. 19, the corresponding results 
demonstrate that the convergence toward the exact value of a 
= 1.7476 is quite bad. 
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Table 1 Evolution of ω as a function of µ2

Neighbor Site (m, n, p) Ion µ2 ni (±)ni/µ w

1st 100, 001 … Cl– 1 6 –6 –6
2nd 110, 011 … Na+ 2 12 +8.485 2.485
3rd 111, 111 … Cl– 3 8 –4.620 –2.135
4th 200, 00 2 … Na+ 4 6 +3 0.865
5th 210, 120 … Cl– 5 24 –10.733 –9.865
6th 211, 121 … Na+ 6 24 +9.798 –0.070
7th 220, 02 2… Na+ 7 12 +4.242 +4.172
8th 221, 300 … Cl– 8 30 –10 –5.827
9th 310, … Na+ 9 24 –7.589 1.762

10th 311, … Cl– 10 24 –7.236 –5.474
11th 222, … Na+ 11 8 +2.309 –3.165

10
w

–a

–5

–10

0

5

5 10
m1

Figure 19 w = f (m2).

 (2) The Evjen method consists in considering the fractions of 
ions inside successive cubes. The first cube (µ = 1, side = 2r) 
contains: 6 half ions of Cl– at a distance r, 12 quarter ions Na+ 
at a distance 2 r, 8 eighths of ions Cl– at a distance 3 r.

  The total charge of the first cube is thus –q because it must be 
neutral (if the Na+ ion at the origin is taken into account) and 
the corresponding value of ω is:

  ω1 = –3/1 + 3/ 2  – 1/ 3  = –1.456.
  The volume between the first and second cube (µ = 2, side = 

4r) must have a total of zero charge. It contains:
   6 × 1/2  Cl– at a distance of  r

  12 × 3/4 Na+  at a distance of 2 r
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   8 × 7/8  Cl– at a distance of  3 r
   6 × 1/2 Na+  at a distance of 2 r

  24 × 1/2  Cl– at a distance of  5 r

  24 × 1/2 Na+  at a distance of 6 r

  12 × 1/4 Na+  at a distance of 8 r  
  24 × 1/4  Cl– at a distance of      3 r
   8 × 1/8 Na+  at a distance of  12 r
  The contribution to ω of the second volume is: 

  w w2 1 3 9
2

7
3

3
2

12
5

- = - + - + - + ◊◊◊ = –0.295

  This brings the estimated value of the Madelung constant a to 
+1.75, which is very close to the exact value of 1.7476. 

  The Evjen method thus allows a faster convergence than the 
method in paragraph 1 because the charges contained in the 
1st cube are equal to q and the other successive volumes 
are always neutral. The contribution of the first cube is thus the 
most important (polar contribution having a r–1 dependence). 
The additional contributions are small corrections (dipolar 
contribution having a r–2 dependence). 

 (3) The potential energy Wp of the ion Na+ in O in the presence of 
2N – 1 other ions constituting a kilomole is Wp = q V(O). 

  The electrostatic potential energy is equal to the sum of 
mutual energies of all pairs of ions. This energy corresponds 

toU N W NqV1 2 1
2

= ◊ =p O( ).  (The coefficient ½ accounts for the 

doubling of the interaction energy between two ions M and N).

  From w a
pe

= - =
4 0 OrV

q
( )  one obtains: U Nq

q
r1 4
1= - ◊a

pe0
,  

  U1 is of the form U1 = –AN/r,
  where A = aq2/4πe0 = 40.26 ¥ 10–29 N/m2 (Pa).
 (4) To evaluate the total repulsive energy U2, one must avoid the 

doubling of repulsive energy between two given ions, as was 
done for U1, and take into account the six nearest neighbors of 
the Na+ ion. This leads to

  U Nzu Nz e NBer p r
2 2

2
2

= = =- -l r/ /  from which one obtains

  B = zλ = 6λ.
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 (5) In equilibrium (r = r0) the total energy is minimum at 
∂
∂

Ê
ËÁ

ˆ
¯̃

=U
r r0

0  or 
d
dr

Nz e
q N

r
rl a

pe
r- -

Ê

ËÁ
ˆ

¯̃
=/

2

4
0

0
.

  One obtains: z e
A

r
r pl

r
- =0

0

/
2  or zr e

Ar
0

02 - =/r r
l

  (1)

  On the other hand, the volume occupied by an ion is equal to 
r3 so that occupied by a kilomole is such that V = 2 Nr3. 

  Thus

  P
dU
dV

dU
dr

dV
dr

z
A

r r

r

= - = - = -
Ê

ËÁ
ˆ

¯̃

-
/

/l
r

r

2 2
1

6
  (2)

  Insertion of Eq. 1 into Eq. 2 permits to verify that P = 0 at the 
equilibrium distance (r = r0). The compressibility coefficient b 
is

  1
18

2
0
4

0
b r

= - = - = -
Ê
ËÁ

ˆ
¯̃

V
dP
dV

V
dP dr
dV dr

A

r

r/
/

  (3)

  Knowing b, r0, and A, it is easy to calculate r0/ρ from (3) and 
then to deduce λ from relations (1) and (2). One obtains 

  

r r
A

A

zr
er

0 0
4

10

0
2

19

18 1 2 8 58 0 328 10

1480 100

r b
r

l r r

= + = = ¥

= = ¥

-

-

. , .

/

m

JJ  eV= 925

  The small value of ρ as compared to r0 implies that the 
repulsive forces are very short distance forces. 

 (6) In equilibrium we have

  U1(r0) = - AN
r0

= –86.13 × 104 J/mole = –206 kcal/mole

  U2(r0) = l rNe r- 0/ = 10.04 × 104 J/mole = 24 kcal/mole
  U(r0) = U1 + U2 = –76.08 × 104 J/mole = 182 kcal/mole
  The last result corresponds to 7.9 eV/molecule, which is in 

excellent agreement with the experimental value of Uexp(r0) = 
184.7 kcal/mole.

Problem 2: Cohesion and elastic constants of CsCl

The crystal structure CsCl is shown in Fig. 3a in Chapter I. 
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 (a) Using the Evjen method find the Madelung constant a of 
this crystal considering the charges and fractions of charges 
contained in a cube of side 2a and centered on an ion Cs+ 
where a is the dimension of the elementary cell. 

  Compare the result obtained with the exact value a = 1.7627 
and explain qualitatively the difference observed. 

 (b) Express the potential interaction energy Up of the 2N ions 
of a kilomole as a function of a and r0, the distance between 
nearest neighbors. Find the numerical value (in eV) of the 
energy for a “molecule” when r0 = 3.57 Å. 

 (c) The repulsive energy ur between two nearest neighbors can 
be represented by u e r

r = -l r/ . Find the repulsive energy Ur for 
2N ions and the total (cohesion) energy U = Up + Ur . 

 (d) The Madelung constant can be calculated while the cohesive 
energy and r0 can be obtained from experiments. Find the 
expression for ρ using the relation found in (c) and a relation 
that can be deduced from it at equilibrium. If U(r0) = –155.1 
kcal/mol, evaluate ρ.

 (e) Find the expression and the numerical value for the 
compression modulus B in equilibrium with 

  B = 1/b = –V dP
dV

, where P is the hydrostatic pressure (P = – dU
dV

) 

and V is the volume of a kilomole.
 (f) Compare the numerical results obtained for B to those found 

from the experimental elastic constants. Find the velocity of 
the longitudinal elastic waves propagating along the [100], 
[110], and [111] axes. The elastic constants in 1010 Pa units 
are C11 = 6.64, C12 = 0.98, C44 = 0.80. 

  Find the mass density d of CsCl using the periodic table (as a 
function of ε0 and e).

Solution:

 (a) Evjen Method:
  One considers the cube centered on the Cs+ ion 0 and side 2a 

(where a is the side of the elementary lattice). One obtains the 

relation r0 = a 3
2

. 
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  The cube includes 8 ions of Cl– at a distance r0; 6/2 ions of Cs+ 
at a distance a; 12/4 ions of Cs+ at a distance a 2; 8/8 ions Cs+ 
at a distance 2r0 or a 3. 

  The total charge (including the central ion) of the cube is zero 
and its potential contribution at point O is

  V
q

r
( )O = - - - -

Ê

ËÁ
ˆ

¯̃4
8 3 3

2
3 3
2 2

1
20 0pe

  We thus find that a (Evjen) = 3.065. This value is rather far 
from the exact value (a = 1.7626). The Evjen method applied 
to structures of the CsCl type converges less quickly compared 
to those of the NaCl type (see previous problem) because 
the elementary dipoles constituting the charge fractions 
(+q/n and –q/n) are distributed in NaCl in alternative planes 
perpendicular to Ox, Oy, Oz whereas in CsCl there are double 
dipolar layers between two planes. A better result can be 
obtained using the Ewald method.

 (b) The potential energy of a Cs+ ion in the presence of others is 

w
pe

a
p = - ◊q

r

2

04

  For 2N ions, Wp = ½ (2N)ωp, which gives Up = – Nq
r

2

04pe
a◊

  For a molecule this corresponds to

  w
pe

a
p J= - ◊ = - ¥ -q

r

2

0 0

19

4
11 4 10.  or –7.12 eV

 (c) The mutual repulsive energy ωr of the Cs+ ion with eight 
nearest neighbors is ωr = 8ur = 8λe–r/r or 

  Ur = ½(2N)ωr = 8Nλe–r/r. The total energy for a kilomole will 
be U = Up + Ur = N [8λe–r/r	−	(a	q2/4πe0r	)]

	 (d) In equilibrium

  
∂
∂

Ê
ËÁ

ˆ
¯̃

= = - +-U
r

e
q

rr

r

0 0 0
20 8

4
0

2l
r pe

ar/  (1)

  and U
N

e
q

r
r= --8

4

2
l

pe
ar0

0 0

/  (2)
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  From (1), one obtains 8
4

2
l

pe
a rre

q
r r

r- = ◊0

0 0 0

/

  Inserting this into (2), one obtains q
r r

U
N

2

4
1

pe
a r

0 0 0
-

Ê
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ˆ
¯̃

=  

  Numerically this gives r
rr
r

0

0 - = - ª1 0 945 18. ,  and r	=	0.198 Å

 (e) B V
d U

dV
=

2

2
with dU

dV
dU
dr

dV
dr

= and V Na
r

N= =3
38

3 3
from 

which we obtain

  B V
d U

dr

dr
dV

dU
dr

d r

dV
V

d U

dr

dr
dV

= Ê
ËÁ

ˆ
¯̃

+ = Ê
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ˆ
¯̃

2

2

2 2

2

2

2

2

 because at 

equilibrium the second term of the summation is zero. 

  B
q

r

r
=

◊
-

Ê
ËÁ

ˆ
¯̃

2

0
48 3 4

2a
pe r0

0 , which gives

  B = 0.292 ¥ 1011 N/m2 (Pa). 

 (f) As a function of the elastic constants

  B C C= Ê
ËÁ

ˆ
¯̃

+( ) = ( )¥1
3

2 130 283 1011 12
11. .N/m  see Ex. 2  

  The agreement with the preceding result is satisfactory but it 
was obtained with a great precision in the previous numerical 
evaluations, most specifically in the values obtained for the 
ratio r0/ρ.

  The mass density of CsCl is d
m m

a
=

+
= ¥Cl Cs 3kg/m3

34 10 ,  

which results in the following values for the speed of the 
elastic waves:

  

V
C
d

V
C C C

d

L

L

 m/s[ ]
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/
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1 2
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d

  (See Chapter III, Pb. 3)
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Problem 3: Van der Waals–London interaction: cohesive energy 
of rare gas crystals

Classically one can account for the cohesive energy of crystals of rare 
gases by considering schematically that the atoms being polarizable 
their mutual attraction is analogous to that of electrostatic dipoles. 
In the first question we develop this idea to find the interaction 
energy. 
 (1) Calculate the interaction energy of two electrostatic dipoles.
 (a) An electric dipole with dipolar moment 



p is placed at O:
	 •	 Recall without explanation the expression for the 

potential V and the electric field 


E created by such a 
dipole at a point M (OM

 

 = 
  

r p r; ,  = θ).
	 •	 What is the potential energy of this dipole when it 

is placed in an external electric field, 


E0? What is the 
torque 



C  is exerted by this field on the dipole?
 (b) Two electric dipoles are placed at O and at A (OA = r), their 

dipolar moments are 


p and 


p¢, respectively, located in the 
same plane and we denote the angles made by 



p and 


p¢ 
with the OA axis as θ and θ¢, respectively (see Fig. 20).

y

p

A

p¢

xo
q q¢

Figure 20

  Show that the potential energy of two dipoles is

  U
p p

rp
0

= - ◊ ◊ - ◊¢ ¢ ¢
4

23pe
q q q q[ cos cos sin sin ].

  Find the torque C¢ exerted by 


p on 


p¢ and then the torque 
C exerted by 



p¢ on 


p. Find the stable equilibrium positions 
assuming that the dipoles can move around points O and 
A in the yOx plane. 

 (c) The dipole 


p¢ is in fact induced by the electric field EA


created at point A by the dipole 


p¢:
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  p E¢
  

= e a0 A where a is the polarizability of the dipole 


p¢. 
Show that the potential energy of the two dipoles can be 
written in the form Up = –D/r6 and find D when the dipoles 
are all parallel in the same direction as the Ox axis (θ, θ¢ = 
0). What is the value of D when a = 30.9 ¥ 10–30 m–3 (the 
polarizability of a krypton atom) and EA



 corresponds to the 
dipolar moment of the torque formed by an ion and an 
electron at a distance of 1 Å?

 (2) Cohesive energy of rare gas crystals.
  Assume that the atoms in a rare gas crystal behave like the 

electric dipoles in (1). Thus the expressions and numerical 
values established in 1(c) are used below.

 (a) Neglecting their kinetic energy, find an expression for 
the total energy of a pair of atoms by assuming that their 
mutual repulsion due to the overlap of electronic orbitals 
can be written as B/r12.

 (b) Knowing that rare gases crystallize in a face-centered 
cubic lattice and taking only into account the reciprocal 
interactions between a given atom and its nearest 
neighbors at a distance r0, find an expression for the total 
energy (at 0 K and in the absence of pressure) of N atoms 
of a mole of rare gas as a function of B, D, and r0. 

  Determine the value of B when r0 = 4 Å (in equilibrium). 
Expressed in eV/atom, determine the numerical value of 
the cohesive energy UT of the crystal. 

 (c) In fact the atoms vibrate Even at 0 K and the energy of this 
zero point vibration is equal to Uc = 9/8 kBθD per atom 
(see Chapter III, Ex. 20). What is the error on UT when this 
vibrational energy is not taken into account. Choose θD ≈ 
70 K?

 (d) Neglecting again the residual vibrations of atoms at 0 K,  
find the expression of the compression modulus 1/b 

in terms of D and r0, and defined by B = 1
b

= -V
dP
dV

 (a 

variation of pressure dP results in a variation of volume 

dV). What is the corresponding numerical value?
 (e, kB, ε0)
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Solution

 (1) (a) V r
p r

r
( ) = ◊ ◊1

4 3pe0

 

, 

 

E V= —◊  

  In polar coordinates (r and θ) this becomes: 

  E
p

rr = ◊2
4 0

3pe
qcos  and E

p

rq pe
q= ◊1

4 0
3

sin

  This leads to U p Ep = - ◊




 and 






C = ¥p E .

 (b) Explicitly calculating 
  U p E p E p Er rp A= - ◊ = - ◊ + ◊¢ ¢ ¢

  

( )q q
  One obtains: 

  U
pp

rp
0

= - ¢ ◊ -
4

23pe
q q q q[ cos cos sin .sin ]¢ ¢

  C and C¢ are perpendicular to the plane containing the two 
dipoles:

  C
U pp

r
¢ ¢ ¢= -

∂
∂

= ◊ ¢ ◊ + ◊p

q pe
q q q1

4
2

0
3 ( cos sin sin cos )

  C
U pp

r
= -

∂
∂

= - ◊ ◊ + ◊p

q pe
q q q q1

4
2

0
3

¢ ¢ ¢( sin cos cos sin )

  The equilibrium positions corresponding to C = 0 and 
C¢ = 0 are equivalent to C + C¢ = 0 and C – C¢ = 0, that is 
to say sin(θ + θ¢) = 0 and sin(θ – θ¢) = 0 simultaneously. 
The equilibrium will be stable (S) when Up is negative. It 
will be unstable (U) when Up is positive. The results are 
summarized in the following table: 

   

0 p p
– –

2
p

+ –
2

0 S U

SUp

p
– –

2

p
+ –

2
S U

SU

q
q¢
––

 (c) When θ = θ¢= 0 and with 


 

p E= e a0 A :
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  E
p

rA
0

= ◊2
4 3pe

and

  U
pp

r

p

r

D

rp
0 0

= - ¢ = = -2
4

4
43

2

2 6 6pe
a

p e( )
, where D

p= ◊
2

24
a

p e0

  The numerical values are p = 1.6 × 10–29 C◊m;  
D = 2.26 × 10–77 J◊m–6 = 142 eV◊Å–6. 

 (2) (a) UT (pair) = –D/r6 + B/r12.
 (b) In a fcc structure each atom has 12 first neighbors at 

equivalent positions. The evaluated energy until this point 
was a mutual energy, thus one must avoid double counting 
in the summation over the N atoms of a mole which leads to

  U N
N

U N
D

r

B

rT pair( ) ( )= ◊ = - +Ê
ËÁ

ˆ
¯̃2

12 6 6 12

  In equilibrium, 
∂
∂

Ê
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ˆ
¯̃

=
=

U
r

r

r r0

0  so that B = D
r

2 0
6  = 4.6 ×  

10–14 J◊Å12

  The cohesive energy UT per atom is

  U
D

r

B

r

D

rT
0
6

0 0
= - +

Ê

Ë
Á

ˆ

¯
˜ = =6 3

12 6 –1.64 × 10–20 J/at ≈ –0.1 eV/at

 (c) In fact the cohesive energy must also take into account the 
vibrational energy UC of the atoms (with the half quantum 
at 0 K):

   U kC B D= =9
8

q 6.7 x 10–3 eV/at

  Then the corrected value of UT is –0.093 eV/at. When not 
taken into account the error is of the order of 7%. 

 (d) At 0 K, the entropy is constant:

  dU pdV
Vd U

dV
= - = and 1 2

2b

  Using the explicit volume occupied by an atom (V = r0
3 2/ )  

and taking into account ( / )∂ ∂ ==U r r r0
0 at equilibrium, the 

following result is obtained:

  1
3

4 23 2

2

2

9b
= ◊ ◊Ê
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ˆ
¯̃

= ◊ =
r d U

dr

dr
dV

D

r
0

0
 4.8 × 108 N/m2 (or Pa)
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  Observe that for rare gas crystals B is two orders of 
magnitude smaller than for the alkali halides (Pb. 1) and 
three orders of magnitude smaller than for diamond (see 
Pb. 4).

Problem 4: Velocity of elastic waves in a cubic crystal: 
application to aluminum and diamond 

In a homogenous cubic crystal of infinite dimension and of mass 
density, ρ, an elementary cube Δx, Δy, Δz is considered parallel to the 
Ox axis, stresses are applied to the Δy.Δz faces. There are two normal 
stresses –Xx (for the face located at point x along the x-axis) and Xx+Δx 
(located at point x + Δx). In addition, there are shearing forces (a) –Xz 
and Xz+Δz which are applied tangentially to the two faces Δx·Δy at z 
and z + Δz respectively, and (b) Xy and Xy+Δy which are applied to the 
two faces Δx·Δz respectively in y and y + Δy.
 (a) What differential equation relates the displacement ux of an 

elementary cube in the direction Ox to the stresses applied in 
the same direction?

  By symmetry deduce the analogous differential equations 
relating the displacements uy (and uz) of an elementary cube 
in the y (and z) direction to the stresses exerted in these same 
directions. 

 (b) How do these equations change when taking into account 
the Hooke’s law, relating stresses to strain via the elastic 
coefficients Cij?

 (c) For the elastic displacements, we search plane wave solutions 
of the form: 

  u u i t K r
  

= -0 exp. ( ),w  
  where u u u u K K K Kx y z x y z

 

= =( , , ), ( , , ) and r x y z


= ( , , ) .
  Show that the equations of motion reduce to three linear 

homogenous relations in ux, uy, and uz.
 (d) Determine the equation for the velocity (V = ω/K) for 

longitudinal waves which propagate along the [100], [110], 
and [111] axes, denoted as VL[100], VL[110], and VL[111]. 
What is the ratio between these different velocities when the 
isotropy condition C11 – C12 = 2C44 is satisfied? 

 (e) What are the velocity of VT[100] and VT[110] of the transverse 
waves that propagate along the [100] and [110] axes for a 
displacement of particles only parallel to the Oz [001]? 
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 (f) Find the numerical values of the different velocities for single 
crystals of aluminum and of diamond (units in 1011 Pa or  
N/m2). 

  For Al use: C11 = 1.07; C12 = 0.61; C44 = 0.28
  For C (diamond) use: C11 = 9.2; C12 = 3.9; C44 = 4.9
  ρ(Al) = 2.73 g/cm3; ρ(diamond) = 3.5 g/cm3. Comment on the 

difference between the two elements.

Solution

 (a) In the Ox direction, the normal stress on the faces Δy·Δz 
results in –Xx + [( Xx + ( ∂ ∂ =X x xx/ ) )]D  (∂Xx/∂x).Δx and the 
corresponding force is ( ∂ ∂ ◊ ◊X x x y zx/ )D D D . Taking into 
account the tangential stresses limited to the first order and 
after simplification of the volume element D D Dx y z◊ ◊ , the 
fundamental equation of dynamics in the Ox direction can be 
written as

  r
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

◊
2

2
u

t

X
x

X

y
X
z

x x y z

  Similarly in the other directions, we find

   r
∂

∂
=

∂
∂

+
∂
∂
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∂
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2
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x
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y
Y
z

y x y z  and r ∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

2

2
u
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x

Z

y
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z x y z .

 (b) The different components of the stress Xx, Xy, etc. are related 

to the strains ex = ∂
∂
u
x
x , exy = 

∂
∂

+
∂
∂

u
y

u

x
x y

 by a matrix of the Cij 

coefficient which in a cubic crystal reduces to 

exx eyy ezz eyz ezx exy

Xx C11 C12 C12 0 0 0

Yy C12 C11 C12 0 0 0

Zz C12 C12 C11 0 0 0

Yx 0 0 0 C44 0 0

Zx 0 0 0 0 C44 0

Xy 0 0 0 0 0 C44
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  After substitution we find
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  The other two relations can be deduced by permutation of the 
coordinates x, y, and z.

 (c) For ux, for instance, the proposed solution takes the form 
ux = u ex

i t K x K y K zx y z

0

[ ( )]w - + + . Introducing this into the equations 
in (b), the following result is obtained:

  
rw2

11
2

44
2 2

12 44

12 44

u C K C K K u C C K K u

C C K K
x x y z x x y y

x

= + + + +

+ +

[ ( )] ( )

( ) zz zu

  Permutating the coordinates of the two other relations one 
obtains by analogy
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 (d) Longitudinal waves: 
 ∑ [100] direction: u u u u K K K Kx y z x y z= = = = =; , , , ;0 0

   V
K

C
L[ ]100 11= =w

r

 ∑ [110] direction: u u u K K
K

Kx y z x y z= = = = =; ; , ;0
2

0
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C C C
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2

11 12 44
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 ∑ [111] direction: u u u K K K
K

x y z x y z= = = = =;
3

;

   V
C C C

L[ ]111 2 4
3

11 12 44
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=
+ +È
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Í
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˚
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  When the isotropy condition is satisfied: C11 – C12 = 2C44 (see 
Exs. 14–16), the three velocities are equal: 

  V V V
C

L L L[ ] [ ] [ ]100 110 111 11

1
2

= = =
Ê
ËÁ

ˆ
¯̃r

 (e) Transverse waves: If the displacement occurs only along uz, 
we have ux = uy = 0. 

 ∑ [100] direction: K K K K V Cx y z= = = [ ] =, . ( / ) /0 100 44
1 2

T r

 ∑ [110] direction: K K
K

K V Cx y z= = = [ ] =
2

0 100 44
1 2, . ( / ) /

T r

  When, in addition to isotropy, the Cauchy condition (C12 = C44) 
is satisfied, VL = 3VT because C11 = 3C44. 

 (f) Numerical application:
  Al : VL [100] = 6,300 m/s
   VL [110] = 6,400 m/s
   VL[111] = 6,450 m/s
   VT[100] = VT[110] = 3,200 m/s
  Diamond: VL [100] = 16,200 m/s
   VL [110] = 17,600 m/s
   VL[111] = 18,000 m/s
   VT[100] = VT[110] = 11,000 m/s ( u [ ]).001
  None of the two crystals satisfies the isotropy condition:  

A(Al) = 1.21 (see Ex. 15) and A (diamond) = 1.62. 

Comment: Numerical values for diamond

It should be noticed that the velocity of the elastic waves is excep-
tionally high in diamond. At the microscopic scale this is the result of 
a large covalent tight binding between the nearest neighbor atoms. 
At the macroscopic scale the consequence are the large numerical  
values of the Cij and of compression moduli b–1 of the order of  
5 × 1011 Pa. In comparison, the alkali metals have Cij two orders of 
magnitude less than those of diamond and thus velocities of elastic 
waves are the lowest of the solids despite their very small densities. 
Another important consequence on the specific properties of dia-
mond is its large thermal conductivity. This thermal conductivity 
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Kth is larger than that of metals because of the large velocity of the 
elastic waves (phonon transport) despite the lack of contribution of 
conduction electrons: diamond is an insulator from the point of view 
of electrical conductivity but it is the best for the thermal conductiv-
ity: a specific property exploited in microelectronic devices. 

Additional Note: The calculations in this exercise postulate that 
the materials of interest are homogenous. This postulate is only 
valid when the wavelength of vibrations is large compared to the 
interatomic distances and the velocities thus determined provides 
the slope of the tangent to the origin of the phonon dispersion 
curves: a point investigated in detail in the exercises in Chapter III. 

Problem 5: Strains in heteroepitaxy of semiconductors 

The Bravais lattices of GaAs and AlAs are fcc of the zincblend type 
(see Chapter I, Ex. 1). The lattice parameter of GaAs, denoted as as 
is slightly smaller than that of AlAs, denoted a0, but this difference 
is sufficiently small that it is possible to realize a single crystalline 
layer of AlAs on a substrate of GaAs (called heteroepitxy). The 
growth of AlAs is realized on the (001) face of GaAs and at the 
interface, the lattice of AlAs (001 face) fits that of the substrate so 
that it undergoes two deformations in the plane of the layer (e1 and 
e2) and a third e3 perpendicular to the layer. The objective here is to 
determine the lattice parameter of AlAs in this last direction, a^ ,  
assuming that there is a perfect fit between the two lattices at the 
(001) interface, that the growth of AlAs occurs in planes parallel to 
the interface and free from shear. 

 (1) Find the expressions of the strain e1, e2, e3 as a function of a0, 
as and a^ .

 (2) The surface layer being free and the crystals being cubic, find 
the relation between e1, e2, e3 and the elastic coefficients C11 
and C12 of GaAs. Deduce the expression of a^ as a function 
of a0, as, C11 and C12. Deduce also the relation giving the 
difference: a^  – as.

 (3) Numerical application: as = 5.6528 Å; a0 = 5.6612 Å;  
C11 = 11.88 × 1010 Pa; C12 = 5.38 × 1010 Pa. Evaluate a^  and its 
difference with as. 
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Solution

 (1) The fit of the AlAs lattice to that of GaAs at the interface 
implies: 

  e e
a a

a
s

1 2= =
-( )0

0

  In addition (by definition): 

  e
a a

a3 = -^( )0

0

 (2) In cubic crystals the relations between stress and strain 
involve only the C11, C12, and C44 coefficients (see Pb. 4). The 
surface epitaxial layer being free one has Zz = 0. 

  We thus obtain 
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  The epitaxied lattice of AlAs is constrained along the (001) 
plane of the layer, it is expanded in the perpendicular 
direction. Strictly speaking, the epitaxial layer is not cubic but 
tetragonal. 

  Despite the constraints associated with the strain (easily 
calculable), the growth of thick single crystalline layers of 
AlAs on GaAs (t ≥ 1 µm) is possible. Of course it is easier for 
tertiary layers such as AlxGa1–xAs, where 0 ≤ x ≤ 1, with strains 
vanishing when x approaches 0. On the other hand, when 
there are larger lattice differences the stresses relax in the 
form of dislocations rendering the epitaxy very difficult, if not 
impossible. 

  For additional details on surface reconstructions and 
relaxations, Chapter I, Pb. 4; Chapter V, Pb. 9; and comments 
therein.
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Questions

 Q.1: Why is NaCl lattice fcc when CsCl lattice is simple cubic? 
 Q.2: The parameters of the Lennard-Jones potential of a given rare 

gas crystal of the fcc structure are σ = 3.4 Å and ε = 10.4 meV. Give 
spontaneously the value of the cohesive energy and of the lattice 
parameter a. 

 Q.3: Why is the cohesive energy of MgO greater than four times that of 
NaCl?

 Q.4: On keeping a crystal of NaCl is in water, why do its corners start 
dissolving first? 

 Q.5: What is physisorbtion? What is chemisorption? 
 Q.6: Consider an atom on the surface of a crystal set in vacuum. Why is an 

atom more attracted toward a conductive crystal than an insulating 
crystal?

 Q.7: In an isotropic or cubic crystal, why is the C44 coefficient far smaller 
than the C11 coefficient? What is the consequence on the velocity of 
the transversal elastic waves along the [100] direction compared with 
longitudinal ones?

 Q.8: Why should the Poisson coefficient, σ, be equal to 0.5 if there is no 
change in volume during traction?

 Q.9: Give the order of magnitude of Young’s moduli, E, of solids. 
 Q.10: If compressibility of NaCl is of the order 4 × 1011 Pa–1, what is the order 

of magnitude of Young’s moduli? Starting from atmospheric pressure, 
the crystal is introduced into an ultra-high vacuum chamber. What is 
its relative change in volume? 

 Q.11: In ionic crystals, why is the Madelung constant always greater than 
1?

Answers at the end of the book 
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1. Vibrations in a Row of Identical Atoms

Consider a row of identical atoms of mass M denoted by indices  
n − 1, n, and n + 1 that are equidistant by “a” at equilibrium and 
which are displaced from their equilibrium positions by un−1, un, and 
un+ 1. Using the Hooke’s approximation (linearity between stress and 
strain), the restoring force exerted on the atom n by all the other 
atoms in the row takes the form F u u

j
j n j n= -

π
Â

0

b ( )+ . When limited 

to the force between the nearest neighbors (j = ± 1), the equation 
of motion is Mu u u un n n n = + -+ -b( )1 1 2  with solutions in the form 
of waves of type un = A exp i(wt – kx) and the dispersion relation, 
w = f(k), is of the form w = 2(b/M)1/2sin(|k|a/2). 
 The propagation of the waves is along the row, k||x, but the 
spatial displacement of atoms, u, is referenced to the three 
coordinates with different force constant, bL and bT: (i) along the 
row, ux, longitudinal, L or (ii) normal to the row, uy and uz, transversal 
T1 and T2 that are equivalent for a row because bT1 = bT2. Thus as 
a function of the polarization, 



u k^  or u k
 

 , the dispersion curves, 
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w = f (k), are generally different but tend toward zero with 


k , the 
slope corresponding to the velocity of elastic waves of the same type 
as those in a homogenous medium explaining their name: acoustic 
modes (either transverse TA or longitudinal LA). In addition, this 
instantaneous atomic position can be represented by multiple 
values of the wave vector 



k, which can be deduced from one to 
another by a translation vector or the reciprocal lattice 



G. Thus the 
representation of the dispersion relation, w versus k, may be limited 

to k vectors within the first Brillouin zone (BZ): p p
a

k
a

£ £  in 1D or 

to 0 £ £k
a
p  depending upon the boundary conditions being used 

(see Section 3). 

 In addition, the group velocity of the atomic vibrations, v
kg = ∂

∂
w ,  

can be identified to the propagation of elastic waves along a 
continuous string when their wavelength is far larger than the inter-
atomic distance (see Chapter II, Course Summary, Section 5a).

 v
c a

M
v ks g= = = Ær

b 2

0( ).

 The additional influence of neighboring atoms other than the 
nearest neighbors is studied in Exs. 3–7. 

2. Lattices with More Than One Atom per Unit Cell 

Consider a 1D crystal with two kinds of atoms of mass M and m where 
the distance between the nearest neighbors is “a” and the force 
constant is b in the Hooke’s approximation. Limiting the interactions 
to the nearest neighbors only, the equations of motion for these two 
types of atoms can be written as

mu u u u Mu u u un n n n n n n n 2 2 1 2 1 2 2 1 2 2 2 2 12 2= + - = + -+ - + + +b b( ), ( )

From solutions of the form 

 u A i t k nan2 2= - ◊exp ( )w and u B i t k n an2 1 2 1+ = - +exp [ ( ) ]w

the dispersion relation, w versus k, is     

 w b b2
2

2
1 2
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 The dispersion curves have two branches with a second branch 
called “optical branch,” which extends to a domain of high frequencies 
compared to the acoustic branch. The optical branch corresponds to 
the vibrations of two consecutive atoms in opposite direction, A/B 
= −1, that can be excited by electromagnetic (EM) radiation in the 
infrared region for ionic crystals thus leading to selective absorption 
of this EM radiation (see Ex. 10). 
 This optical branch can exist even if the atoms of the basis are 
chemically identical but differ in their crystallographic environment 
and then on the inter-atomic force constant (see Ex. 1). Again in a 
1D situation with two types of atoms at a distance of “a,” the lattice 
parameter is 2a and the total length of the first BZ is p/a. As a result 
the number of modes for a given polarization (L or T) corresponds 
again to the number of atoms able to move. For linear crystal 
consisting of a basis of p atoms, one obtains three acoustic branches 
(1L and 2T) and 3(p − 1) optical branches (see Ex. 2b and Pb. 8). 
 The main results are summarized in Fig. 1.

k ain / unitp 10
0

1 LA
2 TA

1

k ain /2 unitp 10
0

1

2

1 LA
2 TA
1 LO

w = V ks

w/2 10 c/s12p w/2 10 c/s12p

Figure 1 Frequency versus wave vector for a mono-atomic lattice, left 
with bL = 2bT, and for a diatomic lattice (right) with M = 1.5 m. 
The slope of the LA curve at the origin (the arrow) corresponds 
to the sound velocity, vs. 

3. Boundary Conditions

Two types of boundary conditions are used for the wave vector 


k : 

 (a) Fixed boundary conditions: u0 = 0, uN = 0. 
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  As for a homogenous string, the conditions u = 0 for x = 0 
and x = Na = L implies standing waves of the forms u = 2A 
sin(kx)·sin(wt). The wave vector k (=2p/l) is positive with 
steps equal to np/L = np/Na (n: positive integer) and the wave 
vector interval in the first BZ is 0 < k < p/a. For a homogenous 
string the possible modes correspond to l = 2(L/n); for a row 
formed of discrete elements, there are N − 1 permitted values 
for k that are equidistant by p/Na and thus are nearly equal to 
the number of moving particles. 

 (b) Periodic (Born, von Karman) boundary conditions: un = uN+n. 
They are applied to running waves, u = A exp i(wt − kx), with 
positive and negative values for k and step variations, 2p/L, 
that are twice that of fixed boundary conditions. The total 
number of modes, corresponding to a wave vector included 
in the first BZ, –p/a < k < p/a, is equal to the number of atoms 
that can vibrate independently: k = n2p/L and n ≤ 0 or >0. 

4. Generalization to 3D 

In the general case we have already noted (see Chapter II, Course 
Summary, Section B: 5b and Theory of Elasticity by Landau and 
Lifshitz, p. 139) that for each given wave vector 



k , there are three 
waves having orthogonal displacement vectors u being not neces-
sarily transverse or longitudinal. To simplify the problem, however, 
the present considerations concern situations for which the spatial 
displacement of atoms can be described by two transverse waves, 
T1 and T2, such that 



u k^  and one longitudinal wave where 


u k.  
Two types of the boundary conditions may again be used: Fixed con-
ditions of the form u(0) = u(Lx) = 0 on the faces of a parallelepiped 
Lx Ly Lz or, for large samples, periodic Born-von Karman conditions 
of the form: u (x, y, z) = u(x + Lx, y, z) = u(x, y + Ly, z) = . . .. In the first 
case, the waves are standing waves with u = A sinkxx· sinkyy· sinkzz. 
The components kx, ky, and kz of the wave vector are all positive and 
vary discretely with steps such as

  k n L k n L k n Lx x x y y y z z z= = =( / ), ( / ), ( / ),p p p

where nx, ny, nz > 0. For periodic BC, there are running waves: 
u A i k x k y k zx y z= + +exp ( ) where kx, ky, and kz can be positive or 
negative (and also 0 for one or two of them). 
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 With the exception of objects that have one or several reduced 
dimensions such as thin films where L is of the order of a few lattice 
constants (see Chapter IV, where these phenomena are understood 
more easily), it is essential to point out that the two methods lead 
to the same results in particular for the (same) density of modes 
in the k space, denoted as g(k), that is to say the same number of 
oscillators with a given wave vector of modulus |k|. In 3D for a given 
polarization, this density, g(k), can be evaluated from the volume of 
a spherical shell defined by radiuses k and k + dk with respect to the 
volume of an elementary cell (2p/Lx·2p/Ly·2p/Lz) when the periodic 
BC are used. When fixed BC are used one considers the eighth of the 
preceding shell (kx, ky, kz > 0) occupied by cells that are eight times 
smaller, see Fig. 2 below. For both cases this density in the k-space is 

g k
k( ) =

2

22p
V.

dk
kz

ky

kx

kz

dk
k

o

ky

kx

k

1

2h
L

1

2h
L1

2h
L

z

h
L

y

h
L

Figure 2 (a) Periodic boundary conditions (PBC) and (b) fixed boundary 
conditions (FBC).

5. Phonons

In the Hooke’s approximation each atom is considered as a spatial 
harmonic oscillator or three linear harmonic oscillators (1L + 2T). 
The energy E of each linear oscillator is quantified by E = (n + ½)
hw with n = 0, 1, 2, . . .. This implies that the action of an external 
stress (temperature, irradiation with photons or neutrons), each 
oscillator can win or can lose one (or several) quantum of energy, 
hw = hn, called phonons and of momentum h



k  (where the wave 
vector 



k  is only defined up to a vector 


G of the reciprocal lattice). 
Thus an increase of heat to the crystal corresponds to an increase 
in the population of phonons (but not in the number of oscillators) 
or in the increase of the vibration energy (and therefore of the 
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amplitude) of atoms in the lattice. In the same way, the interaction 
of a neutron or a photon (either IR absorption or Raman diffusion) 
with a lattice will conserve energy and momentum of the system 
formed by the photon and the phonon (see Pb. 7). At 0 K it remains 
a residual vibration energy (1/2hw) due to Heisenberg’s uncertainty 
principle: even 0 K the atoms vibrate (see Ex. 20a and b).
 Note that this quantization of energy is independent of the 
quantization of the wave vector which is a result of the boundary 
conditions (see Final Remark in Ex. 11). 

6. Internal Energy and Specific Heat 

To evaluate the vibration energy U of a crystal at absolute 
temperature T and its specific heat Cv, it is sufficient to sum all of the 
possible frequencies produced by the density of linear oscillators 
gT(n) from which the frequency is between v and n + dn by the mean 
energy E

  of each oscillator of frequency n:
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 The mean energy of a linear oscillator is given by Bose–Einstein 
statistics:
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	 •	 The evaluation of gT(n) for each of the three polarizations can 
be extracted from the (experimental or theoretical) dispersion 
curves by applying the general formula (Ex. 19):
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  in which the integration extends over the surface of iso-
frequency S(w0). Such a calculation, most often numerical, is 
of little interest for determining the specific heat of a lattice 
because it does not necessarily result in the correct value of Cv, 
within the precision of the calculations or experiments, but it 
does not allow one to determine the essential parameters for 
the evolution of Cv(T). 

	 •	 In the Debye model, the dispersion relations are reduced to a 
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linear form, w = vsk. In 3D and using the results from Section 
3, this model leads to the following results:

  g v v g v v g k k
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 may be 

established numerically and the result is shown in Fig. 3.
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Figure 3 Heat capacity, Cv as a function of T/qD for 1D, 2D, and 3D solids. 
The vertical scale is in NkB unit to multiply by 1, 2, or 3 as a 
function of the degree of freedom for the atom vibrations. 
Note the initial evolution in T, T2, or T3 as a function of the 
dimensionality of the solid.

 A physical discussion of the two limiting cases is more 
interesting: 
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 (a) T/qD > 1 : Cv ≈ 3NkB = constant. This is the classical limit 
corresponding to the law of Dulong and Petit, which can be 
directly obtained by considering 3N classical linear oscillators 
where each has a mean energy E  = kBT. 

 (b) T/qD << 1 (T being an order of magnitude less than the Debye 
temperature qD):

  C Nk
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 The Debye model describes successfully the variation of Cv as 
T3 at low temperatures. Thus the Debye temperature of a given 
solid is an important parameter that allows one to state at which 
temperature range the lattice vibrations can be treated classically 
(when T ≥ qD) or when on the contrary it evolves as T4 (T < qD/10). 
 This model can be improved by distinguishing the velocity of the 
longitudinal waves from the velocity of the transverse waves (Pb. 
4). The previous model of Einstein supposes that the 3N oscillators 
vibrated at the same frequency υE. It leads to Cv Æ 3NkB at high 
temperature and to Cv Æ 0 as T Æ 0, but the details of the latter 
evolution did not match the experiments. This model remains 
interesting for the optical frequencies or for certain specific cases 
(see Exs. 12 and 13). 
 In 1- or 2D systems, the density of vibration modes is different 
from that obtained in 3D. Thus the evolution of Cv as a function of T 
at low temperature is different as shown in Fig. 3. In addition, one 
may imagine that atoms are able to vibrate only in certain directions 
(e.g., normal to the plane or along a row) and such a constraint 
necessarily influences the determination of the vibration energy and 
the corresponding specific heat. The table in Ex. 18 summarizes a 
variety of possible arrangements. The conversion formulas presented 
at the end of this Course Summary are useful for the corresponding 
calculations.

7. Thermal Conductivity

In an isotropic medium the thermal conductivity is the parameter 
Kth in the Fourier expression for the heat flux, q: q th

 

= - —K T  where 
q


 is the heat flux (amount of heat flowing per second and per unit 
area in W/m2) and —



T  the temperature gradient is in K/m. Thus, 
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Kth is expressed in W/m·K. The sign in the expression is chosen 
always Kth > 0 as heat always flows from a high temperature to a low 
temperature. This expression has the same form as the Ohm’s law, 




j = - —s V  ( j: current density; s: electrical conductivity) when the 
electric field E is expressed as 



—V . 
 For metals, Kth is the sum of two contributions, conduction 
electrons and phonons. For poorly conductive materials, the 
contribution of phonons remains only and at the microscopic scale 
it is expressed as Kth = (1/3) Cv vs Lph, where Lph is the phonon 
mean free path. Generally Kth is less for insulating materials than 
for conductive materials. An important exception for applications 
(evacuation of heat in microelectronic devices) is the case of 
diamond (a poor electrical conductor combined to an excellent 
thermal conductor). The reason is the large velocity of sound, vs 
(18000 m/s instead of 3000–5000 m/s for most of the solids; see 
Chapter II, Pb. 5) in diamond and diamond-like materials. In turn, 
this large velocity is a consequence of the large force constant b 
between C atoms—covalent tight binding—and their light mass, m, 
via vs that is proportional to √b/m. The thermal contribution to Kth is 
also significant for 2D materials (see Ex. 9b) such as graphene where 
L takes larger values than that in graphite. 
 Finally thermal expansion is a macroscopic phenomenon that 
cannot be explained microscopically by modeling the atoms as 
simple harmonic oscillators (that is to say with a potential energy 
in u2 or a restoring force that obeys Hooke’s law). The nonharmonic 
behavior is simply addressed in Pb. 6 and the distinction between 
specific heat at constant pressure and constant volume (resulting 
from thermal expansion) is the subject of Pb. 5. 
 Useful formulas: 
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Exercises

Exercise 1: Dispersion of longitudinal phonons in a row of 
atoms of type C=C–C=C–C=

Consider a linear lattice with constant “a” having as a basis two 
identical atoms situated in a line and spaced from equilibrium by 
b (b < a/2), see Chapter I, Ex. 15. The instantaneous position of the 
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atoms is x1, x2, … x2n−1, x2n, x2n+1, …, and the distance along the line 
relative to their equilibrium position is u1, u2, … u2n−1, u2n, u2n+1.
 We consider only interactions between nearest neighbors which 
are characterized by the force constants b1 and b2 as shown in Fig. 4. 
Find the equations of motion of the two species of atoms constituting 
the basis. 
 Starting from solutions of form:

 u A i t k xn n2 2= -exp ( )w ; u B i t k xn n2 1 2 1+ += -exp ( ),w

find the dispersion relations w = f (k), the acoustic and optical 
longitudinal branches as a function of b1, b2, m (the mass of an atom), 
and a. Also determine the ratio of the amplitudes A/B for each of these 
branches in the center of the BZ (k = 0). Comment on the result.

b
a b2

u2 –2n u2 –1n u2n u2 +1n u2 +2n

b1

Figure 4 

 Knowing that the sound velocity along the row is vs = 5000 m/s 
(experimental value) find the frequency of atomic oscillations in the 
center and at the limit of the BZ with a = 5 Å, b = 1.25 Å, b1/b2 = 
b/(a − b). Show the corresponding dispersion curves and indicate 
the forbidden frequency interval. 

Solution:

In equilibrium the sum of the forces exerted on each atom is zero. 
Limiting the result to interactions between nearest neighbors the 
movement of an atom in position u2n and that of an atom in position 
u2n+1 obeys the following equations:

 m
u

t
u u u un

n n n n
d
d

2
2
2 1 2 1 2 2 2 2 1= - - -+ -b b( ) ( )

 m
u

t
u u u un

n n n n
d

d

2
2 1

2 2 2 2 2 1 1 2 1 2
+

+ + += - - -b b( ) ( )

 The instantaneous positions (x2n) are related to the deviations of 
equilibrium positions (u2n) by the following relations:
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x na u x na b u x n a u
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1
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( ) ++ + -b u n2 1

 From solutions of the form:
 u A i t kx A i t k nan n2 2= - ª -exp ( ) exp ( )w w
 u B i t kx B i t kna kbn n2 1 2 1+ += - ª - -exp ( ) exp ( ) ,w w etc.
the following Kramers system in A and B is obtained:
 - = - - + - -m A B ikb A B ik a b Aw b b2

1 2{ exp[ ] } { exp[ ( )] }

 - = - - - + -m B A ik a b B A ikb Bw b b2
2 1{ exp[ ( )] } { exp[ ] }

 The system of linear homogenous equations with two unknowns 
(A and B) has a non-zero solution when the corresponding 
determinant is zero:

 w
b b

w
b b4 1 2 2 1 2

2
2 2 1 0-

+
+ - =

( ) ( cos )
m m

ka .

 The dispersion relation for acoustic phonons and optical phonons 
respectively obeys the (−) and (+) solutions of

 w
b b b b b b2 1 2 1 2

2
1 2
2

2

1
24

2
=

+
±

+Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

˘

˚
˙
˙m m m

kasin

 When k = 0, w = 0 (acoustic branch) and w2 = (2/m) (b1 + b2) 
(optical branch). By introducing these values in the two linear 
equations we obtain the relation between the vibration amplitudes 
of adjacent atoms:
 A/B = 1 (acoustic branch) and A/B = –1 (optical branch). 
 In the first case the atoms vibrate in phase and in the other they 
vibrate in phase opposition with a fixed center of gravity.

L.O.

L.A.

Figure 5
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10 (c/s)
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L.A.
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0 p/ 0.628a = Å
–1



 Forbidden

frequencies

Figure 6

 The velocity of sound corresponds to the slope of the tangent at 
the origin of the acoustic branch: 
 For small k one obtains v k ks = ∂ ∂ =( / )w 0

 w
b b b b b b2 1 2 1 2

2
1 2
2

2
1
24

2
@

+
-

+Ê
ËÁ

ˆ
¯̃

- Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙m m m

ka

which leads to w b b
b b

= ◊ka
m2

2 11 2

1 2
 and v

k
a

ms = ∂
∂

=
+

È

Î
Í

˘

˚
˙

w b b
b b2

2 1 2

1 2

1
2

( )
 

 From b b1 2b a b= -( ) and b b1 23=  one obtains b1/m = 8 vs
2/a2 =   

8 ¥ 1026 s−2.
 The other numerical values are

 L.O. c/s( ) . .k v
m

= fi =
+Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙ = ¥0 1

2
2 7 65 101 2

1
2 12

p
b b

 L.O. ck
a

v
m

=Ê
ËÁ

ˆ
¯̃

fi = È
ÎÍ

˘
˚̇

= ¥p
p

b1
2

2 6 36 101

1
2 12. /s.

 L.A. c/sk
a

v
m

=Ê
ËÁ

ˆ
¯̃

fi = È
ÎÍ

˘
˚̇

= ¥p
p

b1
2

2 3 67 102

1
2 12. .

 The dispersion curves represented in Fig. 6 show that the 
forbidden interval of frequencies is between 3.67 ¥ 1012 < n < 6.36 ¥ 
1012 c/s.
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Note: The existence of the optical branch is related to the presence 
of a basis containing two atoms even if they are identical as in Si, Ge, 
diamond, or graphene (see Ex. 9b), where the masses of the atoms 
are identical but their environment and thus their force constants 
differ. 
 The rows studied here can be considered as a row of polymer 
chains C=C–C=C–C or resulting from a dimerization along the [100] 
direction of a 2 ¥ 1 surface reconstruction (see Chapter I, Fig. 49 and 
comments in Pb. 4) or from a phase change (see comments in Exs. 2 
and 3 of this chapter). 

Exercise 2a: Vibrations of a 1D crystal with two types of atoms 
m and M

Consider a row of equidistant atoms having alternative masses m of 
species Z1 and M of species Z2 (see Chapter I, Ex. 3). Relative to the 
origin situated on one of these atoms, the average position of atoms 
from species Z1 is 2na with n: integer. The Hooke’s approximation is 
used and only is taken into account the action of nearest neighbors 
characterized by a force constant b. 

 (a) Starting from the equation of motion of these two types 
of atoms, find the dispersion relation for vibrations that 
propagate along the row with solutions of the form: 
u A i t kna u B i t n kan n2 2 12 2 1= - = - ++exp ( ) exp [ ( ) ].w wand

 (b) Find the expressions for w and for the ratio U = u2n + 1/un in the 
following cases:

 (i) k << p/a
 (ii) the extremity of k is in contact to the first BZ
 (c) In each of the two situations above (i, ii), draw the elongation 

of several atoms as a function of their position: u = f(x).
 (d) What is the velocity of sound vs along the row?
 (e) Find the evolution of the dispersion curve, which has two 

branches toward the curve that has only 1 as the value for M is 
progressively changed toward that of m. 

 (f) Numerical application to NaCl:
  Taking a ≈ 2.8 Å and b ≈ 42 N/m, find the numerical value of 

vs and that of w at characteristic points [m (Na) = 23, M (Cl) = 
35.5]. (N)



192 Atomic Vibrations and Lattice Specific Heat

Solution:

 (a)  See Course Summary, Section 4, for the equations of motion. 

  - = + --m A B e e Aika ikaw b b2 2( )  (1)

  - = + --M B A e e Bika ikaw b b2 2( )  (2)

  ( / ) ( / )cosw b b2 2 2 0- + ◊ =m A m ka B  (1¢)

  ( / )cos . ( / )2 2 02b w bM ka A M B+ - =  (2¢)

   Δ must be zero which leads to

  w b w b4 2
2

22 1 1 4 0- +Ê
ËÁ

ˆ
¯̃

+ =
M m Mm

kasin

   The roots (giving w2) are mentioned in the Course Summary. 
 (b & c) The important points correspond to the value of k at the 

center (i) and the boundary of the BZ (ii). 
 (i) k << p/a 

  

w

w b

′

′

1

2

1 2

0 1

2 1 1 1

= =

= +Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ = -

;

;
/

U

M m
U

  The wavelength of the vibrations is very large compared 
to a. The atoms vibrate en phase for the acoustic branch 
and in phase opposition for the optical branch. They are 
running waves. 

 (ii) k = p/2a (at not p/a, see Chapter I, Ex. 18)

  
w b

w b
1

1 2

2
1 2

2 0

2 0

′′

′′

= =

= =

( / )

( / )

/

/

M A

m B

  The waves are stationary (l = 4a). When the atoms “m” 
vibrate, the atoms “M” do not move and conversely. The two 
sub-lattices are decoupled (see Fig. 7).

 (d) Near the center of the BZ (k << p/a) the dispersion relation of 
the acoustic branch reduces to:

  w b
1

2′ =
+m M

ka from which one obtains: 

v k a m Mks = ∂ ∂ = +Æ( / ) ( /[ ]) /w b0
2 1 22
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  When m = M, one obtains the velocity for a row of identical 
atoms: v a ms = ( / ) /b 2 1 2.
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a
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0

u

x

t

k = 0

u

x
u

m
M

k a= /2p

x

Figure 7

 (e) When m ≠ M, one obtains the curves shown in Fig. 8a. The 
dashed lines symbolize that the phonon wave vector 



k  is only 
defined with ±



G (here n|


A | = np/a). When M Æ m, the interval 
for forbidden angular frequencies becomes narrower (w1¢¢ and 
w2¢¢ tend toward a common value) and the acoustic branch (in 
the first BZ) extends as an optical branch in the second BZ. 

w

–p/2a p/2a p/a
A

0

0
0

w

A

p/2a p/a

4 / mb

2 / mb2 / mb

2 / Mb

A/2

A

(a) (b)

0

Figure 8
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  When m = M, this branch, initially optical, becomes acoustical 
and it is located in the first BZ because its lattice vector 
becomes a and not 2a (the zone boundary is at p/a and not at 
p/2a). 

  The atoms shown in Fig. 7 are now identical. If their 
instantaneous position is analogous to what is shown in the 
representation, one must note that the waves corresponding 
to |


k | = p/2a are running waves now while the former running 
optical waves ( at k ≈ 0) is now a standing wave ( at k = p/a). 

 (f) Numerical application:
  v ks m/s radª ¥ = = ¥8 2 10 0 6 103

0
13. ; ( ) /sw

  w p w pA rad rad( / ) . /s; ( / ) . /s2 3 77 10 2 4 68 1013
0

13a aª ¥ @ ¥

Comments

Starting from a monoatomic basis, one can follow the opposite way 
which consists of studying the appearance of the forbidden frequency 
bands as a consequence of the diatomic basis. The influence of second 
nearest neighbors in 1D is the theme of Ex. 3. In the present exercise, 
taking into account the second nearest neighbors would change the 
dispersion curve, especially around 



k = p/2a.

Exercise 2b: Vibrations of a 1D crystal with a tri-atomic basis

Consider a linear crystal with a lattice constant of 3a and a basis 
composed of an atom P, with mass M at the origin O and two atoms Q, 
with mass m located at 1/3 and –1/3 (or 2/3) see figure of Ex. 2b in 
Chapter II. We denote b1 as the force constant between two atoms P 
and Q (first nearest neighbors) and b2 as the force constant between 
two atoms of type Q (first nearest neighbors also). 

 (a) Limiting the problem of interactions between nearest 
neighbors, write the equations of motion of each atom 
constituting the pattern. These atoms are identified by their 
positions 3na, (3n + 1)a, and (3n − 1)a. 

 (b) Starting from solutions of the form u3n = A exp i(wt − 3kna) for 
atoms of type P and of the form u3n+1 = B exp i[wt – k(3n + 1)a] 
and u3n−1 = C exp i[wt – k(3n − 1)a] for atoms of type Q (at 1/3 
and −1/3), show that the dispersion relation can be deduced 
from the determinant of type:
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  D =

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

a b b

b c d

b d c

x

x

x

 = 0

  Express the different terms of this determinant as a function 
of the given parameters and establish the dispersion relation 
in a form correlating a, c, k, b1, and b2.

 (c) For k = 0 (center of the BZ), find the possible expressions 
for w2. For each of these expressions, find the corresponding 
relation between A, B, and C. Illustrate the atomic positions for 
a transversal and a longitudinal mode. What happens when b2 
= −b1/2 with b1 > 0? Why? 

 (d) What can be said about the expressions for w2 compared to 
the other characteristics of k (contact with the BZ and at mid-
distance to this point)? Qualitatively describe the expected 
results without finding the exact expressions for w2. 

Solution:

 (a) M
u

t
n u u un n n

d
d

2

2 1 3 1 3 1 33 2= + -- +b ( )

  m
u

t
u u u un

n n n n
d

d

2
3 1

2 1 3 3 1 2 3 2 3 1
+

+ + += - + -b b( ) ( )

  m
u

t
u u u un

n n n n
d

d

2
3 1

2 1 3 3 1 2 3 2 3 1
-

- - -= - + -b b( ) ( )

  Note that the two atoms of type Q have different left/right 
environments and therefore have two different equations 
(see Ex. 1).

 (b) The proposed solutions reduce to:
  u u B A e u u C A en n

ika
n n

ika
3 1 3 3 1 3+

-
-= =/ ( / ) ; / ( / ) ;

  u u C B e u u B C en n
ika

n n
ika

3 2 3 1 3 2 3 1+ +
-

- -= =/ ( / ) ; / ( / )
  Inserting these solutions into the equations of motion, we 

obtain, after elementary manipulations, a system of three 
linear and homogenous equations in A, B, and C which have a 
non-zero solution when the determinant Δ is zero. From Δ we 
have: 
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  a = Mw2 – 2b1; c = mw2 – b1 – b2; b = b1eika; bx = b1e–ika; 
d = b2eika and dx = b2e–ika

  The dispersion relation results from Δ = 0:
  a c c ka( ) cos2

2
2

1
2

1
2

22 2 3 0- - + =b b b b
 (c) When k = 0, this relation takes the form: 

[ ( ) ]( )a c c+ - -b b b2 1
2

22  or
  w w b b w b2 2

1 2
2

12 2( )[ ( )]m Mm M m- - - + .
  The three roots of w2 are obvious. By reinserting their value 

into the system of linear equations we obtain relations 
between A, B, and C. 

  Thus for w2 = 0, the acoustic branch: A = B = C. 

  For w
b b2 1 2 2=

+( )
m

, the first optical branch: A = 0; B = −C. 

  For w b2
12 1 1

2
= +Ê

ËÁ
ˆ
¯̃M m

, the second optical branch: 

A = −m/M (B + C) and B = C.
  We find that the results thus obtained are coherent.
  For the acoustical branch, w = 0, and it depends neither on b1 

nor on b2 because the atoms vibrate in phase. 
  For the first optical branch w does not depend on M because 

the corresponding P atom is effectively stationary because 
the two atoms of Q vibrate at a phase opposition of 180°. As a 
result the restoring forces on P cancel each other.

  For the second optical branch, w does not depend on b2 since 
the two atoms of type Q are in phase with one another while 
still be in phase opposition with atom of type P: the center of 
mass of the molecule QPQ does not move. 

  Figure 9 summarizes these conclusions for the longitudinal 
and transverse vibrations. 

  In the case of ionic crystals of type Ca2+Cl2
−, the force constant b2 

between two ions of the same sign can be negative (repulsive). 
If b2 = –b1/2, the optical branch disappears and the cohesion 
of the crystal disintegrates to allow the formation of molecules 
of type QPQ: a result easy to predict from the evaluation of the 
Madelung constant (see Chapter II, Ex. 2b). 

 (d) At the boundary of the BZ, k = p/3a and cos 3ka = −1.
  At mid-distance k = p/6a and cos 3ka = 0. 
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  In the dispersion relation obtained in (b), the variation of k 
only affects the weight of the term independent of w2 which is a 
product of roots in a third-degree equation. On the other hand, 
the sum of the roots is unchanged because it is independent of 
k. As a consequence, when k increases the expected increase 
of the acoustic branch must correspond to decreasing 
frequencies of the optical branches since, regardless of k:

  w w w
b b b

A M m m
2

01
2

02
2 1 1 22+ + = + +Ê

ËÁ
ˆ
¯̃

MODE TRANSVERSE LONGITUDINAL

w = 0

ACOUSTICAL

w = ( + 2 )/m

OPTICAL 1
1

2 b b2

A = B = C

w = 2 (1/M + 1/2m)

OPTICAL 2
1

2 b

A = 0 B = – C

B = C; M.A = –2 mB

Figure 9

  In particular one may verify that a similar result applies also 
to diatomic crystals at the boundary of the BZ (see Exs. 1 and 
2) and that, here, the solution w2 = b1/m is easily deduced 
from ( )[ ( ) ]c a c+ + - =b b b2 2 1

22 0 when k = p/3a.
  This exercise shows the fact that for a basis of p atoms we 

obtain a given polarization (L or T), an acoustic branch, and 
(p − 1) optical branches. The linear and symmetric basis 
investigated here is relevant also for solid BeH2 and CO2. 
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Exercise 3: Vibrations of a row of identical atoms. Influence of 
second nearest neighbors

Consider a linear lattice with parameter a formed from identical 
atoms of mass m. Each atom is submitted to a force constant b1 by its 
nearest neighbors and to b2 from its second nearest neighbors. 

 (a) Find the equation governing the displacement of atom n, given 
by un (compared to its equilibrium position), as a function of 
un+1, un−1, un+2, un−2. 

 (b) Find the dispersion relation of longitudinal phonons, w = 
f (k), starting from the solution in the form of a plane wave of 
type: u A i t kx A i t knan n= - ª -exp ( ) exp ( ).w w In this relation 
highlight the corrective factor S(k), related to the influence of 
second nearest neighbors. 

 (c) Find the expression for the velocity of sound. Indicate 
the characteristics of the dispersion curve by considering 
successively the hypothesis b2 > 0 and b2 < 0 (b1 is necessarily 
>0). Also sketch the reference curve b2 = 0. Show the 
displacement of atoms un+j as a function of their coordinates 
xn+j for k = p/2a and k = p/a. Explain what happens when 
b2 = −b1/4. 

Solution:

 (a)  mu u u u u u un n n n n n n = + - + + -+ - + -b b1 1 1 2 2 22 2( ) ( )

 (b) u u e

m ka ka

n p n
ikpa

+
-=

- = - + -w b b2
1 22 2 2 2 2( cos ) ( cos ),

 

which gives

   w
b b2 1 2 2 2 2 24

2
4

= + = +
m

ka
m

ka P k S ksin sin ( ) ( )

   w b b b= ◊ + Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙2

2
1 4

21
1 2

2 1
2

1 2

( / ) sin ( / )cos/
/

m
ka ka

 (c) v
k

a m
k

s = ∂
∂

Ê
ËÁ

ˆ
¯̃

= + ◊
Æ

w b b b
0

2 1
1 2

1
2 1 21 4[ ( / )] ( / )/ /

  When b2 = 0, find the result in the Course Summary, Section 
1. 
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 When b2 is positive, the second neighbors have an action that 
adds to the restoring forces exerted by the first neighbors. Accounting 
for them they increase the value of the sound velocity (k Æ 0). The 
maximal influence of b2 occurs when k = p/2a because the second 
neighbors are in phase opposition to the reference atom. Their 
action cancels out at p/a because they are in phase with these same 
atoms (see Fig. 10). 

k a= /p

w

p/2a p/a

x

k a= /2p

0

u

k

u

x
b2 = 0

0> >–b b2 1/4

b q2 >

Figure 10

 When b2 is negative (the case for ions of opposite sign), the 
interactions of the second nearest neighbors result in a repulsive 
force. Their influence is opposite of that described above. The 
situation is only stable when the attractive forces are greater than 
the repulsive forces: b2 > −b1/4. When this is not the case, the crystal 
undergoes a phase change to attain a more stable state. This would be 
the case for example when the basis consists of a diatomic molecule 
(with two identical atoms and two force constants between different 
nearest neighbors. Such a dimerization, studied in Ex. 1, is also seen 
in the previous exercise. In the following exercise, we explore in 
more detail this instability and the appearance of soft modes that are 
precursors of this instability. The electronic aspect of dimerization is 
considered in Chapter V, Ex.4. 

Exercise 4: Vibrations of a row of identical atoms: Influence of 
the nth nearest neighbor

Consider a row of identical atoms with mass m and spaced 
equidistantly by a. The force constant between the atom in position 
n and an atom in position n + p (or n − p) is denoted by bp. 
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 (1) In the Hooke’s approximation, find the equation of motion 
of the atom in position n (where the displacement from 
equilibrium is denoted by un) as a function of the displacement 
of other atoms in the row. Looking at solutions of the form un 
= A exp i (wt − kna), find the relation between w2 and k in the 
form of a sum including bp.

 (2) Explicit the relation above in the limit of long wavelengths and 
deduce the expression for the velocity of sound vs. 

  In fact the restoring forces are alternatively positive and 
negative and decrease in 1/r3: b bp

p p= - +( ) ( / )1 1
1

3 . What is the 
relation between the speed of sound thus obtained and that 
obtained when the action is limited to nearest neighbors? 

 (3) What happens to the expression for w2 as the extremity of the 
wave vector approaches the boundary of the first BZ? From 
physical arguments, explain why only odd atoms in the row 
are influenced by this result? Deduce the values of the |k| for 
which the neighbor of order p has a maximal action and those 
for which this action is zero. 

  Using the law for bp [given in Q. 2 above], find the relation 
between the vibration frequency obtained at the boundary of 
the BZ and that obtained when the action is limited to nearest 
neighbors. 

Solution:

 (1) mu u u un p n p n p n
p

 = + -+ +
=

•

Â b ( )2
1

  By inserting solutions of the type u A i t k n p an p+ = - +exp [ ( ) ]w ,  
one obtains

  
w b2 2

0

4 2=
>

Â( / ) sin ( / )m kpap
p

 (2) In the limit of long wavelengths sin x = x so that

  w b2 2 2

0

=
>

Â( / )a m p p
p

  v k a m pk p
p

s = ∂ =
Ê

Ë
Á
Á

ˆ

¯
˜
˜Æ

>
Â( / ) ( / ) /

/

w w b0
2 1 2 2

0

1 2
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  When b bp
p p= - +( ) ( / )1 1

1
3 , the term between parenthesis is 

just an alternating series:

  1 1
2

1
3

1
4

- + - + ◊◊◊ = log2 from which v a ms log= ( / ) [ ]/ /b1
2 1 2 1 22

  The ratio between the velocities is [log2]1/2 = 0.833. 
  All the neighbors contribute to the velocity of sound, but here 

their actions are alternating and the final velocity is less than 
that resulting only from the action of nearest neighbors. 

 (3) When k = p/a , the expression from (1) becomes

  w b p2 2

0

4 2=
>

Â( / ) sin ( / )m pp
p

  The even values of p cancel the corresponding sine, and the 
odd values of p result in unitary values for the corresponding 
sin2:

  w b2

1

4 2 1= = +
=

•

Â( / )m j pj
j

where  

  When k = p/a, the vibration wavelength l is l = 2a, the odd 
atoms of the row (3rd, 5th, etc.) vibrate in phase opposition 
and the corresponding restoring force is maximum. On the 
other hand, even neighbors vibrate in phase and the restoring 
force they exerted is zero at any time (see Ex. 3, Fig. 10). 

  The action of a neighbor of order p will be maximal when 
sin2(kpa/2) = 1 or k = p−1 (p/a). This situation corresponds to 
the opposite phase between atoms n and n + p where bp has 
the maximum effect and it concerns the same odd multiples 
(3, 5, …) contained in the interval 0 < k ≤ p/a. Conversely, for 
values such as k = 2p−1 p/a and even multiples contained in 
the same interval, the atoms n and n + p always vibrate in 
phase and the corresponding constants bp play no role. 

   The ratio can easily be obtained by summing the first four 
terms of the series in (2n + 1)−3 ≈ 1.048 (For another way of 
doing this summation, see also the following exercise.) 

Exercise 5: Soft modes

Consider a 1D lattice with parameter a composed of identical atoms 
of mass m. In equilibrium the abscissa of the atom n is na and its 
displacement relative to this position, un, is such that |un| << a. 
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 Using the Hooke’s approximation, take into account the forces 
which are exerted between a given atom and all the others without 
limitation to just nearest neighbors. Thus the force constant between 
the atom n and the atom n + p (the same as that between n and n − p) 
is denoted as bp. 

 (1) Find the dispersion relation w(k) taking into account all of the 
possible bp (p > 1). 

 (2) One specificity of the dispersion curves w(k) is the possible 
existence of “soft modes.” We say that a mode is soft when w2 
tends toward zero for a value of k ≠ 0. The appearance of a soft 
mode in a crystal corresponds to instability of the structure 
and to a possible phase change. 

  To show the possibility of w2 going to zero, consider a chain 
of ions of the same mass and alternating charges of +e and –e 
with (–1)ne for the position n. 

 (a) Show that the force constant is electrostatic in origin and 
for an order p is:

  b
pep
e

a

p

p
= -2

0
3 34

2 1( )

 (b) Taking into account another force constant b repulsive 
and limited to the nearest neighbors (in order to prevent 
the overlapping of atoms), find the expression for w w2

0
2 

as a function of k. 

  Use w b
0
2 4=

m
and s

pe b
= e

a

2

0
34

2

  Show that σ must be smaller than 1/log 2 = 1.443 for |k| 
near zero and w w2

0
2  positive. 

 (3) Evaluate w w2
0
2  for |k|= p/a. For this evaluation use the value 

of the Riemann function ζ(3) = S
S

-
=

•Â 3
1

 = 1.202.

  Deduce that if for some physical reason σ increases above a 
certain value σ0, w2 goes to zero for a value of |k| between 0 
and p/a: a soft mode thus appears for σ = σ0 and the lattice is 
unstable for σ > σ0. 
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Solution:

 (1) mu u u un p n p n p n
p

 = + -+ -
=

•

Â b ( )2
1

 (1)

 (2) (a) The Coulomb force exerted between two charges 
separated by a distance rij is Fij = qiqj/4pe0rij

2. Here, 
q e q e r pa u un

n
n p

n p
n n p n p n= - = - = + -+

+
+ +( ) ; ( ) ; .,1 1

   Using the limited expansion of the form (1 + e)–2 ≈ 1– 2e,
   we find: 

   F
e

pa

u u

pan n p

p
n p n

,
( )

( )
+

+= - -
-È

Î
Í

˘

˚
˙

1

4
1 2

2

0
2pe

   The first term contributes to the crystal cohesion by its 
contribution to the Madelung constant (see Chapter II, Ex. 
1), whereas the second term represents the restoring force 
that an atom n + p exerts on another atom n. By identifying 
this second term to be b(nn+p − un), we find the proposed 
expression for bp. 

 (b) Substituting in (1) bp by their expressions and taking into 
account the constant b, one obtains:

  w b b b2
1

2 2

1

4
2

4
2

= -( ) Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃>

Âm

ka

m
p

ka
p

p

sin sin

  or

  w
w

s s

0

2
2

3
1

21
2

1
2 2

Ê
ËÁ

ˆ
¯̃

= - Ê
ËÁ

ˆ
¯̃

+ -
>

Â( )sin ( )
( )

sin .
ka

p
p

kap

p

 (2)

  When k << p/a, that is to say for large wavelengths (center 
of the BZ), we can identify the sine functions and their 
angles. 

  
w
w

s
0

2 2

1 1
1
2

1
3

1
4 2

Ê
ËÁ

ˆ
¯̃

= - - + - ◊◊◊Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇
Ê
ËÁ

ˆ
¯̃

ka

  The alternated series is involved in the Madelung constant 

of the crystal ln and2 1 1
2

1
3

1
4 0

= - + - ◊◊◊Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

, w
w

will only 

be positive for 1 − σln2 > 0; which is the case only when 
σ < 1.443. 

 (3) In the inverse hypothesis, k = p/a (boundary of the BZ), 
expression in 2(b) takes the form:
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  w
w

s p

0

2

3
2

1

1 1
2

Ê
ËÁ

ˆ
¯̃

= + - Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙>

Â( ) sin
p

p p
p

  The summation S is limited to the terms that are odd in p 
because the sines relative to even p are zero. This summation 
is thus

  = - =Â z z( ) ( ) .3 1
2

3 1 053 .

  For w
w0

0
Ê
ËÁ

ˆ
¯̃

> , we must have σ < 0.95. 

  In conclusion, when σ ( )µ - -b 1 3a has a value between 0.95 < σ 
< 1.443, w2 tends toward zero (and the lattice is unstable) for 
a wave vector such that 0 < k < p/a. 

  To know more, see Solid State Phase Transformations in Metals 
and Alloys, Les editions de Physique (1987), in particular, the 
article by M. Gerl, pp. 459–521, and Chapter V, Ex. 4. 

Exercise 6: Kohn anomaly

Consider a 1D lattice, row, of identical atoms equidistant by 
a. It is supposed to be metallic in such a manner that, via 
the conduction electrons, the force constant exerted on an 
atom in position n + p by an atom at position n is of the form 

bp A
pk a

pa
=

sin 0  in which A and k0 are constants. Find, in form of 

an unlimited series, the dispersion relation w = f (k). Without trying 
to evaluate this summation, show that the derivative ∂ ∂( )/w2 k

become infinite for a particular value of k that should be determined. 
Graph the dispersion curve. 

Solution: 

- = + -+ -Âm u u u un p n p n p nw b2 2 ( )

 Substituting bp by the given expression and taking into account 
that un+p = une–ikpa one obtains

w2 0

0

2 1= -
>

ÂA
m

pk a
pa

pka
p

sin( )
( cos )  
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which leads to 
∂

∂
= ◊ = - - +

>
Â( ) sin sin [cos ( ) cos ( ) ]w2

0
0

0 0
2

k
A

m
pk a pka

A
m

p k k a p k k a
p p>>

Â
0

 Then ∂ ∂ = •( )/w2 k when k = ±k0 because one of the two cosines 
becomes equal to unity and then one must sum p from p = 1 to •. 
 The dispersion curve exhibits one point that goes to zero for 
  

k k G= ∞ ± . Its characteristics are shown in Fig. 11 (after Fig. 4 from 
the article by Gerl mentioned at the end of the previous exercise).
 In reality, the constant k0 is such that k kF∞ =

 

2 (where 


kF  is the 
Fermi vector, see Chapter IV.)

3d

2d

1d

0 k

w

k0 = 2kF

Figure 11

Exercise 7: Localized phonons on an impurity

Consider a linear chain of identical atoms of mass m each equidistant 
by a. 
 (a) Limiting the problem to interactions between nearest 

neighbors characterized by the force constant b, give the 
dispersion relation of longitudinal phonons and derive 
the expression of their group velocity. Express the results 
as a function of “a” and of the velocity of sound, vs. What is 
maximum frequency of atomic vibration, nM, when vs = 5000 
m/s?

 (b) An atom in the middle of the chain is replaced by the atom 
of an impurity with a mass m¢ (where m¢ < m). Write the 
displacement equations, u0, for this impurity atom and the 
displacement “un” for an atom located at a distance “na.” 
Assume that the force constant b between nearest neighbors 
is the same regardless of the atom considered. 
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 (c) The impurity atom being lighter than the others it has an 
oscillation frequency n¢m larger than vM and it drags the other 
neighbor atoms by its motion. We try to describe its effect 
with the expression of a damped wave of form: 

  u u x i t kxn = - -0 exp exp ( )a w

  What is the value of the frequency n ¢M, which is compatible 
with the equations of motion when the wave vector is near the 
boundary of the first BZ? Verify that when m = m¢, the solution 
matches that obtained in (a). 

 (d) After having numerically evaluated n ¢m and a when m¢ = m/2, 
sketch the instantaneous position of atoms as a function of x. 

Solution:

 (a) By limiting interactions between nearest neighbors and in the 
Hooke’s approximation, the equation of motion for an atom in 
position n is:

  m
u

t
u u un

n n n
d
d

2

2 1 1 2= + -- +b( )  (1)

  Introducing a solution sinusoidal of the form: 
u u i t kx u i t knan = - ª -0 0exp ( ) exp ( )w w  we find (see Course 
Summary)

   

w b w b= = ∂ ∂ = ◊ Ê
ËÁ

ˆ
¯̃

=

2
2 2

1 2 2 1 2( / ) sin , / ( / ) cos ,/ /

(

m
ka

v k a m
ka

v v k

g

s g ÆÆ =0
2 1 2

)
/( / )ba m

  Thus the following results are established: 
  w = ◊( / ) sin( / )2 2v a kas  and v v kag s= cos( / )2
  Numerical results: nM = vs/pa = 3.18 ¥ 1012 c/s
 (b) To the equation of motion (1) for any atom in the chain, one 

must add the equation of motion of the impurity given by

  m
u

t
u u u¢

d
d

2
0

2 1 1 02= + --b( ) (2)

 (c) Inserting in (1) and (2) the proposed solution for k = p/a

  u u x i t kxn = - ◊ -0 exp exp ( )a w ¢

  ª - ◊ -Ê
ËÁ

ˆ
¯̃

u x i t
a

na0 exp expa w p¢
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  ª ◊ - ◊ - ◊u n a i tn
0 1( ) exp exp ,a w ¢  we thus obtain

  ( ): ( / )( ),( ): ( / )( ),1 2 2 2 22 2¢ w b w ba a a′ ′ ′ ′= + + = +- -m e e m ea a a

  These expressions are compatible with each other only for 
values of eaa, solutions of the second-order equation: 

  x m m m x m m2 2 1 1 1 2 1 0/ [( / ) ( / ) ( / ) ( / )- - + - =¢ ¢ , obtained with x 
= eaa.

  Since one solution leads to eaa = −1, the only acceptable 

solution corresponds to e
m m

m
aa = -( ) ,2 ¢  which gives

w b¢
¢ ¢

2 4
2

=
-m
m

m m
.

  When m = m¢, this solution can be identified with that 
obtained in (a) for the undisturbed chain at the boundary of 
the BZ, that is to say eaa = 1 or a w w b= = =0 4 1 2, ( / ) /¢ m  and 
u u i tn= -0 1( ) exp .w

  Mathematically eaa and w¢2 must be positive, m¢ < 2m, but 
physically a damping term is needed: a > 0 and eaa > 1. This 
can happen only for m¢ < m. In this case, m¢ < m, the ratio w¢/w 
increases and the vibration of the impurity is more localized 
when the mass is smaller and smaller compared to the mass 
m of the other atoms of the lattice. 

 (d) When m¢ = m/2, eaa = 3, n ¢M =2 nM/ 3  = 3.67 ¥ 1012 c/s.
  The corresponding displacement u of atoms, u = f (x), is shown 

in Fig. 12a. The wave being longitudinal, the position of the 
atoms in real space is that shown in Fig. 12b. 

- a2

u0

u 2-

-a a 2a0
u1

u

-a 0 a 2a

u 1-

-2a

u0 u1 u2

(a) (b)

Figure 12

Exercise 8: Surface acoustic modes

Consider a semi-infinite row of atoms that are equidistant by “a” and 
numbered 0, 1, 2, … n, . . .. The surface atom (n = 0) as a mass M¢ 
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and is submitted to the force constant b¢ with its nearest neighbor  
(n = 1). The other atoms in the row are identical with a mass M and 
are submitted only to the actions of their nearest neighbors with 
force constant b. 

 (a) Write the equations of motion of atoms: 0, 1, and n (where 
n ≥ 2). 

  

0 1
M¢ M

b¢

2
M

b

3
M

b

4
M

 (b) For the semi-infinite chain, suppose that the displacements 
u relative to a localized excitation (surface mode) obeys the 
following relations:

  u Be u C e ei t
n

n kna i t
0 1= = - -w wand ( ) ,

  where B and C represent constant amplitudes. How do the 
equations of motion change? What relation between ka, b¢/b 
and M¢/M must be satisfied for nontrivial solutions (B, C ≠ 0) 
to exist? 

 (c) How can the relation between b¢/b and M¢/M be simplified 
when one observe that k must be positive for physical waves 
located near the surface? How are the frequencies of these 
surface modes situated with respect to the corresponding 
volume modes? 

Solution:

 (a) M u u u¢ ¢0 1 0= -b ( )  (1)

  Mu u u u u1 2 1 0 1= - + -b b( ) ( )¢  (2)

  Mu u u un n n n = + -+ -b( )1 1 2  (3)

 (b) Inserting the proposed solution into Eq. (3), we do not obtain 
the usual result (see Ex. 3) because the wave is damped:

  w b2 2= + +-( / )( )M e eka ka  (3¢)

 (c) Inserting the proposed solutions into Eqs. (1) and (2) we find 
the following system:

  ( )b w b′ ′ ′- + =-M B e Cka2 0   (1¢)
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  b b b w b′ ′B e M eka ka+ + - + =- -( )C2 0   (2¢)
  In order for Eqs. (1¢) and (2¢) to have nontrivial solutions the 

determinant of the coefficients must be nonzero. Taking also 
into account Eq. (3¢ ), we find

  b b b b b b¢ ¢ ¢ - ¢- + +È
ÎÍ

˘
˚̇

- - =-M
M

e e eka ka ka( ) [ ] .2 02

  Using x = eka, this condition becomes
  x M M x2 2 1 0+ - - ◊ + - =[ ( / ) ( / ) ( / )] ( / ) .b b b b b b¢ ¢ ¢ ¢
 (d) For the wave to have a physical meaning, k must be positive, 

which leads to x > 1 and –C > 1 + b resulting in

  
b
b

b
b

′
′ ′ ′>

+
>

Ê
ËÁ

ˆ
¯̃

-
4

2
4 2

( / )
.

M M
M
M

or

  The corresponding frequencies (3¢) are such that 
  w b w2 22 1= + ≥( / )( )m ch ka M
  where wM represents the maximum angular frequency for an 

infinite row of identical atoms [wM = (4b/M)1/2].

 Thus the acoustic surface modes can only exist with frequencies 
greater than those of the volume modes. This situation can only 
occur when the force constant b ¢ (relative to the surface atom) is 
sufficiently larger than b (relative to the row atoms) or if the mass M¢ 
of this surface atom is small compared to those in the row of atoms. 
 One may point out similarities between the present exercise and 
that treating localized phonons (see Ex. 7). The results differ because 
of different geometries: m¢ < m (Ex. 7); m¢ < m/2 when b¢ = b and 
k = p/a, here. The key point is the existence of localized modes having 
larger frequencies than those of the indefinite crystal but only when 
some restrictive conditions are satisfied. 

Exercise 9: Atomic vibrations in a 2D lattice 

Consider a 2D square lattice of parameter “a” formed from identical 
atoms of mass m that are submitted to a force constant b between 
nearest neighbors and are forced to move perpendicular to the lattice 
plane (Z mode: associated with out-of-plane atomic motions). 

 (a) Find the equation relative to the displacement ulm of an atom 
belonging to the lth column and the mth row. 
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 (b) Starting from a solution of the form of running waves u = Aexpi 
(wt – kxx – kyy), find the dispersion relation for the z-mode 
vibrations, w = f (k). 

 (c) Sketch the corresponding curves in the [10] and [11] 
directions. What is the maximum vibration frequency nM ?

  Draw a few curves of isofrequencies within the first BZ, notably 

the curves where w << 4b
m

 and those where w = 4b
m

. 

 (d) Starting from periodic boundary conditions, with periodicity 
L along x and along y, find the density of vibration modes g(k) 
in k space and deduce the density of modes g(n) in frequency 
space (limiting the evaluation to the frequency domain 
corresponding to wavelengths which are large compared to 
the inter-atomic distances). 

 (e) After evaluating the components of the group velocity, indicate 
the method that would allow to obtain g(n) over all allowed 
frequencies. Just describe the principles of this method, 
without the corresponding tedious calculations. 

Solution:

 (a) Limiting the problem to interactions between the four nearest 
neighbors and within the Hooke’s approximation, the equation 
of motion of an atom in position l, m is

 m
u

t
u u u u u ul m

l m l m l m l m l m l m

d
d

2

2 1 1 1 12 2,
, , , , , ,( ) ( )= + - + + -+ - + -b b

 (b) Inserting the running wave solution

  u A i t k x k y A i t k la k mal m x y x y, exp ( ) exp ( )= - - ª - -w w

  into this equation we find 

  
- = - + + - + -

+ +

m u ik a ik a u ik al m x x l m yw b b2 2, ,[exp( ) exp( ) ] [exp( )

exp( iik a uy l m) ] ,- 2

  from which we find the dispersion relation:

  w b w b2 2 22 2 4
2 2

= - - +
Ê
ËÁ

ˆ
¯̃m

k a k a
m

k a k a
x y

x y( cos cos ) sin sinor =2
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 (c) Along the [10] axis where ky = 0, we find w b2 24
2

=
m

kasin . This 

result is the result obtained for a row of identical atoms within 
the same simplifying assumptions and values of kx that have a 
physical meaning in the interval.

  What was said for kx, - £ £p p
a x ak  applies also for ky and the 

region in 


k  space k
 k

k
x

y
for which independent solutions exist 

into the first BZ, see Fig. 13a.

  In the [11] direction: kx = ky = 
k

2
 and the dispersion relation 

becomes w b2 28 2 2= ( / )sin ( / ).m k a

  In this direction, the maximal frequency nM is v mM = 1 2 1 2

p
b( / ) /  

and it is 2  times greater than that obtained in the [10] 
direction because the modulus of the wavevector is 2  times 

larger: k k k
ax y= + =( ) /2 2 1 2 2p

M

X
p/a

Kx

10

p/ a

E

dk^

[11]
2/p a / ap

[10]XM

2 2 /b m
2 / mb

w

0
01

F

X1

X2

X3

(a) (b)

Figure 13 First BZ of a square lattice with isofrequency curves at left and 
dispersion curves at right. 

  For the wavelengths larger than inter-atomic distances 
(ka << 1), the dispersion relation reduces to

 w b b2
2 2

2 24
2 2

= Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

= Ê
ËÁ

ˆ
¯̃m

k a k a

m
k ax y
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  and the isofrequency lines around the origin are essentially 
circles. 

  This is no longer the case for the isofrequency lines far away 
from the origin. We observe, in particular in Fig. 13b, for the 
same frequency 2 (b/m)1/2, the modulus of k is 2  smaller in 
the [11] direction than in the [10] direction. The isofrequency 
lines obey the general relation: sin2(kxa/2) + sin2(kya/2) = 
constant with –p/a ≤ kx ≤ p/a and –p/a ≤ ky ≤ p/a. They are 
shown schematically in Fig. 13a. Specific curve of isofrequency 
w2 = 4b/m (constant = 1) is the square marked by X, X1, X2, X3, 
the corresponding lines obeying to kx = p/a ± ky. An analogous 
situation exists for the isoenergy curves of electrons in a 
square lattice (see Chapter V, Ex. 2, Fig. 2b). 

 (d) The periodic boundary conditions of the type Born, von 
Karman, can be written as u(x, y) = u(x + L, y) and u(x, y) = 
u(x, y + L). By inserting them into the expression of the running 
wave [see Q. (b)] one obtains a variation of kx and ky in steps of 
2p/L because exp –(ikxL) = 1 and exp –(ikyL) = 1. 

  Inside of the first BZ, each vibration mode corresponds to a 
point at 2pn/L on the x-axis and at 2pm/L on the y-axis; n, m 
being integers such that –L/a ≤ m, n ≤ L/a. 

  The density of mode g(k)dk corresponds to the number of 
modes contained in a circular ring of inner radius k and outer 
radius k + dk (see Fig. 14a). 

C

g(k)
D

r

ky

o
k

x kx

2p
a

2 /Lp

– /p a

2 /Lp

p/a

M

p/a

(a) (b)

Figure 14

	 •	 For |k| ≤ p/a, g(k) = L
k

2

2p
 because 
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  g(k)dk = 2
2 12
p

p

k k

L

d Area of the ring
Area occupied by modeÊ

ËÁ
ˆ
¯̃

=

	 •	 For p/a ≤ |k| ≤ p 2 /a, 

g k
L

k
k a

ak
( ) [ ( / )] /

= -2

2

2 2 2 1 2

2
2

p
p parc cos

  Taking into account the length of the arc CD  such that 

  CD k
ak

k
a

 = -
Ê

ËÁ
ˆ

¯̃

È

Î

Í
Í

˘

˚

˙
˙

arc cos 2
2

2
2

2

1 2
p p

/

  For large wavelengths, the isofrequency lines are circles and 
the dispersion relation reduces to:

  v
a
m

k g v v g k k
L

k k=
Ê

ËÁ
ˆ

¯̃
◊ = =1

2 2

2 1 2 2

p
b

p

/

; ( ) ( )d d d or 

g v L
v

a m
( )

( / )
= 2

2
2p

b
  The curve g(k) is shown in Fig. 8b. The curve of g(v) only 

follows the same linear evolution in n when k << p/a. 
 (e) Differentiating the dispersion relation in (b), we find two 

components of the group velocity, vg



:

  
v

k a m k a

k a m k ag k
x x

y y

  

= — =
∂ ∂ =
∂ ∂ =

Ï
Ì
Ô

ÓÔ
w

w b w
w b w

/ ( / )sin
/ ( / )sin

  To evaluate the exact density of vibration modes g(n), one 
must first evaluate the number of modes contained in the 
area d d



 

s k/ ^  (see Fig. 14a), in which ds


 represents the arc 
element, EF ,  measured along the isofrequency curve n = n0 
(see Ex. 19, Fig. 20). 

  Integrating along the length of the complete curve we find:

  g v dv
I

L
ds dk

L ds

v
v

g

( )
/

.0 0

2 2

22 4
2=

Ê
ËÁ

ˆ
¯̃

◊ =Ú Úp p
p⊥

 

d

  This formula is a 2D application of the general expression for 
the density of modes (Ex. 19). By writing the terms explicitly 
in rectangular coordinates:
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g v dv
L

dv
dk dk

k k

x y

x y

( )
( ) ( )

0 0

2
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2 2

2 22
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Ê
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+ ∂
∂

Ê

Ë
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È
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˙
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Ú 1 2
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v v

  By differentiating the dispersion relation 
2mwdw = 2ba (sinkxa dkx + sinkya dky) = 0,

  one obtains

  g v
L mv

a
k
k a

x

y

( )
sin

.0

2
0= Úb

d


  The resolution of the integral leads to tedious calculations. We 

can limit the resolution to large wavelengths, so that Ú = 2p
a  

in order to verify that the result obtained is identical to that in 
Question (d) (see Ex. 18; Chapter IV, Ex. 14; Chapter V, Ex. 2).

Exercise 10: Optical absorption of ionic crystals in the infrared

In ionic crystals the evaluation of the resonant frequency of ions (TO 
branch at k = 0) results in the following relation:

 w b m
m

2 2 1 1 1= = +/ where
M m

(see Course Summary) in which the 

constant force b may be identified to that of a Coulomb force between 
two neighbor ions separated by a distance r0 at equilibrium. 
 Using this simplified scheme, find numerically the wavelength 
of absorption of Na+Cl− and Zn2+S2− in the infrared with r0(NaCl) 
= 2.815 Å and r0(ZnS) = 2.34 Å  [see Chapter I, Fig. 1 (c & e)]. 
Compare the results to experimental values: l(NaCl) = 61 µm and 
l(ZnS) = 35 µm.
Note: The constants involved in this problem include M(Cl); m(Na); 
M(Zn); m(S) and they are indicated in the periodic table in the 
beginning of this book. The other constants such as e, e0, c, and N are 
also given in Table I at the beginning of this book.

Solution:

The restoring force F between two ions is F ≈ br0 and the Coulomb 
force F = Z2q2/4pe0r0

2. In the latter equation Zq corresponds to the 
charge of each ion. It is easy to deduce b numerically: 
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 b(NaCl) = 10 N/m with Z = 1; b(ZnS) = 72 N/m with Z = 2. The 
wavelength of optical absorption corresponds to l = c/n in which 
the optical frequency of absorption coincides with the resonant 
frequency of ions υ = w/2p. 
 l(NaCl) = 64 µm; l(ZnS) = 29.7 µm. 

Remark: It is surprising that there is such an excellent agreement 
between this rather approximate model and the experimental 
values. A more rigorous calculation of the restoring force between 
ions would use the Madelung constant and the force of repulsion 
which partially compensates for the small differences. 
 A rigorous calculation would follow the procedure for CsCl (Pb. 
3) using the preliminary results from Chapter II, Pb. 2. 
 We may keep in mind the main trends such as a resonant 
frequency of the ions proportional to b m/ with a coefficient b 

that varies as r0
–3. This frequency is larger when the ions are closer 

together and are light ions as it is for ions with low atomic number. 
This overall tendency is confirmed by the following experimental 
results (R. H. Bube, p. 43 [4]).

Crystal Li H Li F Li Cl Li Br K Br Cs Cl Cs I Tl Br
l (mm) 17 33 53 63 88 100 158 233

 The resonant frequency increases also with the increase of the 
charge carried by the ions. These points explains why the absorption 
wavelengths of MgO (l = 25 µm) and of ZnS are shorter and of the 
order of that of LiF. 

Exercise 11: Specific heat of a linear lattice

Consider a linear lattice consisting of N identical equidistant atoms 
separated by a. 
 (a) In such a lattice what is the density of vibrations in k-space, 

g(k), for the single possible longitudinal mode.
 (b) Suppose that the dispersion relation of phonons can be written 

in the Debye approximation as w = vs|k| where vs is the sound 
velocity. Find the density of vibrations in n-space, g(n). State 
the maximum vibration frequency nD (the Debye frequency) 
of atoms in such a lattice.

 (c) In the form of a definite integral, find the expression for the 
internal energy due to these lattice vibrations and deduce the 
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behavior of the specific heat of a linear lattice at high (kBT >> 
hnD) and low (kBT << hnD) temperatures.

Application: Use a = 3 Å and vs = 3000 m/s. Find numerically the 
Debye temperature qD (such that hnD = kBqD) and the specific heat of 
atomic vibrations at 10 K. 
Note: One can use either fixed or periodic boundary conditions but 
in the latter case, one must take into account that wave vector k 
can be either positive or negative. Use F1 (Course Summary, end of 
Section 6). (e, h, kB)

Solution:

 (a) The atomic waves are of the form:
  u x A i t kx( ) exp ( )= ◊ -w
	 •	 If we use periodic boundary conditions of the Born von 

Karman type, we must have u(x) = u(x + L) or exp (ikL) 
= 1 and discrete values of k = 2 p/L in the interval from 
–p/a ≤ k ≤ p/a (first BZ) and the corresponding waves are 
traveling waves. 

	 •	 If we use the fixed boundary conditions u(0) = 0 and 
u(L) = 0, the first condition implies an incident wave of 
the type A exp i(wt − kx) and a reflected wave B exp i(wt 
+ kx) such that A = −B. The resulting waves A exp i(wt − 
kx) − A exp i(wt + kx) = −2Ai sin(kx) exp iwt is a standing 
wave. This wave is the result of two traveling waves of the 
wave vector k with the same modulus but propagating in 
the opposite direction (see Final Remark). The possible 
values of k are therefore positive 0 ≤ k ≤ p/a and the steep 
variation is given by: u(L) = 0 (second condition), or sin kL 
= 0, which results in k = np/L. 

  In the second hypothesis, g(k) = L/p with 0 ≤ k ≤ p/a, 
whereas in the first hypothesis g(k) = L/2p with –p/a ≤ k 
≤ p/a but in both cases the number of possible values of 
k is equal to L/a = N, which is the total number of atoms 
contained in L.

 (b) As shown in Fig. 15, we have g(w) dw = g(k) or, in both cases

g
v

Na( )w
p

= ◊1

s
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  From which we obtain 

  g v
Na
v

( ) = ◊2

s

  The Debye frequency of such a lattice is g v dv N
v

( ) ,=Ú0

D
 which 

gives v
v
aD
s= ◊

2

w

0

k

w

k
– /p a 2 /p L p/a p/L p/a

Figure 15 Periodic boundary conditions (left) and fixed boundary 
conditions (right).

 (c) The internal energy U due to longitudinal vibrations of the 
lattice is

  U g v n v hv v
v

= +Ê
ËÁ

ˆ
¯̃

◊Ú ( ) ( ) ,
0

1
2

D
d  where n v

hv k T
( )

exp( / )
=

-
1

1B

  Neglecting the half quantum which does not enter the 
determination of the specific heat we have 

  U
Na
v

hv v
hv k T

v
=

-Ú2
10s B

dD

exp( / )
.

  This integral may be evaluated numerically and the evolution 
of Cv may be deduced next (see Course Summary, Section 6, 
Fig. 3). More interesting is the following discussion.

 • At high temperature kBT >> hnD, e
hv

k T
hv k T/ B

B
ª + + ◊◊◊1 and 

U
Na
v

k T v Nk T
vD

= =Ú2
0s

B Bd  

  We find the classical limit: kBT with kBT/2 for the kinetic 
energy and kBT/2 for the potential energy per oscillator 
and per degree of freedom 1 and Cv = NkB.
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 • At low temperatures kBT << hnD, which implies ª
•

ÚÚ 00

vD ; 

substituting hv
k T

x
B

= , we find

  U
Na
v

k T
h

x x

e

Na
v

k T
hx=

-
=

•

Ú2
1 3

2

0

2 2

s

B

s

Bd( ) ( )p

  which results in

  C
Na
v

k
h

Tv
s

B= ◊2
3

2 2p

  If we use the Debye temperature qD, such that kBqD = hnD = 
hnS/2a we find

  C Nk
T

U Nk
T

v B
D

B
D

= =
Ê

ËÁ
ˆ

¯̃
p

q
p

q

2 2 2

3 6
.

  In the case of linear lattice, the variation of Cv at low 
temperature is in (T/qD), when the lattice is two-dimensional 
it is in (T/qD)2 and in 3D in (T/qD)3 (see the paragraph at the 
end of Ex. 18). 

  Numerically qD
B

s= ◊ =h
k

v
a2

239  K

  At 10 K, Cv/N = 0.138 kB = 0.19 ¥ 10−23 J/deg = 0.12 ¥ 10−4 eV/deg. 
  The expressions Cv and U concern only one polarization and 

must be multiplied by three if taking into account the two 
transverse vibrations and the one longitudinal vibration. 

  Final Remark: The fixed boundary conditions impose k = np/L 
or l = 2L/n, which is none other than the resonant condition 
for vibrating cord pinched at O and L and, since we neglect 
the dispersion, ( / )∂ ∂ = =w k v Cstes , the possible vibration 
frequencies obey nn = n.vs/2L. If there is an absolute identity 
between the problem of a vibrating cord and the present 
exercise, it is the tight analogy with the discrete frequencies 
of an EM wave imprisoned between two parallel mirrors 
separated by L and the problem of a free electron trapped in 
a well of linear potential with infinite walls. In the latter case, 
the density g(k) is identical to that established in (a) but the 
dispersion relation is different ( / )E h k m= 2 2 2 because g(E) 
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is different (see Chapter IV, Exs. 11 and 14). In addition, for 
electrons we must also include the factor of 2, related to their 
spin, g(E). 

  The discrete variation of wave vectors of vibrating atoms is 
imposed by the limiting conditions of a crystal in 3D is similar 
to the problem of a free electron enclosed in a crystal, as 
well as the study of the resonant wavelengths of EM waves 
into a parallelepiped cavity with the discrete variations 
of the resonant frequencies. It should be emphasized that 
this discretization imposed by the classical boundary 
conditions is not what justifies the name “phonons” given 
to vibrations of a lattice (in the same way that the idea 
of “photon” is not associated with the discretization of 
frequencies of EM waves into parallelepiped cavities). It is 
the quantization of the energy of vibration such as it appears, 
for example, in the calculation of the specific heat in part 
(c) (see also Exs. 20 and 21 that justify this appellation). 

  Said in another way, the expression for an atomic wave (or 
electronic or light) is of the form A exp i(wt − kx), the notion of 
phonon (or photon) is associated with the fact that the energy 
of the wave AA* is proportional to nxhn (plus ½ of a quantum 
for phonons). 

Exercise 12a: Specific heat of a 1D ionic crystal

Consider the row formed by 2N charged ions of charge alternatively 
equal to ±q and equidistant by R0 in equilibrium as in Ex. 2. Using the 
dispersion relation for longitudinal acoustic phonons in the Debye 
model, w = vsk, and the dispersion relation for optical phonons in the 
Einstein model where noptical = nE = constant, find the specific heat at 
low and high temperature for the longitudinal polarization only. 
 Numerical application: After finding first the numerical values of 
the Debye temperature qD and the Einstein temperature qE, calculate 
the specific heat of the crystal. Specify the respective contribution 
(by pair of ions) of optical and acoustical phonons at 20 K with hnD = 
kBqD and hnE = kBqE with nE = 9.5 ¥ 1012 c/s ; R0 = 3 Å ; vs = 8800 m/s. 
Use F1. (h, kB, e) 
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Solution:

Using the results of Ex. 2, we sketch the dispersion of the acoustic 
and optical branches in Fig. 16. For each branch the density of states 
in k-space, using periodic boundary conditions, is: g(k) = L/2p = 
2NR0/2p, where −p/2R0 ≤ k ≤ p/2R0 (see preceding exercise). We 
verify that the number of oscillators per branch is

 
p

p
/

/
R
NR

N0

02 2
= ,

where N is the number of ion pairs contained in the chain. 

w

LOwE

LA

0– /2p R0 p/2R0

k

2 /Lp

Figure 16

 (a) Specific heat associated with the acoustical branch: 
  Following the demonstration step by step from the preceding 

exercise, we find: C Nk
T

VA B
D

= p
q

2

3
 at low temperature and 

CVA = NkBT at high temperature. 
 (b) Specific heat associated with the optical branch:
  N oscillators have a frequency nE, the total energy of 

corresponding vibrations, neglecting the half quantum, is

  U Nhv
hv
k T

0
1

1
= ◊

Ê
ËÁ

ˆ
¯̃

-
E

E

B
exp

.

  The high temperature limit e
hv
k T

hv k TE( / )B E

B
@ + + ◊◊◊

Ê
ËÁ

ˆ
¯̃

1 is 

  E0 = NkBT. 
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  For the low temperature case ( )( / )e hv k TE B >> 1 , we have 

E Nhv e T
0 = -

E
E( / )q , where C Nk

T
e T

vo B
E E= Ê

ËÁ
ˆ
¯̃

◊ -q q
2

( / ) . 

 (c) In total, we find
 • At low temperature, kBT << hnD, hnE, 

C Nk
T

T
e T

v B
D

E E= +
Ê

ËÁ
ˆ

¯̃
-

q
q q

2

2
( / )

 • At high temperature, Cv = 2NkB, or 2kB per pair of ions. 

  Numerical application:

  q qE
E

B
D

D

B

s

B
K K= = = = =

hv
k

hv
k

hv
k R

456
4

352
0

,

  At 20 K, the respective contributions of acoustical and optical 
phonons to the specific heat for a pair of ions are 0.48 ¥ 10−4 
eV/K and 2.5 ¥ 10−7 eV/K. As we can see the specific heat at 
low temperature is uniquely due to the excitation of acoustic 
phonons and at high temperatures, both types of phonons 
contribute with the same weight. We have limited our study 
here to only the longitudinal vibrations and the expressions 
for U and Cv should be multiplied by 3 to take into account the 
three polarizations (two transverse and one longitudinal). 

Exercise 12b: Debye and Einstein temperatures of graphene, 
2D, and diamond, 3D

The crystal basis of graphene and of diamond is composed of two 
carbon atoms in nonequivalent position (see Chapter I, Fig. 1d in 
Ex. 1 for diamond and Fig. 9a in Ex. 9b for graphene). Thus their 
dispersion curves are composed of acoustical branches and optical 
branches. Like in the above Ex. 12, Fig. 16, their acoustical branches 
are assumed to obey to the Debye approximation: w = vs|k| and their 
optical branches are assumed to obey to the Einstein model w = 
wE = Cst. Deduce the numerical values of their Debye and Einstein 
temperatures from their crystal structure and their common sound 
velocity, vs = 18,000 m/s with also nE (Einstein frequency) at about 
4 ¥ 1013 Hz.
 From the Cv graph shown in Course Summary, Section 6, evaluate 
the specific heat of diamond at room temperature, 290 K. (h, kB)
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Solution:

The Einstein temperature is derived easily from hnE = kBqE. Then qE 
= 1800 K. 
 For graphene, the Debye wave vector, kD, may be derived from 
pkD

2 = N(2p/Lx)(2p/Ly), where N is the number of primitive cells 
contained in a surface of dimension Lx ¥ Ly. 
 For diamond, the Debye wave vector, kD, may be derived from 
(4p/3)kD

3 = N(2p/Lx)(2p/Ly)(2p/Lz), where N is the number of 
primitive cells contained in a volume of dimension Lx ¥ Ly ¥ Lz. 
 The area of one hexagon of graphene is 6d2√3/4 with d = 1.42 
Å. This area contains the equivalent of two C atoms or one primitive 
cell. pkD

2 = 8p2/(3√3d2); kD = 1.175 Å−1; nD = vskD/2p = 33.7 ¥ 1012 
Hz; qD ~ 1615 K.
 The volume of the cubic cell of diamond is a3 with a = 3.56 Å. This 
volume contains the equivalent of eight C atoms or four primitive 
cells: (4p/3)kD

3 = 4(2p)3/a3; kD = 2p(3/p)1/3/a = 1.74 Å−1; nD = 
vskD/2p = 50 ¥ 1012 Hz; qD ~ 2340 K.
 At room temperature, T/qD is ~0.125 for diamond. This value 
is slightly outside the end of the Cv increase in (T/qD)3. From Fig. 3 
shown in Section 6 of Course Summary, one obtains Cv ~ 4 J/mol◊K.  
The present evaluation of qD may be improved in taking into 
account the difference between longitudinal and transverse modes 
in simplified dispersion relations (see Pb. 4) but the order of 
magnitude for qD remains: the currently admitted value is ~2230 K. 
Thus diamond has the highest Debye temperature of any material 
that is one of its many superlative features. As mentioned previously 
in Ex. 9b for graphene, the microscopic causes are the tight binding 
between neighbor atoms, b, combined to their light mass, m, 
explaining the value taken by the sound velocity (proportional to 
√b/m). 

Exercise 13: Atomic vibrations in an alkaline metal: Einstein 
temperature of sodium

A model for the restoring forces exerted on alkaline metal atoms is 
to consider a lattice of ions (+e, M) immersed in a sea of conduction 
(free) electrons (with charge of −e)—the Fermi sea. These ions are in 
equilibrium when located on the lattice points. If an ion is displaced 
from a distance u, the restoring force that will bring it back to 
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equilibrium is in large part due to the electronic charge contained in 
the sphere of radius u centered on the position of equilibrium where 
u << a; a is the lattice parameter of the alkaline crystal lattice, which 
is always body-centered cubic. Each atom gives one free electron 
uniformly distributed in the crystal. 

U
U

Figure 17

 (1) Find the expression of the force constant b as a function of the 
parameters e and a. 

 (2) Find the frequency of oscillation of the ion
  Numerical application: For sodium, use M = 29 and a = 4.22 Å. 
  Compare the obtained result to the maximum frequency of 

acoustic waves n = 3.8 ¥ 1012 Hz (experimental value).
 (3) In the model described above, the atoms vibrate independently 

from each others; the density of modes is therefore described 
by the Einstein model. Find the expression and the numerical 
value for the Einstein temperature qE of sodium. Compare the 
result with the experimental value of the Debye temperature 
qD (Na) ≈ 160 K. (e, e, N)

Solution:

 (1) The atomic concentration (and therefore the electronic 
concentration) is n = 2/a3–bcc. The electronic field created 
by the gas of conduction electrons at a distance u is (Gauss’ 
Theorem): 

  E ur

 

= r
e3 0

 with r = –ne 

  By identifying the Coulomb force with the force constant we 
find

  - = - =ne
u u

e

a

2

0

2

0
33

2
3e

b b
e

;
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 (2) w b= M because we are considering independent 
(noncoupled) harmonic oscillator.

  b = 26 N/m; nE = 3.7 ¥ 1012 Hz. The agreement with the 
experiment is excellent. 

 (3) hv k
h

k
e

MaE B E E
B

K= = =q q
e

; 2
3

178
3

0
3

  For the temperatures, the agreement between the calculated 
value of qE and the experimental value of qD (160 K) is just 
fortuitous, given the underlying hypothesis for each of them 
leading to qE ≈ qD/ 3 (see Ex. 21). 

  The important point is that a rather rough approximation is 
sufficient to understand the basic physical phenomena. 

Exercise 14: Wave vectors and Debye temperature of mono-
atomic lattices in 1-, 2-, and 3D

Consider successively the following lattices (a) a linear lattice with 
parameter a; (b) a 2D centered rectangle (a ¥ b); (c) a body-centered 
cubic lattice with lattice parameter a. The basis in each case consists 
of a single atom.
 Knowing that each cell in the k-space can have only one oscillator 
(for one mode of vibration L or T), we fill the cells starting by those 
corresponding to the smallest wave vectors up to a complete filling 
where the Debye wave, kD, is attained. Find the expression for kD for 
each of the three lattices. Use periodic boundary conditions. 
 (1) In the case of lattice (b), sketch the reciprocal lattice, the first 

BZ and the limit of the filling defined by kD (see above). Take a 
= 3 Å and b = 4 Å. Answer the same question for the lattice in 
(a). 

 (2) The sound velocity in the three lattices vs being known, find 
the expression for the frequency and the Debye temperature 
nD and qD. 

Solution:

Using periodic boundary conditions, the dimension of the cells in 
k-space will be 2p/Lx, 2p/Ly, 2p/Lz. We must distribute one oscillator 
per cell and the number of oscillator is Lx/a oscillators for (a), 
2LxLy/ab oscillators for (b) and 2LxLyLZ/a3 oscillators for (c). 
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 The result is (see Fig. 18a)

 
( ) ;a D D2 2 2

k
L
a L a

k
a

x

x

= ¥ = =p p p

 

( ) ;

( )

/

b

c

D D

D

p p p p

p

k
L L

ab L L
k

ab

k
L L L

x y

x y

x y

2
1 2

3

2 2 2 8

4
3

2

= ¥ ¥ = Ê
ËÁ

ˆ
¯̃

= zz

x y za L L L
k

a3

3 2 1 38 12◊ =p p; ( ) /

D

02

11

X

X

X

XX

X

20

(b)

00

kD–kD X kD

(a)

-p/a p/a
2p/Lx

0

Figure 18

 The result (a) is foreseen because the first BZ contains all of the 
oscillators of the crystal. The results for (b) and (c) include the fact 
that there are two atoms in each lattice considered. 
 The results could have been expressed as a function of the linear, 
surface, or volume atomic concentrations, respectively. See the table 
in Ex. 18. 
 The reciprocal lattice in hypothesis (b), has already been studied 
in Chapter I, Ex. 19; see also Fig. 18. 
 The area delimited by the circumference of Debye is identical 
to that of the first BZ but the form is different because the Debye 
circumference zone is not affected by the crystalline lattice (and it 
is uniquely a function of the atomic concentration). This is also the 
case in 3D.
 The Debye model is based on a dispersion curve of the form 
w = vsk, or nD = vsk/2p. In addition hnD = kqD. As a result:
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 We observe that these results are compatible with those given 
in the table of Ex. 18 (taking into account that the two atoms for the 
lattice a × b in (b) and for the volume a3 in (c). 
 Note: (1) The method adopted here will be reconsidered point by 

point to determine the Fermi wave vector kF of free electrons 
in Chapter IV. The only difference concerns the fact that each 
cell can accept two electrons (≠Ø) instead of an oscillator as 
considered here (associated with the number of phonons 
function of T). The result is that the number of occupied cells 
of monovalent metal (1e−/at) will be two times smaller than 
here. 

  (2) The method developed in this exercise allows the quick 
estimate for an order of magnitude of qD for a given solid and 
from this one can deduce its resulting thermal properties of 
a solid. It is sufficient to know the sound velocity (directly 
accessible from the macroscopic elastic constants or the 
microscopic force constant). An interesting application is 
given in the following exercise.

Exercise 15: Specific heat at two different temperatures

At 300 K the specific heat of a lattice of an element, Cv, is 20 
J/mol/deg. Using the curve of Cv = f (T), shown in the Course 
Summary, find the Debye temperature of this element and its specific 
heat in cm3 at 150 K. Assume that its atomic density is N = 5 ¥ 1022 
cm−3. (N)

Solution:

Graphically 20 J/mol/deg corresponds to T/qD ≈ 0.45, which gives 
qD = 666 K. 
 At 150 K, Cv ≈ 11.3 J/mol/deg or (by multiplying by N/N)
 Cv = 0.94 J/cm3/deg. 
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Exercise 16: Debye temperature of germanium

Find the Debye temperature of germanium starting from its specific 
heat measured at 3.23 K: Cv = 12.5 ¥ 10−4 J/mol/deg. 
 Compare this result with that obtained from evaluating the 
average sound velocity vs = 3.75 ¥ 103 m/s. The atomic density of Ge 
is N ≈ 4.42 ¥ 1022 cm−3. (N, kB, h)

Solution:

At 3.23 K, Cv varies as T3:

 C N k
T T

v B
D D

=
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

= ¥ -12
5

1941 12 5 10
4 3 3

4p
q q

.  or 

 T

Dq
Ê
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ˆ
¯̃

= ¥ -
3

60 643 10. , qD =374 K

 To evaluate qD using the sound velocity, we write kD = (6p2 
N/V)1/3, followed by nD = vskD/2p and finally qD = hnD/kB.
 This gives

 k vD D Dm c/s K= ¥ = ¥ =-1 378 10 8 22 10 39410 1 12. , . ; .q

 For a discussion of the different results obtained by these two 
methods, see the comments in Pb. 4. 

Exercise 17: Density of states and specific heat of a 
monoatomic 1D lattice from the dispersion relation

Consider a row of N identical atoms of mass m and equidistant by a. 

 (a) Limiting the problem to interactions between nearest 
neighbors with a force constant b, find the expression for 
the dispersion relation of acoustic longitudinal vibrations 
propagating along this row. What is the maximum frequency 
nm of atomic vibrations, written in terms of vs and a? Compare 
the value obtained with that of nD deduced from the Debye 
model.

 (b) Find the corresponding expression for the density of states 
g(n). 

 (c) Write the expressions for internal energy U and for the heat 
capacity Cv. Find the limits as these functions approach high 
temperatures ( hnm << kBT). 
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 (d) What is the evolution of Cv at low temperature? Compare the 
result obtained here with that deduced from the Debye model 
(Ex. 11). Use F1 and eventually F3. 

Solution:

 (a) The equation of motion of the nth atom is

  m
u

t
u u un

n n n
d
d

2

2 1 1 2= + -+ -b( )

  Starting from solutions of the form
  u A i t kx i t knan = - ª -exp ( ) exp ( )w w

  we find w b
p

b= Ê
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ˆ
¯̃

= Ê
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m
ka

v
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sin and

  The sound velocity vs is such that v k a mks = ∂ ∂ =Æ( / ) ( / ) /w b0
2 1 2

or nm = vs/pa so that the Debye model (w = vsk) leads to 
vD = vs/2a (see Ex. 11). 

 (b) The density of states g(n) is given by g(n)dn = g(k)dk with 
g(k) = L/π = Na/π (see Ex. 11) and n = nm sin(|k|a/2):

  g v N v v( ) / ( ) /= -2 2 2 1 2p m .
  The corresponding evolution is shown (solid line) in Fig. 19 

with the density of states from the Debye model in dashed 
lines for comparison. We find in both cases that at the origin 
g(0) = 2L/vs. Thus the areas below the curves g(n) and gD(n) 
are the same because

  g v v g v v N
v v

D d d  
D m

( ) ( )= =Ú Ú0 0
,

  where N is the number of oscillators of the chain. 

g( )n

o nm nD

n

Figure 19
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 (c) The vibration energy U of a 1D solid corresponds to

  U g v n hv v
v
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ˆ
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  At high temperatures: hn ≤ hnm << kBT, so that n k T hvª B /

  U k T g v v Nk T
v
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 (neglecting the half quantum). 

Thus C = NkB. 
  These values correspond to the classical limit (law of Dulong 

and Petit for a 1D solid) and are independent of the form of the 
density of states adopted because the average of this density 
of states will always be N. 

 (d) At low temperatures: kBT << hnm, so that ª
•
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  Substituting x = hn/kBT one obtains
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 from which we obtain

 C Nk
T

Nk
T

T Tv B
m

B
m

= +
Ê
ËÁ

ˆ
¯̃

+ ◊◊◊ = +2
3

4
15

2 3 3
3p

q
p

q
a b .

 If we use the sound velocity in this result, we note that the term 
linear in T is identical to that obtained in the model of Debye

 C
aNk
hv

Tv
B

s
=

2
3

2 2p (from Ex. 11c).
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 The two results differ only in the bT3 term. This result is easy to 
understand: The excited phonons at low temperatures correspond 
to a spectral region (low frequencies) in which the two dispersion 
curves and therefore, g(n) (see Fig. 19) are practically merged. 

Exercise 18: Specific heat of a 2D lattice plane

Consider a square lattice plane with parameter a, formed from 
identical atoms of mass m and submitted to a force constant b 
between nearest neighbors (as described in Ex. 9).
 (a) Find the density of states of transverse modes g(n) 

perpendicular to the plane and the corresponding Debye 
frequency nD. In addition to the isotropy of the dispersion 
relation: w = vsk, the first BZ is limited to a circumference with 
radius kD. 

 (b) In the form of the definite integral, what is the vibration energy 
of a unitary area? Deduce the behavior of the specific heat CR 
at high and low temperatures (T >> qD and T << qD with kBqD = 
hnD). 

  Numerical application: What is the numerical value of CR (for 
one atom) at 20 K with a = 3 Å and vs = 3,000 m/s? 

 (c) The atoms are forced to move in the plane of the lattice. What 
is the vibration energy of this lattice and the evolution of its 
specific heat at low and high temperature?

 (d) Compare the relative results to g(n), nD, and CR obtained in the 
present exercise with those obtained in the study of a linear 
lattice (see Ex. 11) and a cubic lattice with constant a (see Ex. 
20). Use F2. (h, kB, e)

Solution:

 (a) Using the periodic boundary conditions, we find

  
u u u i t k na k la

i t k n N
n l n N l n l N x y

x

, ( ), , exp ( )

exp [ ( )

= = ◊ - - =

◊ - +
+ + or w

w aa k la i t k na k l N ay x y- = ◊ - - +] exp [ ( ) ],w

  which leads to k k
Na

s sx y, ( .= ± =2p 0, 1, 2, 3,  . . . )

 In the Okxky plane, the first BZ is a square of side 2p/a divided 
in N2 elementary squares of dimension (2p/Na), each of which 
corresponds to the extremity of a single wave vector composed of kx 
and ky (see Ex. 9, Fig. 14a). 
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 The density of states in k-space can easily be deduced from the 
number of elementary cells contained in the circular shell of interior 
radius k and of exterior radius k + dk. We therefore find

 g k k k k
Na

( ) dd = Ê
ËÁ

ˆ
¯̃

-

2 2 2

p
p

 This result has already been obtained for the solution of question 
(d) (see Ex. 9). But, in order to be able to evaluate the specific heat 
and following the implicit simplifications from the Debye theory for 
a lattice in 3D (see for instance Ref. [15], p. 212), we assume here
 (i) The isotropy of the dispersion relation reduces to w = vsk, 

which results in the fact that the iso-frequency curves are 
circular. 

 (ii) The fact that N2 independent modes are contained in a 
circumference of radius kD such that ( ) ( / )p pk Na ND

2 2 22◊ =  
implies that the first square first BZ is replaced by a circle of 
the same surface. This simplifies the exact evaluation of (k) 
when p p/ /a k a£ £ 2 , as was described in the solution of 
Ex. 9. 

  The density of modes g(v) obeys the relation 
g v v g k k kN a k( ) ( ) ( / )d d d= = 2 2 2p

  or (taking into account 2nn = vsk): g v N a v v( ) (= 2p 2 2
s
2/ )  with

v v v a£ =D s/ .p
  Remark: To evaluate g(k), we should also be able to use fixed 

boundary conditions: the step variation of kx and ky will be  
p/Na instead of 2p/Na as in periodic boundary conditions (see 
Course Summary), but the evaluation of g(k) will be limited to 
the number of cells contained in the portion of the circular 
shell k, k + dk, limited to the quadrant kx, ky > 0 and the final 
result will be, of course, the same. 

 (b) The internal energy U due to vibrations of the lattice is

U g v n v hv v
v

= +Ê
ËÁ

ˆ
¯̃Ú ( ) ( )

0

1
2

D
d where n v

ehv k T( ) /=
-

1
1B

from which 

(neglecting the contribution of the half quantum which 
disappears in the specific heat calculation): 

  U
N a

v

hv v

ehv k T

v
=

-Ú2
1

2 2

2

2

0

p

s

d
B

D

/
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 • At high temperatures k T hv e
hv

k T
hv k T

B D
B

 B>> = + + ◊◊◊: / 1

  and U N a

v
k T v v N k T

v
= =Ú2 2 2

2
2

0

p

s
B Bd

D
.

  We find the classical limit which corresponds to the energy 
of kBT per linear oscillator. 

  By unitary area, the number of oscillators is 1/a2, the 
corresponding energy kBT/a2 and the specific heat is  
C = kB/a2.

 • At low temperature hv k T>> B , U
N a

v

hv v

ehv k T=
-

•

Ú2
1

2 2

2

2

0

p

s

d
B/ ,  

using the substitution hv
k T

x
B

=

  
C N k

T
r =

Ê
ËÁ

ˆ
¯̃

14 4 2
2

. B
Dq

  we find:

  U
h v

k T
x

e
x

k T

h v
N k

T
x=

-
= =

•

Ú2
1

4 8 4 82 2
3

2

0

3

2 2
2

3

2
p p

qs
B

B

s
B

D
d( ) . ( ) .

  with hv k
hv

aD B D
s= =q
p

 

  Numerically one obtains (with vs = 3000 m/s and a = 3 Å) 
qD = 270 K and 

  C k
T

kr = Ê
ËÁ

ˆ
¯̃

ª ª ¥ -14 4 0 08 0 067 10
2

4. . . .B B eV/K
q

 (c) If now the atoms of the lattice are forced to move in the plane, 
each of the oscillators has two degrees of freedom which 
correspond to the propagation of a longitudinal wave and of 
a transverse wave. If the force constant is different for these 
two types of waves (bl and bT), we find two velocity and two 
distinct Debye temperatures qDL and qDT. In addition, the 
density g(k) is identical to that already evaluated in (a), the 
corresponding internal energy and the specific heat result in 
the addition of the two contributions for these two types of 
waves:

 • At high temperatures U = 2N2kBT and C k N
k

a
= =2 22

2B
B
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 • At low temperatures U N k T= +
Ê

ËÁ
ˆ

¯̃
4 8 1 12 3

2 2. B
DL DTq q

and   

C N k T= +
Ê

ËÁ
ˆ

¯̃
14 4 1 12 3

2 2. .B
DL DTq q

 The above results apply when the force constants are different: 
bl ≠ bT . When the force constant b is isotropic, the result is obtained 
by taking qDL = qDT. 
 To facilitate the comparison, we assume isotropy and identity 
of the velocities for the different types of lattices, which result in 
slightly different frequencies nD and temperatures qD. The following 
table summarizes the results for 1-, 2-, and 3D in complement to Fig. 
3 of Course Summary, Section 6. For a more general approach to the 
Debye model in n dimensions, see A. A. Valladeres, Am. J. Phys. 43, 
1975, 308. 

Table 1 Density of states and specific heat due to vibrations in lattices 
of 1-, 2-, and 3D using the Debye model w = vsk 

1D 2D 3D

g(k)
L
p

( )cste
L

k
2

2p
Ê

ËÁ
ˆ

¯̃
L

k
3

26p

Ê

ËÁ
ˆ

¯̃

g(n)
2L
vs

( )cste 2 2

2
pL

v
v

s

Ê

Ë
Á

ˆ

¯
˜

4
3

2p
v

v
s

Ê

Ë
Á

ˆ

¯
˜

nD
* n

vs
l 2

v
n

s
s

p
v

n
s

3
4

1 3
n

p
Ê
ËÁ

ˆ
¯̃

/

DU T T( )
( )

<< qD

at.1
T > qD

1 64
2

. k
T

B
Dq

kBT

4 8
3

2. k
T

B
Dq

kBT

19 5
4

3. k
T

B
Dq

kBT

C Tr D

at.)
<< q

(1
T > qD

3 29. k
T

B
Dq

Ê
ËÁ

ˆ
¯̃

kB

14 4
2

. k
T

B
Dq

Ê
ËÁ

ˆ
¯̃

kB

77 9
3

. k
T

B
Dq

Ê
ËÁ

ˆ
¯̃

kB

* n
N
L

n
N

L
n

N

Ls vl = = =; ;2 3 are the atomic densities per unit length, unit surface, 

and unit volume, vs is the velocity of the waves. 



234 Atomic Vibrations and Lattice Specific Heat

Important Note: Each oscillator is supposed to have a single degree 
of freedom. For atoms forced to move in the plane, the expressions of 
the density of states should be multiplied by 2, for spatial oscillators, 
multiply by 3 while nD and qD are unchanged. 
 That is to say, in the 1D of an atomic row the waves can propagate 
in one direction, parallel to the row but the atomic displacement can 
be spatial ( 



u k and two transverse vibrations u k
 

^ . In this case one 
must multiply the terms of the 1D column by 3, with the exception of 
vD. On the other hand, in a 3D object one might be only interested in 
the displacements along the longitudinal direction ( 



u k), the terms 
of the 3D column should not be modified. 

Final Remark: To end this discussion, the readers may have a look 
on the Exs. 11 and 14 of Chapter IV, where the Fermi energy and the 
electronic specific heat for free electron metals in 1-, 2-, and 3D are 
explored. It pointed out an analogy between the evaluation of the 
Fermi energy EF and the present evaluation of the Debye frequency 
vD. In this way we leave it up to the reader to verify the possibility to 

obtain nD, without using the intermediary of kD, but from the integral 

g v v N
v

( )d
D

=Ú0
, where N represents the number of basis per unit 

length, surface, or volume (see also Chapter IV, Ex. 14). 

Exercise 19: Phonon density of states in 2- and 3D: evaluation 
from a general expression

 (a) In a 3D solid and starting from the general formula:

  g
V S

v
S

( )
( )

,w
p

w

w

= Ú2 3
d

g
 find the expression for the density of 

states g(v) of phonons when their dispersion relation is taken 
to be isotropic: 

  ( ) ( ) sin .i (Debye); iis mw w w= =v k
ka
2

 (b) Find the general expression corresponding to a 2D lattice and 
find g(n) for the dispersion relations corresponding to (i) and 
(ii) above. 
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Solution:

 (a) The group velocity vg = d
dk

w  is respectively equal to vs 

(condition i) and to wma ka
2 2

cos  (condition ii). In addition, as 

the dispersion relations are supposed to be isotropic and the 

isofrequency surfaces spherical, the integral n
S
v

S

d

g

w

w

Ú  reduces 

to 
S
v

w

g
. We thus obtain

  ( ) ( )
( ) ( )

i
s s

g
V k

v
V

v
w

p
p

p
pw

0 3
0
2

3
0
2

32
4

2
4

= ◊ = ◊

  or g(n)dn = g(w)dw, where w = 2pn, or g v
V

v
v( )0 3 0

24= p

s
 (for a 

transverse or longitudinal mode).

 ( ) ( )
( ) cos( / )

ii
arc sin

m m

mg
V k

a
k a

V

a
w

p
p

w p w

w
w

0 3
0
2

0
2 32

4

2
2

4= ◊ = ◊

Ê
ËÁ

ˆ̂
¯̃

-

2

0
2 2 1 21( / ) /w wm

  or g v
V

a

v v

v v
( )

[( / ) ]
( ) /0 3

2

0
2 1 2

2
= ◊

-
p arc sin( / )0 m

m
2  (still for a single mode). 

dl
dk

w
w + dw

Figure 20

 (b) To obtain the general expression for the density of states g(n) 

in 2D, it is 2 2p
L

Ê
ËÁ

ˆ
¯̃

sufficient to follow the same procedure as 

in 3D and evaluate in the plane of wavevectors (kx, ky) the 
number of cells between two iso-frequency lines l(w) and l(w 
+ dw). An element of this surface is given by
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  dS dl ^dk
Ék g

    

 
= = ◊ =

◊

—
=

◊
w w

w ww w
d d

d d d d
l k

l l

v
⊥  

  or g
L dl

v
l

( )
( )

w
p

w

w

= Ê
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ˆ
¯̃

◊
=
Ú2

2

gCst

 If the dispersion relation is isotropic, the isofrequency lines are 

circumferences and the integral reduces to l
v
( )w

g
. We thus obtain

 (a) g
L k

v
L

v
( )w

p
p w

p0

2
0

2
0
22

2
2

= Ê
ËÁ

ˆ
¯̃

◊ =
s s

, which leads to g v
L v

v
( ) .0

2
0

2
2

=
p

s

 (b) g
L k

a k a
L

a
( )

cos

arc sin(
w

p
p

w
w

0

2
0

0

2

2
2

2 2

2= Ê
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ˆ
¯̃

◊
Ê
ËÁ

ˆ
¯̃

= Ê
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ˆ
¯̃

◊
m

00
2

0
2 1 22
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( ) /
w

p w w
m
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,

 which leads to g v
a

v v

v v
( )

arc sin( / )
( ) /= Ê
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ˆ
¯̃

◊
-

◊2 2
0

2
0
2 1 2

p m

m

Remark: As the 1D limit is approached, the line reduces to two 
points (k0 and –k0) and the general expression for g(w0) becomes 

g
L l

vg

( )w
p0 2

2
= ◊  which leads to g v

Na
v

( ) = 2

s
in the Debye model and 

to g v
N

v v( ) ( ) /= -2 2
0
2 1 2

p m  in the model (b). 

 These results agree with those established in Exs. 11 and 17 and 
represented in Fig. 19. In the same way the results obtained in the 
question are identical to those in the table in Ex. 18. 
 The density of states for free electrons, g(E), can be obtained by 
adopting the same method (see Chapter IV, Ex. 11). 
 When the dispersion relation of phonons or electrons has a 
horizontal tangent (vg = 0), as in ab and bb, the density of states 
becomes infinite and the corresponding points (critical points known 
as Van Hove singularities) play an important role in the properties of 
solids (see Chapter V, Pb. 6) and the comments following it. 
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Exercise 20a: Zero point energy and evolution of the phonon 
population with temperature

Applying the Debye model to a lattice in 3D: 
 (a) Find the vibration energy at 0 K. Show that this energy is the 

same order of magnitude as the increase in thermal energy of 
the same lattice between 0 K and qD, respectively U(0 K) and 
U(qD) − U(0 K). 

 (b) Find the number of phonons Np at low and high temperatures 
(T ≤ qD and T ≥ qD) as a function of T/qD. 

 (c) Sketch the curves U(T/qD) and Cv(T/qD). Explain their 
characteristics and show the evolution of the average energy, 
E , of an oscillator of frequency n as a function of the reduced 
variable x = hn/kBT and superpose the two curves representing 
the density of modes in the Debye model g(n) for T = 2qD and 
T = qD/4. 

  Using E


 = kBT for x from 0 ≤ x < 1 and E


 = 0 for x ≥ 1, explain 
the behavior of Cv at high and low temperature and find the 
low Cv µ T3 at low temperatures. Use F2. 

Solution:

 (a) Taking into account the half quantum, the vibration energy of 
a 3D lattice is

  U

e

hv g v vhv
k T

v
= +

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

Ú 1
2

1

1
0

B

m
d( )

  In the initial Debye model, the density of modes g(n) obeys 
the relation (which takes into account the three polarizations 
(1L + 2T): 

  g v
Nv

v
( ) = ¥3 3 2

3
D

,

  which results in the zero point energy.

  U
Nhv v

v
Nhv N

v
( ) .0 9

2
9
8

9
8

3

30
= = =Ú d

D
D D

D

Bk q

  When T/qD = 1, the specific heat of the lattice Cv is slightly less 
than its asymptotic value 3NkB; see Course Summary, Section 
6, Fig. 21a.
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C Nk(3 )Bv
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E k T( )B

x = T/qD

aT U Nk( )BqD

1

T = 2qD

g hv( )

T = qD 4/
T4

(a) (b)

Figure 21

  When going from T = 0 K to T= qD, the increase of thermal 
energy is U U Nk( ) ( )q qD B D- ª0 3 and it is not significantly far 
larger than the zero point energy. 

 (b) The average number of phonons n  associated with an elastic 
wave of frequency n is given by: 

  n
B

 =
-

◊1
1exp( / )hv k T

  The total number of phonons Np included in the density of 

modes g(v) is N g v v
v

p
m

n d= Ú ( ) .
0



  In the Debye model and taking into account the two transverse 
waves and the one longitudinal wave, Np can be expressed as:

  N
Nv

v

v
hv k T

v

p
D B

D d= ◊
-

◊Ú 9
1

2

30 exp( / )

 • At low temperatures (T << qD) this expression becomes:

  N N
T x x

e
N

T
xp

D D

d=
Ê
ËÁ

ˆ
¯̃ -

=
Ê
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ˆ
¯̃

•

Ú9
1

21 6
3 2

0

3

q q
. .

  Comparing this result to that giving the corresponding 

specific heat, C N k
T

v B
D

=
Ê
ËÁ

ˆ
¯̃

234
3

q
, we notice Cv = 11 kB Np.  

That is to say the specific heat is proportional to the 
number of phonons in this temperature range. 
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 • At high temperatures (T > qD), Np is such that

  N
Nk T

hv
v v N

Tv

p
B

D D
d

D
= =

Ê
ËÁ

ˆ
¯̃Ú9 9

23 0 q
.

  By comparing this result to the classical expression for 
specific heat in the same temperature range, Cv = 3NkB, we 
note that the number of phonons increases with T while 
Cv remains constant.

 (c) The behavior of U(T) and Cv(T) as a function of T/qD is shown 
in Fig. 21a. To understand these behaviors, one must take into 
account the evolution of E nhv=   (solid lines in Fig. 21b) and 
especially the density of modes g(n) (dashed line) for T = 2qD 
and T = 0.25qD.

 For a 3D structure g(n) is parabolic (in n2 or in x2) 
up to the maximum frequency nD (or xm = qD/T). If E  is reduced to E  
= kBT for x ≤ 1, it is clear that the N linear oscillators have increased 
each by kBT when going from 0 K to T when T ≥ qD. On the contrary at 
low temperatures, only the low-frequency oscillators (hatched area) 
are able to get such an increase. 

 Their number n x dxµÚ 2

0

1
 compared with N x dx

x
µÚ 2

0

m
 is N/ xm

3  

 It corresponds to an increase in energy D = =U nk T N T k TB B( / )q 3  
and leads to Cv varying as T3 (T << qD). 
 The same analysis applies to 1D [g(n) = constant] and a 2D [g(n)
µn] lattices. It allows one to better understand the physical reason 
for the evolution of Cv in T and T2 as established previously on a 
more rigorous basis (see Table 1 in Ex. 18). 

Note: In fact the T3 law is only valid when T ≤ qD/10. The choice here 
of qD/4 is uniquely related to the convenience of representation. 
 In summary, when the temperature increases from a low 
temperature there is first a simultaneous increase in the number 
of excited oscillators and in the number of phonons. At high 
temperatures the number of oscillators is saturated (3N linear 
oscillators) and the behavior is classical, resulting in a constant 
Cv. Nevertheless, at these elevated temperatures the population of 
phonons continues to increase because the amplitude (and energy) 
of oscillations increases with T. 



240 Atomic Vibrations and Lattice Specific Heat

Exercise 20b: Vibration energy at 0 K of 1-, 2-, and 3D lattices 
(variant of the previous exercise)

Knowing that in a 1-, 2-, or 3D lattices, the density of modes 
respectively obeys g(n) = A1 (constant), A2n, or A3n2, find A1, A2, and A3 
as a function of the number N of spatial oscillators of each lattice and 
their Debye frequency nD. Express the residual energy of vibration, 
U(0) (at 0 K), as a function of N and the Debye temperature qD.
 Compare U(0) to the increase of energy ΔU = U(T) − U(0) when 
the temperature goes from 0 K to T K when T > qD. 

Solution:

 g v dv N A N v A N v A N v
v

( ) , / ; / ; / .
D

0
1 2

2
3

33 3 6 9Ú = = = =where D D D

 U g v hv dv U A hv Nk
vD

( ) ( )( / ) ; ( ) / ( / ) ;0 2 0 4 3 4
0 1 1

2= = =Ú D B Dq

 U A hv Nk U A hv Nk2 2
3

3 3
40 6 0 8 9 8( ) / ; ( ) / ( / ) .B= = = =D D D B Dq q

 When T ≥ qD, DU = 3NkBT (law of Dulong and Petit) from which 
we find

 U U T U U T U U T1 2 30 4 0 3 0 3 8( )/ / ; ( )/ / ; ( )/ / .D = D = D =q q qD D D

 From an analogous problem concerning free electrons (see 
Chapter IV, Ex. 14), a direct evaluation of kD (and therefore qD) is 
possible and a comparison between the residual vibration energy and 
the kinetic energy of a gas of free electrons (at 0 K) is suggested. 

Exercise 21: Average quadratic displacement of atoms as a 
function of temperature

 (a) A longitudinal elastic wave of frequency v and amplitude An 
propagates along a row of identical atoms of mass m. The 
displacement of an atom in this row obeys: u A vtn n p= cos .2

  Find the average quadratic value un
2 as a function of An, T, qE, 

and m when all the atoms vibrate thermally at a frequency nE  
(hnE = kBqE) in the high temperature (classical) limit. 

 (b)  In the Debye model we consider that the spatial displacement 
of N identical atoms in a 3D lattice is isotopic. Find the total 
average displacement r 2 in integral form including the 
amplitude An of each of the 3N vibrations and the density 
of modes g(v). Find An as a function of v starting from the 
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quantized energy of vibration (including the half quantum) 
and then find g(n) as a function of the Debye temperature 
qD. Find in integral form the expression for the square of the 
average total displacement r 2  and state its value at 0 K and 
evolution at high temperatures (T > qD).

 (c) Numerical application:
  Find the values of r 2 and r 2 /d0 (d0 is the distance between 

nearest neighbors) for sodium and silicon when the two 
elements are near their melting temperature Tm: 

  Na : qD = 158 K  Tm = 370 K d0 = 3.65 Å  MNa = 23
  Si  : qD = 645 K Tm = 1690 K d0 = 2.35 Å  MSi = 28

Solution:

 (a) For a wave of frequency n, the average of the quadratic 

displacement is: u
A

n
n2 2

2
= .

  At high temperatures the classical limit is reached:

  1
2

2 1
2

2 2
m v u k T( )p nE B= ,

  which gives u
mk

T
n p q q

2 2

24
=

Ê
ËÁ

ˆ
¯̃

h

B E E

 (b) In the Debye model, all the waves are not of the same frequency 
and the average total displacement can be expressed by adding 

the effect of 3N linear vibrations: r
A

g v dv
v2

2

0 2
= Ú n ( )

D
,

  where g v
v N

v
( ) = ¥3 3

2

3
D

 (see, e.g., Exs. 18 and 20).

 The expression for An can be obtained from two different methods 
for the evaluation of the total energy En of an elementary wave:
 • The energy of a harmonic oscillator of frequency n and 

amplitude An is 2 2 2 2p v mAv and since the N atoms are subject 
to identical vibrations, the energy of the elementary wave is: 
E N mAn np n= 2 2 2 2.

 • This quantum energy of vibration can also be written for an 
atom: 
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 E hv
hv k T

= +
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ˆ
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1
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1
1exp( / )B

 Combining the two methods for An
2 and using the result in the 

integral expression for r 2 , we find:

 r
h

mv hv k T
vdv
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2 3 0

9
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1
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1
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¯̃Úp D B
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.

 The first term is independent of temperature and corresponds to 
the zero point energy (0 K): 

 r
h

mk
2

2

20 9
16

( )K
B D

=
p q

.

 The second term which results in a temperature evolution of the 

form: e xdx

ex

x

-Ú 10

0
. At high temperature e

hv
k T

hv k T/ B

B
= + + ◊◊◊

Ê
ËÁ

ˆ
¯̃

1  it goes 

to r T
h

mk

T2 0
2

2
9

4
( )K

B D D
=

Ê
ËÁ

ˆ
¯̃p q q

where hv kD B D= q .

 Taking into account the isotropy of the oscillations: r u2 23= , 
this last result coincides well with the average quadratic value of the 
linear displacement that was established classically in (a) using the 

condition v v
E

D=
3

. 

(c) Numerical application:

For silicon at 1690 K: r
r

d
2 2

2

0

26 9 10 0 111 1
9

= ¥ = ª-. .Å and .

For sodium at 370 K: r
r

d
2 2

2

0

230 10 0 152 1
7

= ¥ = ª- Å and . .

 We thus have verified the law establishing that a crystal melts 
when the average displacement attains d/8. 
 This result can explain why helium is liquid, even at 0 K, because 
at this temperature the oscillation amplitude associated with the 
half quantum is of order d/3 due to its small atomic mass and qD (vs 
= 240 m/s). 
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Remark: The calculation of r 2  in the present exercise allows the 
explicit evaluation of the influence of temperature on the intensity 

I of the X-ray diffracted waves: I I r G I M= - ◊È
ÎÍ

˘
˚̇

= -0
2 2

0
1
3

2exp exp. ,hkI  

where M is the Debye–Waller factor (see Ref. [15c], p. 85, or Ref. [10], 
p. 513).

Problems

Problem 1: Absorption in the infrared: Lyddane–Sachs–Teller 
relation

Consider a row of ions equidistant by a. The even ions, x = 2na, have 
a charge +e and a mass m. The odd ions, x = (2n + 1)a, have a charge 
−e and a mass M, as in Ex. 2. 
 This row is submitted to the transversal electric field Ez of a 
sinusoidal EM wave of angular frequency w propagating along the 
x-direction of the row: Ez = E0 exp i(wt − kx). 
 (1) The angular frequency w of the EM wave is found in the 

infrared, that is to say, in the domain of the self-oscillations of 
the ions for their optical transverse mode wT corresponding 
to

  w bT rad= +Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ ª -2 1 1 10 10

1 2
12 13

m M

/

/s where b is the force 

constant between nearest neighbors. 
  Show that the wavelength of the EM wave le is very large 

compared to a. Sketch the action of 


E  on the ions and show 
that this wave will excite the transverse vibrational modes of 
the small wave vectors. Find this result by reasoning in terms 
of phonons and photons. 

 (2) Assume that the propagation term of the field is negligible (k = 
0) and establish the equations of motion of the ions under the 
action of EZ with restoring forces limited to nearest neighbors. 
Deduce the expressions for the elongations: A (m, +e) and  
B (M, −e), of the ions as a function of wt, w, M, m, and e. Also 
find the dipole moment along z formed by two consecutive 
atoms. 

 (3) The row belongs to a solid containing N pairs of ions per unit 
volume. Find the expression for the polarization 



P  (per unit 
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volume) taken by the ionic crystal under the action of the 
electric field, 



E, taking into account among other elements, 
the electronic polarizability a1 and a2 of each ion species. 

  Find the evolution of the relative dielectric constant, er(w), of 
the ionic solid as a function of w. Determine the limiting values 
of er when w = 0 and w = ∞, respectively e0 and e∞. Show that 
er(w) can be written in the form:

   e w e e e w wr s T( ) ( )/[ ( / ) ]= + - -• • 1 2 .

 (4) When the self-vibrations of the ions are longitudinal (optical 
vibrations of pulse wL and k << p/a) and in the absence of 
external forces, a longitudinal electric field is induced by the 
ionic motion. Starting from the Maxwell−Gauss equation, show 
that the dielectric constant must be zero at this frequency. 
Deduce the Lyddane−Sachs−Teller (LST) relation:

  ( / ) /w w e eT L s
2 = •

 (5) Numerical application: For NaCl, es = 5.62; e∞= n2 = 2.25 (where 
n is the index of refraction in the visible spectrum); in addition 
er = 1 for lr = 31 μm. 

  Find wL and wT and compare the results with the corresponding 
measurements: lL = 37.7 μm, and lT = 61.1 μm. 

  Sketch the graph of er(w) for NaCl. Comment on the sign of er 
and the optical properties in the interval wT < w < wL. 

Solution:

 (1) l p we = =c
v

c2 / . When w ≈ 1012 −1013 rad/s, le ≈ 20–200 μm, 

whereas a ≈ 3–5 Å. The wavelength of the EM wave is very 
large compared to a; the wave vector of this wave is very small 
compared to the dimensions of the first BZ. This electric field 
will excite transversal ionic vibrations (forced oscillations) of 
small wave vectors k with respect to p/a. 

  In terms of particles, one may consider that the photons of the 
EM wave are absorbed and create optical phonons of the same 
energy and the same wave vector (conservation of energy and 
momentum):

    hn (EM wave) = hn (phonons)
    



k  (EM wave) = 


k (phonons).
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  The optical phonons thus excited will be transversal 
and situated at the center of the BZ. Figure 22  
shows the mechanism of this excitation where, under the 
action of the instantaneous electric field, the consecutive ions 
of opposite sign are subject to the opposite forces F = ±qE, 
which naturally induces the excitation of transverse optical 
waves 



u k^ , with long wavelength (l >> a).

EZ

k

Figure 22

 (2) The equations of motion of the ions are

  
mü u u u E e

Mü u u u

n n n n
i t

n n n n

2

2 +1

= + - +

= + -
+ -

+ +

b

b

w( ) e

( )
2 1 2 1 2 0

2 2 2 2 1

2

2 -- eE ei t
0

w

  We look for solutions in the form of sine waves:
  u2n = u2n+2 = Aeiwt; u2n–1 = u2n+1 = Beiwt in which the phase 

difference is negligible. Then 

  
- - - = +

- - - = -

m A B A eE

M B A B eE

w b

w b

2
0

2
0

2

2

( )

( )
  From which we find

  A
eE m

B
eE M

=
-

=
-

-
0

2 2
0

2 2
/

;
/

w w w wT T

  P
e E

M mz
T

, where =
-

= +
2

2 2
0 1 1 1

w w m m

 (3)  P
T



= + +
-

Ê

Ë
Á

ˆ

¯
˜N

e
Ee a a

x
m w w0 1 2

2
0

2 2 0
/

( )

  D E P E
   

= + =e e e0 0 0 0r

  e a a
x

m w wr
T

- = + +
-

Ê

Ë
Á

ˆ

¯
˜1 1 2

2
0

2 2N
e /

( )

  When w = 0, we find e a a
x

mws
T

- = + +
Ê

Ë
Á

ˆ

¯
˜1 1 2

2
0

2N
e /
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  When w = ∞, we find e∞ – 1 = N(a1 + a2)
  Combining these expressions the result is

  e w e e e w
wr s

T
( ) ( )/= + - -

È

Î
Í
Í

˘

˚
˙
˙

• • 1
2

2

 (4)  divD ik D
  

= = ◊ =r 0 0;  from which we have er(wL) = 0
  Even though the displacement vector D is zero, the longitudinal 

electric field is not as well since e0 0E P
 

+ = .
  By substituting wL for w and writing er (wL) = 0 in (3), we find 

the LST equation: ( / ) /w w e eT L
2 = • s

 (5) The same procedure applied to wr with e(wr) = 1 leads to 
w w e er T s

2 2 1 1/ ( )/( )= - -• ; lT = 1.92 lr = 59.6 μm;
  lL = 0.63 lr = 37.5 μm.
  Note the excellent agreement with the experimental values: 

61.1 for lT and 37.7 for lL.
Remarks: In the interval wT < w < wL, er is negative and the optical 
index is purely imaginary. The amplitude of the reflection coefficient 
at normal incidence, r = (1 − n)/(1 + n) has a unitary modulus. This 
corresponds to total reflection and an evanescent wave.
 The angular frequency wr is easily obtained experimentally 
because it corresponds to a zero reflection coefficient er = n = 1 
which leads to r (wr) = 0 (see Fig. 23).

e wr ( )

es
eµ

n2

1
0 wT wL

wr
w wT wL wr w

R

1

Figure 23

w = 0 (question 3) corresponds to the application of an electrostatic 
field where the elongation of ions is fairly independent of their mass 
(w = 0 in the equations of motion).
 Below the Curie temperature, Tc of ferroelectric materials, such 
as BaTiO3, they are paraelectric with a dielectric constant, es, which 
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tends toward infinity when cooling toward Tc. This phenomena is 
known as the dielectric catastrophe and can be explained by the 
fact that the force constant bt is softened because the ions have the 
tendency to find another stable position of equilibrium which results 
in wr Æ 0 for T Æ Tc and therefore via the LST relation es Æ ∞.
 When the frequency is very high, the inertia of the ions prevents 
them from following the rapid variations of the field. In reality es 
is measured in the visible part of the EM spectrum, a region that is 
below to the frequencies in the UV range where electronic interband 
transitions may occur as well-collective (plasmon) excitations of 
valence electrons of the crystal (w w w• < <gap p ).

 The behavior of these ionic crystals in UV range and more 
generally that of band gap materials, forbidden band Eg, is strongly 
dependent on the behavior of valence electrons being excited from 
the valence band to the conduction band with an average energy  
hwT where hwt  > Eg (see Chapter V, Ex. 25 and Pb. 6). The evolution 
of the dielectric constant in the corresponding spectral domain, far 
UV, shows the same characteristics as that encountered here by the 
motion of ions with a resonance around wT (in the UV and not in the 
IR). This evolution presents a 0 of el(w) to a pulsation wp¢ for which 
the longitudinal electric field is always susceptible to propagate. 
 The corresponding excitations are known as “plasmons” (here 
polaritons; see following problem) and the evolution of el(w) is also 
given by 

 e w
w

w w
r

p

T

( ) = +
-

1
2

2 2

in which wp, plasmon angular frequency, must take into account 
the density and mass of the valence electrons (in the place of the 
density and reduced mass of ions, which explains the displacement 
from the IR to the UV range: m0 << μ). We thus find another spectral 
domain of total reflection (between wt and w¢p ) characterized also 
by evanescent waves because e1 is negative. 
 If we take into account that the propagation term of the EM wave 
(k ≠ 0), we obtain a dispersion relation w = f (k) of the EM waves in 
ionic crystals (see following Pb. 2, Polaritons) that has characteristics 
analogous to those of the an EM wave in a plasma (plasmons; see 
Chapter IV, Pbs. 5 and 6). 
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 Finally, note the identification of the local field to the applied 
field at such high frequencies (Q. 1 to Q. 3). 

Problem 2: Polaritons

In an ionic crystal, the evolution of the relative dielectric constant, 
er(w), as a function of the angular frequency of the electric field of 
an EM wave, w, can be described by the expression (see proceeding 
problem):

 e w e e e w
wr s

T
( ) ( )/= + - -

Ê
ËÁ

ˆ
¯̃• • 1

2

in which es and e• are the limiting values taken by er when 
respectively w = 0 and w = ∞; wT is the pulsation of transverse optical 
phonons relative to the very small wave vectors (<<p/a).
 Consider the propagation along x of an EM sinusoidal plane wave 
where the transverse electric field is Ez = E0 exp i( wt − kx). 
 (1) Starting from the propagation equation of such an EM wave 

in a medium characterized by e0er and μ0, show that the 
relation between w and k (dispersion relation of polaritons) 
is of the form: e w w e w w• •- + + =4 2 2 2 2 2 2 2 0( )L Tk c k c in which  
c2

0 0
1= -( )e m and wL

2 is defined by the LST relation: 
( / ) /w w e eT L s

2 = • .
 (2) Find the solutions in w2 = f (k) and discuss the limiting values 

for small and large k.
 (3) Find the characteristics of the dispersion curves w = f (k), 

knowing that e∞ < es. 

Solution:

 (1) The propagation equation of Ez is

  ∂
∂

-
∂
∂

=
∂
∂

= -
∂
∂

= -
2

2 0 0

2

2

2

2
2

2

2
20E

x

E

t

E

x
k E

E

t
Ez

r
z z

z
z

zor ande e m w

  from which we find 

- + + - -È
Î

˘
˚ =• •k

c
2

2

2
2 21 0w e e e w w( )/( / )s T

  Taking into account the LST relation and rearranging the 
terms we obtain
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  e w w e w w• •- + + =4 2 2 2 2 2 2 2 0( )L Tk c k c  (1)

 (2) The solution above (Eq. 1) can be written as

  2 41 2
2 2 2 2 2 2 2 2 2 2 2e w w e w e w e• •= + ± + -, ( )T s T s Tc k c k k c  (2)

  When k is small, these two solutions of (Eq. 2) become

  w w
e2

2 2
2 2

( )k
c k= +

•
L and w

e1
2

2 2
( )k

c k=
s

  When k is large such that ( )k
c

>> w es but nevertheless such 

as ka << 1, we have w e2
2 2 2( ) /k c k= • and w w1

2 2= T

  There are thus two branches of elementary excitations:
  0 1< <w w( )k T and w wL < < •2( ) .k

 (3) The characteristics of the dispersion curves are shown in Fig. 24. 

w

wL

wT

0 k

/ck e•
s/ck e

Figure 24

 This exercise is an extension of the preceding one (we find 
the interval of forbidden frequencies between wT and wL). It 
explains the coupling between the photons of the EM wave and the 
vibration phonons of the lattice: elementary excitations known as 
“polaritons.” 
 On resonance, it is this coupling which modify the nature of the 
EM propagation when the two wave vectors of two different particles 
are approximately equal.
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Problem 3: Longitudinal and transverse phonon dispersion in 
CsCl

The crystalline structure of cesium chloride is a simple cubic with 
side a and basis with a Cl− at (1/2, 1/2, 1/2) and a Cs+ ion at (0, 0, 0) 
(see Chapter I, Ex. 1, Fig. 3a). The repulsive energy between the two 

nearest neighbors is of the form u e
q

r
r

2

2

0 0
2

0

8 4
= =-l r

pe
ar/ where α is 

the Madelung constant and r0 is the distance between two nearest 
neighbors in equilibrium (see Chapter II, Pb. 2). 
 (a) In the Hooke’s approximation, find the resultant forces (both 

the attractive Coulomb force and the repulsive force) which 
is exerted on an atom in the (100) plane when, starting from 
their equilibrium position, all the atoms of this plane are 
subject to a translation un in the [100] direction, while the 
nearest neighbors (100) planes are subject to a translation of 
un−1 and un+1 in the same direction (see Fig. 25). Show that the 
main action result arises from the repulsive forces and can be 
written in the form: F u u un n n= + -+ -bL( )1 1 2 .

(100)

[100]

u
n–1 u

n
u

n+1

Figure 25

  By limiting the problem to nearest neighbors, find the 
expression and the numerical value of the constant bL (100) 
for the longitudinal waves. 
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 (b) Starting from the equations of motion, find the dispersion 
relations of longitudinal phonons in the [100] direction. 
Specify the literal value and then give the numerical value of 
the optical longitudinal frequency wL in the center of the BZ 
(at k = 0). The numerical data for CsCl are

  r0 = 3.57 ¥ 10−10 m; r0/ρ = 18; a = 1.7627 [for m(Cl) and m(Cs), 
see Table III at the beginning of the book.]

 (c) Starting from the LST formula (given in Pbs. 1 and 2), find 
the expression and the numerical value of the transverse 
optical frequencies wT at k = 0 and compare the results to 
the experimental value wT = 1.85 ¥ 1013 rad/s (minimum 
of transmission of infrared light at normal incidence). 
Take er (0) = 7 and er(•) = 2.62. 

 (d) Find the expression and the numerical value of the constant 
bT [100]. Compare the value of the velocity of transverse 
waves along the [100] axis as obtained using bT [100] with 
that found using the elastic constant C44 (C44 = 0.8 ¥ 1010 
N/m2). 

 (e) After having calculated the characteristic values for w when 
k is in contact to the first BZ, sketch the dispersion curves of 
the longitudinal and transverse waves in the [100] direction. 
(These can be compared with those obtained by G. Mahler and 
P. Engelhardt, Physica Status Solidi (b) 45 (1973), 453—the 
article which motivated this exercise.) 

Solution:

 (a) When the atomic planes are displaced longitudinally, the 
coordinates of the central ion Cs+ at M (and the notations 

adapted throughout this chapter) are u
a
n , ,0 0  and those 

of nearest neighbors are: - +
-

± ±Ê
ËÁ

ˆ
¯̃

1
2

1 1
2

1
2

u
a

n , ,  and 

± +
+

± ±Ê
ËÁ

ˆ
¯̃

1
2

1 1
2

1
2

u
a

n , , . The distance rMP which separates the 

ion Cs+ at M and the ion Cl– at P - +
+

+ +Ê
ËÁ

ˆ
¯̃

1
2

1 1
2

1
2

u
a

n , ,  is
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  r
a

u u
a a

n nMP = - + -Ê
ËÁ

ˆ
¯̃

+ +
È

Î
Í
Í

˘

˚
˙
˙

-2 4 41

2 2 2 1 2/

. 

  By denoting r0 as the equilibrium distance between two 

nearest neighbors r
a

0
3

2
=

Ê

ËÁ
ˆ

¯̃
 and limiting the expansions 

do the terms in u u
a

n n- -Ê
ËÁ

ˆ
¯̃

1 (Hooke’s approximation), we find: 

r r
u u

r
n n

MP ª +
-Ê

ËÁ
ˆ
¯̃

-
0

1

0
1 1

3
.

  The Coulomb force exerted on an ions at M and P is 

  Fe
r

MP





= q u

r

2

0
24pe , which has a perpendicular component in the 

(100) plane
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u u
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n n
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.

  The resulting Coulomb forces that are exerted on the Cs+ ion 
are zero (in terms up to u3/r5).

  The repulsive forces originate from a smaller energy but 
for a much larger gradient and they contribute mostly to 
the restoring force. The contribution along Ox [100] of the 
repulsive force exerted by the ion at P on the ion M is

  F e
x x

r
r

rx
M P

PM

PM= ◊
--l

r
r/ , which gives

   F e
u u

u u
a u u

r
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n n
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  The resulting repulsive forces exerted on the eight nearest 
neighbors will be

  F
r

e
r

u u ur
n n nrx = ◊ -

Ê
ËÁ

ˆ
¯̃

+ -Â -
- +

4
3

2 2
0

0
1 1

0
l

r r
r/ ( )
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  They take the form F u u un n n= + -Â + -bL( )1 1 2

  with b l
r r

r
L( ) ./100 4

3
2

0

00= ◊ -
Ê
ËÁ

ˆ
¯̃

-

r
e

rr

  By replacing l by its equivalent and substituting real values 
we find

  b
pe

a
rL N/m( ) . .100

4 6
2 23 9

2

0 0
3

0= -
Ê
ËÁ

ˆ
¯̃

=q

r

r

 (b) The equations of motion are 

m
d u

dt
u u u m

d u

dt
u u un

n n n
n

n n nCs Cl 
2

2 1 1

2
1

2 1 12 2= + - = + -+ -
+

+ +b b( ), ( )..

  The solutions are of the form u A i t
kna

n = -exp ( )w
2

 and 

u B i t k
n

an+ = - +
1

1
2

exp ( )w .

  We thus find a system of linear and homogenous equations 
with the two unknowns A and B (see Course Summary and 
preceding problems), which lead to non-zero solutions when 
the values of w satisfy:

  m m m m
ka

Cl Cs Cl Csw b w b4 2 2 22 4
2

0- + + =( ) sin .

  For small wave vectors, k << p/a, the two roots of this equation 
are

  w bLO L
Cl Cs

2 2 1 1= +
Ê
ËÁ

ˆ
¯̃m m

 (optical branch)

  w
b

LA
L

Cl Cs

2 2 2

2 2
=

+
◊

( )m m
k a  (acoustical branch) 

  wLO = 3.2 ¥ 1013 rad/s

 (c) The LST formula is w
w

e
e

T

L

Ê
ËÁ

ˆ
¯̃

= •
2

0
( )
( )

which leads to the relation 

w b e
eTO L

Cl Cs

2 2
0

1 1= • +
Ê
ËÁ

ˆ
¯̃

( )
( ) m m

and wT = 1.96 ¥ 1013 rad/s.

 (d) The transverse vibrations obey to identical equations of 
motion, with bT substituted for bL, to those obtained in (b). 
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Then w bT
2

T
Cl Cs

= +
Ê
ËÁ

ˆ
¯̃

2 1 1
m m

for wT(k = 0). Taking into account 

the LST relation it results b e
e

bT L N/m= • ◊ =( )
( )

. .
0

8 95

  The numerical value of the corresponding elastic wave velocity 
will be

  v
m m

aT
T

Cl Cs
 m/s[ ]

( )

/

100
2

1650
1 2

=
+

È

Î
Í

˘

˚
˙ =

b ,

  which is slightly larger than that deduced directly from the 

experimental value of C44: v
C
dT  m/s[ ]

/

100 44 1414
1 2

= Ê
ËÁ

ˆ
¯̃

=  (see 
Chapter II, Pb. 2, Q. f).

  Remark: We would have obtained vT = 1560 ms if, when 
evaluating bT, we had kept the experimental value of wT 
instead of the calculated value. 
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 (e) The characteristic values of w at the limit of the zone (k = p/a) 
are the following:

 

w b w bLA L Cs TA T Cs) rad

r

= = ¥ =

= ¥

( / . /s; ( / )

.

/ /2 1 47 10 2

0 9 10

1 2 13 1 2

13

m m
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w b w bLO L Cl TO T Clrad= = ¥ =

= ¥

( / ) . / ; ( / )

.

/ /2 2 85 10 2

1 74 10

1 2 13 1 2

13

m s m

rrad/s
 The dispersion curves in the [100] direction, such as deduced 
from the present exercise are shown in Fig. 26a and can be compared 
to those in the article of Mahler and Engelhardt (Fig. 26b) by limiting 
the comparison to the ΓX direction (the other curves are relative to 
the dispersion of phonons along other crystallographic directions: 
the points Γ, X, R, and M represent respectively the center of the first 
BZ and the intersections with the [100] (X), [111] (R), and [110] (M) 
axes (see Fig. 26c). 
 Qualitatively the only notable difference concerns the crossing of 
the LA and TO branches, which does not appear in Fig. 26a. 

Comment

This simplified exercise illustrates the procedure followed in crystal 
dynamics to find the characteristics of the phonon dispersion curves 
in a partly or totally ionic crystal. To obtain a better precision of 
these curves, one can take into account the second and third nearest 
neighbors and substituted the model of a rigid ion considered here 
for the model of a rigid shell (in which the movement of the nucleus 
and inner electrons is disassociated with that of its outer electron to 
take into account the polarizability of the ions), or even better the 
model of a deformable shells which takes into account the movement 
of the nucleus + inner electrons and the shell, in which symmetry 
is not conserved. Figure 27 illustrates schematically these different 
models. 

(a) (b) (c)

Figure 27 Illustration of various models: (a) rigid ions, (b) rigid shells, 
(c) deformable shells.

 The coefficients of the dynamic matrix (the matrix of the 
coefficients of the equations of motion and therefore containing the 
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values corresponding to the normal modes of vibration) are then 
calculated numerically from experimental data relative to U0, r0, 
Cij, wT, e0, e(∞), etc. See the article mentioned previously and more 
generally that of A. Maradudin, Solid State Physics, Sup 3 (1963). 

Problem 4: Improvement of the Debye model: determination 
of qD from elastic constants application to lithium

One can improve the initial Debye theory for the specific heat by 
taking into account that the velocity of the transverse waves is 
distinct from that of longitudinal waves (vt ≠ vl) in the relation w 
= vk, while still assuming that the crystal is an isotropic solid and 
assuming that the first BZ is a sphere. 
 (a) Find the maximal frequency of longitudinal, nl, and transverse, 

nt waves. Graph the frequency spectrum g(n) when nl = 1.8 nt. 
 (b) Find the expression for the Debye temperature qD as a function 

of qL and qT (where hnl = kBqL and hnt = kBqT) from the relation, 
at low temperatures for the specific heat, Cv(T).

 (c) Find the numerical Debye temperature qD of lithium from the 
elastic coefficients along the [100] axis of the crystal. 

  For lithium at 300 K, use C11 = 1.35 ¥ 1010 N/m2, C44 = 0.88 ¥ 
1010 N/m2, ρ (volumetric mass) = 0.542 ¥ 103 kg/m3, and N/V 
= 4.7 ¥ 1028 at m–3. Use F3.

Solution:

 (a) In the Debye approximation, the density of states in vector 
space, g(k), corresponds, for each polarization, to

  
g( )d d

k k
k k

L

=
Ê
ËÁ

ˆ
¯̃

4
2

2

3
p

p

  Taking into account 2pv = ulk and 2pv = utk, we find

  g v v
V v v

ul
r

( )d d= ◊4 2

3
p

 for the longitudinal polarization and

  g v v
V v v

ut
t

d( ) d= ◊4 2

3
p for the two transverse polarization. 

  The frequency limits nl and nt can both be evaluated starting 
from 
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  g v v N
v

l
l

( )d
0Ú = and g v v N

v

t
t

d( )
0Ú = .

  Or equivalently using 4
3 2

3

3
p

p

k

L

Nm

Ê
ËÁ

ˆ
¯̃

= , where 2pv u kt l m=

  (or 2pv u kt l m= )

  This results in v u
N
V

v u
N
Vl l t t= Ê

ËÁ
ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

3
4

3
4

1
3

1
3

p p
,

  The resulting density of states g(n) is the sum

  g v N
v

v
N

v

v
N

v

v
( ) = + =6 3 9

2

3

2

3

2

3
t l D

 for 0 < <v vg  

  and it reduces to g v N
v

v
( ) = 3

2

3
l

 for vt < v < vl.

  (By anticipation, we have imposed 2 1 3
3 3 3v v vt l D

+ = , see below). 

  Figure 28a shows this frequency spectrum when vl = 1.8vt [see 
Remark (a) at the end of the problem].

g( )n

500
400
420
360
340

0 50 100150 200 250 300 350 400
n T

I

IIqD

(a) (b)

v vt D v1

 Theoretical (I) and experimental (II) variations 
  of qD as a function of T for Li (after [25]).

Figure 28

 (b) Neglecting the half quantum, the internal energy can be 
written

  U T g v
hv

hv
k T

dv g v
hv

hv
k T

v v
( ) ( )

exp
( )

exp
= ◊

Ê
ËÁ

ˆ
¯̃

-
+

Ê
Ë

Ú Úl

B

t

B

l t

0 0
1

2

ÁÁ
ˆ
¯̃

- 1
dv
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  Substituting x
hv

k T
hv k= =

B
l B L , q and hv kt B T= q , we find

  U T N
T

k T
x dx

e
N

T
k T

x dx

ex x

x
( ) .=

Ê
ËÁ

ˆ
¯̃ -

+
Ê
ËÁ

ˆ
¯̃ -Ú3

1
6

1

3 3 3 3

00q qL
B

T
B

txxlÚ
  At low temperatures kBT << hvl, t, which gives xl, xt Æ • and 

leads to 

  U T Nk T
T T( ) =

Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

p
q q

4 3 3

5
2B

L T
and 

C
Nk T T

v
B

L T
=

Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

4
5

2
4 3 3

p
q q

  Identifying this result with that obtained starting from the 
simplified Debye theory where there is no difference between 
ul and uT (and between nl and nt, and qL and qT) 

  C
Nk T

Nk
T

v
B

D
B

D
=

Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

12
5

234
4 3 3

p
q q

  We find 3 1 2
3 3 3q q qD L T

= + , a result that can be deduced directly 

from 3 1 2
3 3 3v v vD l t

= + .

 (c) As a function of elastic constants, the velocity of longitudinal 
and transverse waves is respectively

  u
C

l =
Ê
ËÁ

ˆ
¯̃

=11

1
2

r
5000 m/s and u

C
t =

Ê
ËÁ

ˆ
¯̃

=44

1
2

r
4030 m/s.

  vl Lc/ K,= ¥ =11 2 10 53712. s,q  vt = 9.02 ¥ 1012 c/s, qT = 433 K 
and which gives qD = 459 K.

Remarks: (a) The advantage of the method developed here, 
due to M. Born, is that one can calculate the Debye 
temperature starting from the elastic coefficients 
Cij or from the Lamé coefficients l and μ: C11 = l 
+ 2m + 8v (n = 0 for the isotropic case); C12 = l, 
C44 = m; and even from the Young’s modulus E and the 
Poisson coefficient σ:
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  2s l
l m

=
+

and E =
+

+( )m
l m

l m3 2 (see Chapter II, Ex. 

13 and Pb. 4).
  On the other hand, it would be better to evaluate 

the average longitudinal velocity and the average 
transverse velocity rather than the velocities 
corresponding to the propagation along specific 
directions because the Cauchy relation relative to the 
elastic isotropy: C11 = 3C44 is far from being satisfied 
for lithium. When the isotropy condition is satisfied: 
v vl t= 3  and v vl tª 1 8. , the choice made in question 
(a) is correct (see Chapter II, Pb. 4 and Ex. 15). 

 (b) The numerical value obtained for qD is rather good at 
ambient temperature but, for lithium, this value is far 
from being independent of T (see Fig. 28b) because 
the elastic constants are themselves dependent on 
temperature. 

Problem 5: Specific heats at constant pressure Cp and constant 
volume Cv: (Cp – Cv) correction 

Consider V = f(p, T), the equation of state for a solid where V 
represents the volume of one mole. In an infinitesimal reversible 
transformation, the quantity of heat dQ received can be written in 
the form dQ C dT l dV C dT h dp= + = +v p .
 (a) Express the difference Cp − Cv as a function of l and find the 

relation between l and h. 
 (b) We denote U as the internal energy, H as the enthalpy, and S as 

the entropy of a mole. Using thermodynamics show that

  C C T
V

T

V
P

p v
p

T

- = -
( )
( )

∂
∂

∂
∂

2

 (c) Find the result for the preceding function as a function of 
the compressibility b and of the coefficient of linear thermal 
expansion al. Find as a function of temperature the evolution 

of the ratio Cp/Cv when the quantity g, g
a

b
=

◊
◊

3 l

v

V
C

is assumed 

to be independent of T (according to E. Grüneisen).
 (d) Numerical application: Starting from the curve Cv = f (T) shown 

in the Course Summary, find the ratio 
C C

C
p v

v

-
at an ambient 
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temperature of 280 K for NaCl and Li. Use the following 
parameters:

  

NaCl m N /K

K m
l

D

: . / , ,

, .

b a

q

= ¥ = ¥

= = ¥

- -

-

4 26 10 40 10

280 268 10

11 2 6

7 3V  

  
Li m /N /K

K m

2
l

D
3

: . , ,

, .

b a

q

= ¥ = ¥

= = ¥

- -

-

8 62 10 45 10

460 128 10

11 6

7V

Solution:

 (a) According to the equation of state V = f (p, T), the total 
differential volume is 

  dV
V
p

dp
V
T

dT= ∂
∂

Ê
ËÁ

ˆ
¯̃

+ ∂
∂

Ê
ËÁ

ˆ
¯̃T p

  Substituting this for dV in the two expressions for dQ we find

  dQ C dT ldV C l
V
T

dT l
V
P

dp C dT= + = + ∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

+ ∂
∂

Ê
ËÁ

ˆ
¯̃

= +v v
p T

p hh dp

  which gives C C l
V
Tp v

p
- = ∂

∂
Ê
ËÁ

ˆ
¯̃

and h l
V
p

= ∂
∂

Ê
ËÁ

ˆ
¯̃ T

 (b) According to the second principle of thermodynamics, the 
elementary variations of the internal energy U, the enthalpy 
H, and the entropy S are exact differentials. Taking T and p as 
independent variables, the differentials of H and S are (H = U + 
pV):

  dH Q V dp C dT h V dp= + = + +d p ( )  and dS
Q

T

C

T
dT

h
T

dV= = +d p

  In each of these expressions the coefficients of dT and dp are 
first-order derivatives of H (or of S):

  ∂
∂

Ê
ËÁ

ˆ
¯̃

= ∂
∂

Ê
ËÁ

ˆ
¯̃

= + ∂
∂

Ê
ËÁ

ˆ
¯̃

= ∂
∂

Ê
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ˆ
¯̃

H
T

C
H
p

h V
S
T

C

T
S
Vp T p T

p
p, , , == h

T
,

  from which we can then find

  ∂
∂ ∂

=
∂
∂

= ∂ +
∂

∂
∂ ∂

= ∂
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Ê
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ˆ
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= ∂
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T p p
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T T
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  After multiplying this last quantity by T, we find

  ∂
∂

= ∂
∂

-
C

p
h
T

h
T

p

  Since the independent variables are T and p, by setting the 

two expressions for 
∂
∂
C

p
p  equal to each other, we find

   h T
V
T

= - ∂
∂

Ê
ËÁ

ˆ
¯̃ p

 and l

T
V
T

V
p

= -

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
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ˆ
¯̃

p

T

, which gives

  C C T

V
T

V
p

p v

T

− = −

∂
∂







∂
∂







p .

2

 (c) Taking into account the definitions of al and b,

  a av
p

l= ∂
∂

Ê
ËÁ

ˆ
¯̃

=1 3
V

V
T

and b = - ∂
∂

Ê
ËÁ

ˆ
¯̃

1
V

V
p T

, the difference Cp − Cv 

becomes

  C C TVp v
l- =

9 2a
b

, which leads to the ratio 
C

C
Tp

v
l= +1 3ga .

  The molar heat that is measured usually is Cp but the theoretical 
calculations (see previous exercises) concern Cv. 

  Thus to compare experiment and theory one must take into 

account the correction TV
9 2a

b
l . 

  At ambient temperature, such a comparison does not present 
any difficulty because one can measure the different terms of 
the correction but at high temperature the determination of 
b can be tricky because one must use a linear extrapolation 
of the values measured at ambient conditions. Such a 
methodology can be avoided if one uses, for a given body, the 
Grüneisen parameter g, which is a constant as a function of 
temperature. Unfortunately, the Grüneisen relation assumes 
that interatomic forces are central, which is far from being the 
case for metals and covalent materials (see Ref. [25], p. 153).
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 (d) Numerical application:
  NaCl at 280 K

  

T
C

C C

C
T

q

g g a

D
v

p v

p
l

 J molª ª

=
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ª ª

1 24

3 17 3 10
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. ; %.

  Li at 280 K 

  

T
C

C C

C

q

g

D
v

p v

v

J molª ª

=
-

ª

0 6 22

0 9 3 4

. ; / deg

. ; . %.
 

Problem 6: Anharmonic oscillations: thermal expansion and 
specific heat for a row of atoms

As shown in Fig. 29, the potential felt by an atom in a crystal can be 
approximately described by 

 V x ax bx cx( ) = - -1
2

2 3 4

in which all the coefficients are positive and such that bx3, cx4 << ax2 

and x measures the distance relative to the equilibrium position. 

u V

O

ax2

r0 r x
O

0
O

Figure 29

 (a) Find the equation of motion for an atom and solve it by 
successive approximations. Show that the presence of an 
anharmonic term b results in oscillations with pulsation 2w0 
[w0 is the fundamental pulsation of the harmonic oscillator] 
and that the average position of the atom is proportional to 
the square of the amplitude A of the harmonic oscillator. 
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 (b) Using the Boltzmann distribution function, find (in the 
classical approximation), the position of the atom as a function 
of temperature T. Find this result as a function of the partition 
function Z(b) where b = 1/kBT. Deduce the coefficient of linear 
thermal expansion al for a row of identical atoms equidistant 
of r0.

 (c) Starting from the partition function, find the approximate 
expression of the specific heat C of this oscillator. 

 (d) Find the numerical anharmonic contribution to the specific 
heat for T = 100 K and T = 1000 K using the following values:

  b
a

c
b

a r= = = ¥ =-, , ,10 5 10 35
0 N/m /K and  Åla

  Recall that

  exp
/

- = Ê
ËÁ

ˆ
¯̃-•

+•

Ú a p
a

x x2
1 2

d and that 

x x x
nn

n n
2 2

1

1 21 3 5 2 1
2

.exp ( ) /

- = ◊ ◊ - Ê
ËÁ

ˆ
¯̃+-•

+•

Ú a
a

p
a

d ...

  Neglect the term in cx4 for parts a and b to simplify the result. 

Solution:

 (a) The force 


F  exerted on an atom is such that F V
  

= -grad
  Using the expression for V, we find:

  F dV dx ax bx cxx = - = - + +/ 3 42 3

  The equation of motion of oscillator of mass m will therefore 
be m x dt ax bx cxd2 2 2 33 4/ = - + + .

  In the 0th order approximation, we neglect b and c and obtain 
the harmonic solution of form:

  x A t0 0= cos w where w0
1 2= ( / ) /a m

  Next, we seek the first-order approximation; and thus assume 
a solution of the form x1 = A cos w0t + e. Substituting this into 
the equation of motion we find

  m
d

dt
a

b
A

bA
t

2

2
2

2

0
3
2

3
2

2 0e e w+ - - =cos ,
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  which results in the trivial solution e0

23
2

= bA
a

 and more 

generally e e e w= +0 1 02cos t , where e1

2

2
= - bA

a
. The final 

result is thus x A t
bA

a
bA

a
t1 0

2 2

0
3

2 2
2= + -cos cos .w w

  We observe that, in addition to the fundamental pulsation w0, 
there is an additional harmonic of 2w0, whose amplitude is 
proportional to the square of the fundamental oscillation (A2) 
and is therefore proportional to the energy of the oscillator. 

  In addition, the average position of the atom is no longer at 

the origin but 3
2

2bA
a

shifted of. This shift of the atom is also 

proportional to the vibrational energy (see below). 
 (b) The Boltzmann distribution balances possible values of x by 

their thermodynamic probability:

  x
dx x e

dx e

V x

V x
=

-

-•

+•

-

-•

+•
Ú
Ú

b

b

( )

( )
, where b = 1

k TB

  By expanding 
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¯̃
b b b ba

x bx cx bx cx a
x

2
1

2
2 3 4 3 4

2

  and limiting to the first non-zero term, we find for the 
numerator

  xdx bx e
b

a

ax

( ) / /1 3 23 2
3 2 5 2

2

+ =
◊-•

+• -

Ú b p
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b

  and for the denominator

  dxe
a

ax-
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b p
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2
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1 2
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/

,

  which results in x
b

a

b

a
k T= =3 3

2 2b B

  The coefficient of linear thermal expansion al for a row of 

atoms of length l corresponds to al l
l
T

= ∂
∂

1 . For a distance r 
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between two atoms: al r
r x

T
b

r a
k=

∂ +
∂

= ◊1 3

0

0

0
2

( )
B

  Remark: In this question, one can obtain the initial expression 
for x  using the partition function:

  Z dpdxe E= ÚÚ - b , where E
p
m

V x= +
2

2
( ) .

  For N oscillators x  is such that x
N
Z

p x xe E= ◊ ◊ -ÚÚ d d b ,

  which gives x
N dxx e
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p
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 (c) The average energy per oscillator is 

E
dpdxEe

dpdxe
Z

E

E
= = - ∂

∂

-

-

ÚÚ
ÚÚ

b

b b
(l ).og

  To evaluate E , one can therefore either follow a method 
parallel to that used above to evaluate x  or use the partition 
function Z. In the latter case we have

  

Z dp
p
m
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m
dx e

V( ) exp
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b b
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  As the terms above in x e dxn x2 1 2+ -

-•

+•
◊Ú a cancel each other by 

symmetry, the result is

  Z
m
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b

a
( )b p

b b b
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ˆ
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  and thus 

  E og
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∂
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ˆ
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a
k T

b
3 15
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  where we have taken into account that log(1+ )=e e e-
2

2
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  The heat capacity of an anharmonic oscillator is 

C
E
T

k
c

a

b

a
k T= ∂

∂
= + +

Ê

ËÁ
ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙

B B1 6 15
2

2

3 .

  The first term represents the specific heat of a linear harmonic 

oscillator 1
2

1
2

k T E k T EB C B pand= =Ê
ËÁ

ˆ
¯̃

, while the last two 

correcting terms are of comparable weight when b/a and c/b 
are of the same order of magnitude.

 (d) Starting from the literal expression for linear thermal 
expansion, we find

  b
r a
k

c
b
a

l= = ¥ = = ¥
a 0

2
10

2
19 3

3
3 6 10 13 10

B

2N/m N/m. , .

  The anharmonic contribution to the total specific heat is 
C

C
c

a
k T

( ) . ,anh TBª = ¥ -21 3 75 102
4

  which corresponds to 4% at 100 K and 27% at 1000 K.
  Finally, we observe that when the amplitude of oscillations 

approaches the melting point the harmonic term is ax ≈ 3 ¥ 
10−10 N, whereas the anharmonic terms 3bx2 and 4cx3 are 
respectively equal to 10−10 N and 0.14 ¥ 10−10 N. 

Problem 7: Phonons in germanium and neutron diffusion

Figure 30 shows the dispersion curve of phonons along the [100] 
axis of germanium. 
 (a) Determine graphically the velocity of longitudinal acoustic 

vL and transverse vT waves. Justify the limiting value of the 
abscise for points D and F, using kmax = 0.177 Å ¥ 2p, and the 
existence of the branches HF and HG. 

 (b) Deduce the numerical value of the macroscopic elastic 
constants C11 and C44 as well as the frequencies and Debye 
temperatures corresponding to each polarization (nL and qL 
as well as nT and qT). 

  What is the weighted Debye temperature qD such that 

3 1 2
3 3 3q q qD L T

=
Ê

ËÁ
ˆ

¯̃
+

Ê

ËÁ
ˆ

¯̃
?  

  Compare the result with the accepted value: qD = 375 K.
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Figure 30

 (c) We expect that this material will be absorbing in the infrared. 
Why? State the numerical value of the wavelength l at which 
this absorption will take place. 

 (d) The curve shown was obtained by inelastic scattering of 
neutrons with associate initial wavelength of l = 1.52 Å. 
Supposing that the wave vector kon of incident neutrons 
contained in the plane 



A, 


B  in reciprocal space, show that 
the extremity of the diffuse wave vectors which leads to the 
determination of the point H is situated on a sphere and find 
its radius. The method to follow can be inspired by the Ewald 
construction, but including the inelastic effects to adapt it to 
this problem. It will be useful to compare the initial kinetic 
energy of the neutrons and the maximum energy of excited 
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phonons. Generalize this reasoning to determine a point on 
the dispersion curve. 

  Data for these calculations: Ge is fcc with lattice parameter 
a = 5.66 Å with basis of two atoms at 000 and at ¼ ¼ ¼. 
A(Ge) = 72.5; M(neutron) = 1.67 ¥ 10−27 kg. (h, e, kB, and N).

Solution: 

 (a) The longitudinal acoustic branch is the OF branch and the two 
other acoustic branches represented by OD are the transverse 
degenerate branches. The constant force between atoms is 
larger for the longitudinal vibrations, which propagate by 
successive compression and elongation, than for transverse 
vibrations, which correspond to shear forces (it is easier to 
slide the (100) planes toward one another than to reduce 
the distance separating them). The degeneracy of the 
transverse vibrations can be understood because the two 
branches correspond to atomic displaces u  [ ]010  and to the 
[001] which are equivalent: the propagation being such that 
k  [ ]100 . The requested velocities can be deduced using 
w = vk, from the slopes of the tangents at the origin for the 
two acoustic dispersion curves (tangents being suggested in 
Fig. 30). We find v vL T m/s  m/s[ ] ; [ ] .100 4800 100 3400ª ª

  The reciprocal lattice of Ge is cubic centered and the indices 
of the points of this lattice have the same parity. In the [100] 
direction, the median plane between the origin and the point 
at 200—the point at 100 being forbidden—gives for the 
abscissa 2p/a with 1/a = 0.177 Å–1, where a = 5.66 Å. (It is the 
point labeled X in Chapter I, Ex. 14, Fig. 12). 

  The existence of a two-atom basis in non-equivalent positions 
is sufficient to induce the existence of the optical branches 
(even if these atoms are chemically identical): HF:LO and 
HG:2TO (degenerate). 

 (b) v CL[ ] /100 11= r and v CT[ ] /100 44= r
  There are eight atoms of Ge in a volume of a3 from which we 

find a mass density r = 8A/N a3. ρ = 5.31 ¥ 103; C11 = 1.2 ¥ 1011 
Pa and C44 = 6.1 ¥ 1010 Pa. 

  In addition, v v nL,T L,T= ( / ) /3 4 13p (see Pb. 4) where n = 8/a3.
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  The agreement with the accepted value is surprising. It is due 
to the overestimation of the weighted acoustic frequencies 
compensating for the optical frequencies, which are not 
taken into account in the Debye model. (Compare nL to the 
experimental value nmax.) 

 (c) The IR absorption leads to the excitation of transverse optical 
phonons with very short wave vectors (k ~ 0). It is therefore 
related to the existence of the optical branches (see the above 
answer in a):

  l(IR) = c/v, where n0 = 9 ¥ 1012 s−1 and l(IR) ª 33 mm.
  The order of magnitude of b may be deduced from the 

expression for n0 relative to a basis consisting of two atoms of 
different masses m and M 

  ( )2 2
1 1

0
2p bv

M m
= +Ê

ËÁ
ˆ
¯̃

  Here there is the identity of the two masses. 
Then, b p= m v( ) /2 40

2 , where m A N= = ¥ -/ .1 2 10 25kg and 
b ª 96 N/m.

  In fact the reality is much more complex. The resolution of 
the dynamical matrix leads to the introduction of two force 
constants from which the sum corresponds sensitively on the 
evaluation of b determined below. But this is not sufficient 
to correctly describe all of the experimental results. The 
complete study must also take into account the polarizability 
of the atoms and the interaction of atoms which is not just 
limited to nearest neighbor interactions. (For further details 
see Ref. [2], pp. 92–98.)

 (d) Resulting from the inelastic interactions of neutrons with 
Ge, the conservation of energy is Eon = E¢n ± hv, where the ± 
corresponds to the creation (annihilation) of a phonon with 
frequency n. The energies Eon and E¢n are related to the wave 
vectors kon and k¢n via Eon = h2k2

on/2M and E¢n = h2k¢2n/2M. 
The modulus of the scattered wave vector is therefore: 
k k M vn′ = [ ( / )] ./

0
2 1 24 hp
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 Starting from the origin of the wave vector kon

 

, of the 
incident neutrons, one can therefore construct the two spheres 
(circumference in the plane) of the radii k¢n(+) and k¢n(–). The 
procedure is analogous to that of Ewald apart from the inequality, 
here, of kon and k¢n. 
 In addition, the momentum conservation, h



h



h

 

k k k Gon = + +′n ( ), 
must also be satisfied with possible translation of a vector 



G of the 
lattice, for the phonon vector 



k  to be included in the first BZ. 
 For the point H, k



( )H = 0 and the vector equality implies that the 
two spheres are connected by a point on the reciprocal lattice, that is 
k k Gon
  

- =′n . 

 Starting from the formula l = h

ME2
 (see Chapter I, Course 

Summary and Pb. 7), the energy of incident neutrons is Eon ≈ 40 meV, 
whereas the phonon energy at point H is hv = 37 meV. This leads to the 
illustration in Fig. 31 where the representation in reciprocal space is 
limited to the allowed points in the plane AB; the circumference of 
radius k¢ (absorption of a phonon) and k¢+ (creation of a phonon) 
encircles the Ewald sphere of elastic diffusion. Regardless of the 
incidence, the conservation conditions will not be simultaneously 
satisfied and it will be necessary to orient the crystal correctly. 

020 220 420

400200000

240040

440

k¢
+

k

k

C

kon

k
–
¢

Ewald
A a= 2 /p

Figure 31
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 For the other points of the dispersion curve, where the exchange 
of energy hn is weaker, the corresponding spheres are necessarily 
situated between the extreme spheres k¢+ and k¢− mentioned above. 
The directions of the diffuse neutrons will be determined graphically 
by the intersection of these spheres with the spheres of radius k 
(phonon) centered on the different points of the reciprocal lattice. 
 For phonons propagating along the [100] axis, only the 



k  vectors 
parallel to this axis will be relevant. To these constraints, which are 
shown for the points at 040 and 440 in Fig. 31, must be added those 
relative to the position of the neutron detector which imposes that 
the vectors k¢



 be orthogonal to 


kon. Finally, we observe that at 0 K, 
the neutrons cannot acquire an energy hn because the atoms only 
have a half quantum of energy. 

Comment: Nobel Prize in physics in 1994

This problem therefore illustrates particularly the experimental 
method used to reveal point by point the dispersion curve of phonons 
starting from the measurement of kinetic energy and from the 
direction of inelastic thermally diffused neutrons that are initially 
monochromatic. For further details the reader can consult the article 
by Brockhouse and Iyengar, Phys Rev III, 1958, 747. In addition to 
their elastic interactions (i.e., l is not changed and the process is 
coherent (see comment in Chapter I, Pb. 7), there are also collisions 
that involve a change in energy with phonons and magnons. B. N. 
Brockhouse shared with C. G. Shull the Nobel Prize in physics, 1994, 
for this type of investigation. 

Problem 8: Phonon dispersion in a film of CuO2

Consider a 2D crystalline structure defined by its square lattice with 
parameter 2a and its basis consisting of one copper atom at 0,0 and 
two oxygen atoms at ½,0 and 0,½. 
 (1) Draw the crystal structure.
 (2) The vibrations perpendicular to the surface are investigated 

by limiting the analysis to the actions of nearest neighbors 
with force constant b. 

  Find the equations of motion of the atom Cu with mass M 
which is at a position 2l and 2n and which is thus at a distance 
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2la along x and lna along y, from the origin. Also find the 
equations for the oxygen atoms of mass m whose positions 
correspond respectively to 2l + 1, 2n, 2l, and 2n + 1. Starting 
from solutions of the form exp i(wt − 



k r) where the amplitudes 
will be successively A, B, and C, show that the dispersion 
relation of phonons is deduced from a determinant equal zero 
and express its coefficients. 

 (3) Find the solutions of this relation at the center and extremities 
of the BZ (k = 0) in the [11] and [10] directions. It is useful to 
express the results as a function of w bm m2 2= /  and w bM

2 = 4 /M .
  Show the dispersion curves in the two directions mentioned 

above and the density of states g(w). Take into account that M 
≈ 4m [A(Cu) = 63.6 and A(O) = 16]. Comment on the results.

 (4) Now consider the effect of second nearest neighbors limiting 
the analysis to the interactions between oxygen atoms 
characterized by a force constant b0 < 0. Use w br

2
04= - / .m

Solution:

 (1) See Fig. 32.

Cv

2a

Figure 32

 

(2)
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  The solutions are of the type

  

u

u
2 2

2 1 2

2 2

2 1 2
l n x y

l n x

A i t lk a nk a

B i t l k a n
,

,

exp ( )

exp ( ( )

= - -

= - + -+

w

w kk a

C i t lk a n k a
y

l n x y

)

exp [ ( ) ],u2 2 1 2 2 1+ = - - +w

 

  We obtain

   

M k a k a

k a m

k a m

x y

x

y

w b b b

b w b

b w b

2

2

2

4 2 2

2 2 0

2 0 2

0

-

-

-

=

cos cos

cos

cos

 (3) ( ) ( ) (sin sin )w w w w w w
w w2 2 4 2 2 2

2 2
2 2

2
0- - - + +

È

Î
Í
Í

˘

˚
˙
˙

=m m M
m M

x yk a k a

  In the center, point O or G of the BZ, kx = ky = 0 so we have:

   w w w w w w¢¢¢ ¢ ¢¢= 0( );TA (TO ); ( ) (TO )/= = +m m M1
2 2 1 2

2

  At kx = ky = p/2a, point M of the BZ: 

  w¢ = w¢¢ = wm (TO1 and TO2); w¢¢¢ = wM = (TA)
  At point X: kx = p/2a, ky = 0. In addition to the square root  

w¢¢¢ = wM, we find:

  2 2 2 2 2 4 4( , ( )w w w w w w′) ′′2 = + ± +m M m M

  The most remarkable result concerns the TO1 branch which 
corresponds to a vibration of two atoms of oxygen in phase 
opposition (B = −C and A = 0) regardless of the wavelength 
of vibration. This leads to a large density of states at w = wm 
because the integrated area under the curves g(w) is the same 
for the three branches. 

 (4) Taking into account the second interactions between 
atoms of oxygen, to the number 4, modifies neither the 
coefficients of the first row nor those of the first column of the 
determinant (D11, D12, D13). The diagonal coefficients become 
D m22

2
02 4= - -w b b  and those that are initially zero, such 

as D23 now become D23 = 4b0 coskxa ¥ coskya. As expected, 
the effect of the 2d neighbors concerns mostly the oxygen 
atoms of the TO1 branch with angular frequencies obeying 
to w w w2 2 2= - 2( )m r , when k = 0, and w w w2 2 2= -( )m r , when 
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kx = ky= p/2a. At the center of the BZ the other branches are not 
affected because the O atoms vibrate in phase. Nevertheless, if 
the repulsive forces are very strong, we can foresee a decrease 
in the sound velocity and the appearance of soft modes. (See 
Exs. 2b, 3, and 5 for more details.)

 The dashed curves on the Fig. 33 show the main changes due 
to the second nearest neighbors compared to the solid lines, which 
deal with the nearest neighbors only.

TO1

TO2

w

wm

M[11] X[10]
g( )w

0

TA

0 0b =

0 0b <

w

Figure 33

Comment: See also Chapter IV, Pb. 7, and Chapter V, Ex. 2b.
In metallic superconductors, the John Bardeen, Leon Neil Cooper, 
and John Robert Schrieffer (BCS) theory shows that the critical 
temperature can be written as: Tc = 1.14qDexp–a–1, where a = U ◊ 
g(EF) <<1 with g(EF) is the density of states of electrons at the Fermi 
level, qD is the Debye temperature and U is the interaction energy 
of electrons with phonons. The present problem concerns ceramics 
of YBaCuO type that have a high transition temperature between 
normal and superconducting states. In this context and to explain 
the superconductivity of ceramics based on copper oxides, it is 
interesting to study the atomic vibrations of layers of CuO2, which 
make up the basis of these new superconductors (see Chapter V, 
Ex. 2b). 

Problem 9: Phonons dispersion in graphene 

Graphene is a 2D single layer of carbon atoms, mass m, arranged in 
a honeycomb structure as shown in Fig. 14a. The distance between 
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two neighboring atoms is d = 1.42 Å. These atoms are submitted to 
a force constant bz limited to each nearest neighbors and are forced 
to move perpendicular to the lattice plane (Z modes associated with 
out-of-plane atomic motions). 

d = 1.42 Å

x0

y

Figure 34 Graphene.

 (1) Describe the crystal structure of graphene: Bravais lattice 
and basis. Following an approach similar to that used in Ex. 9, 
above, find the equation of motion relative to the displacement 
u0 of the atom at the origin 0 and those relative to the 
displacement ui of atoms of index . 

 (2) Starting from solutions of the form of running waves 
propagating only in the y-direction, exp i(wt − kyy), find the 
dispersion relation between w and a with a = kyd√3/2. Show 
the corresponding curves using a vertical scale in √bz/m unit 
and give the characteristic values taken by w at selected points 
G and K of the first BZ (point G is in the BZ center and point K 
corresponds to the point where the wave vector k is in contact 
with the BZ in the y-direction). 

  (3) The phonon dispersion for all polarizations and 
crystallographic directions in graphene lattice has been 
extensively investigated as it may be seen in the literature. 
Inspired from Nika et al. Phys. Rev. B. 79, 2009, 155413, an 
example is shown in Fig. 35 (where calculations are based on 
the valence-force field method including the effects of the 2d 
nearest neighbors). 
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 From simple physical arguments, identify the out-of-plane modes 
(Z) the in-plane longitudinal modes (L), and the in-plane transverse 
modes (T) and their direction in the BZ. Indicate which of them 
correspond to the above calculations and suggest a simple method 
to draw the missing branches of the curves asked in (2). From the 
numerical values of n (vertical scale in Fig. 14b), evaluate the sound 
velocity along a graphene layer.

Solution:

 (1) See Chapter I, Ex. 17, and Fig. 36. 

x0

y

53

2 a

b

1
4
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kx0

M

A



K
K

B







Figure 36 Graphene: Direct space and reciprocal space with GM = 2p/3d 
and GK = 4p/3√3d.
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  The rhombic unit cell can be defined by two basis vectors 
a = (3; √3/2)d/2 and b = (3; −√3/2)d/2. The basis is composed 
of one C atom in (00) and another one in (1/3; 1/3). Thus 
there are two atoms in non equivalent position, thus one must 
expect two types of branch: acoustical and optical (see Ex. 1). 
Each of the two atoms has three nearest neighbors 

   mü0 = bz [(u1 − u0) + (u2 − u0) + (u3 −	u0)]
   mü1 = bz [(u0 − u1) + (u4 − u1) + (u5 – u1)]
 (2) We look for solutions of the form exp i[wt − (kxx + kyy)], where 

x and y are the co-ordinates of the atoms of interest: 1(d, 0); 
2(−d/2, √3d/2); 3(−d/2, −√3d/2); 4(1.5d, √3d/2); 5(1.5d, 
−√3d/2).

  For running waves in the y-direction, the displacements are
  u0 = A eiwt; u1= B eiwt; u2 = B eiwt e–ia; u3 = B eiwt eia; 

u4 = B eiwt e–ia; u5 = B eiwt eia, where a = kyd√3/2.
   On substitution in the equations of motion, one obtains
   −w2A = (bz/m)[B + 2B cos a–3A]
   −w2B = (bz/m)[A + 2B cos a–3B]
   This set of homogeneous equations has a non-trivial solution 

only if the determinant, D, of the coefficients A and B vanishes. 
D = 0 when

  w4 − 2(bz/m) (3 − cos a) w2 + 8(bz/m)2(1 −	cos a) = 0 (1)

  The solutions are w¢ = [2(bz/m)(1 − cos a)]½ for the 
z-acoustical mode; w¢ = 0 for ky = 0; and A = B. 

  w¢¢ = 2(bz/m)1/2 for the optical mode. A = −B for ky = 0.
 (3) Under the same simplified assumptions, the dispersion curves 

for the other modes obey to the same equations.
  The unique changes are the respective values of the 

force constants, bt or bl. The stronger force constant is bl: 
compression effect. The weaker is bz because of the ease of 
the atoms to move normal to the graphene layer. The results 
are shown in Fig. 37 (right), where the ratios between them 
are chosen for an approximate fit with the Mika’s calculations: 
bt/bz ~ 3.3 and bl/bz ~ 5.5.

  The sound velocity corresponds to vs = 2p ∂n/∂k for the LA 
branch, compression, around the point G. From the slopes of 
the dashed arrows in Fig. 37 (left), one obtains vs = 18000 
m/s. 
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Figure 37 Phonon dispersion in graphene: (Left) from Mika et al. (Right) 
present calculations.

Remarks: (1) The value of the sound velocity is consistent to the 
value being measured in diamond (see Chapter II, 
Pb. 4). Like for diamond-like materials, the reason is 
the large value of the constant force bl (C–C covalent 
binding) combined to the light mass of carbon atoms: 
vs is proportional to √bl/m. Thus graphene layers 
have a good thermal conductivity, Kth (see Course 
Summary, Section 7), but also a good electrical 
conductivity along the layers (see Chapter V). 

 (2) The present problem is an oversimplified approach 
for the investigation of the phonon dispersion in 
graphene. In general, atomic vibrations are partially 
screened by filled electronic states. This screening 
may lead to Kohn anomaly (see Ex. 6) that may occur 
to only some specific points of the Fermi surface of 
graphene (Maultzsch et al., Phys. Rev. Lett. 92, 2004, 
075501). 

 In addition, the heat transport in basal planes of bulk graphite 
slightly differs from that in a single-layer graphene. The thermal 
conductivity, Kth, is ~2000 W/mK for graphite and ~7000 W/mK 
for graphene. The reason is the presence of a phonon dispersion 
curve parallel to the c-axis in graphite, making possible a strong 
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coupling with the plane phonon modes and propagation of heat in 
all directions; phenomena that cannot exist in graphene. This lack 
explains that a phonon mean free path Lph of ~775 nm has been 
measured in graphene near room temperature (D. L. Nika et al. Appl. 
Phys. Lett. 94, 2009, 203103; S. Ghosh et al. Appl. Phys. Lett. 92, 2008, 
151911). Such specific properties open opportunities for tuning 
the properties of phonons in a way similar to electrons, as it may 
be deduced from the recent works in particular those of Balandin 
group. Such an approach for controlling the phonon spectrum of 
materials for specific applications was termed phonon engineering 
or nanophononics. (Chapter V, Pb. 11, deals with the electrons in 
graphene.)

Questions

 Q.1: In what medium does sound propagate faster: lead or diamond? 
Why?

 Q.2: The Debye temperature of lead is qD = 100 K. 
  What physical arguments justify such a small value?
  What is the vibration energy of an atom of lead at 300 K?
 Q.3: The Debye temperature of diamond is qD = 2230 K. 
  What physical arguments justify such a large value?
 Q.4: Find the ratio of the specific heat at 50 K and 5 K for diamond. Find 

the thermal conductivity at these two temperatures for a very small 
sample. 

 Q.5: Why is the velocity of a transverse acoustic wave in a cubic crystal 
smaller than that of the longitudinal wave?

 Q.6: At 300 K, the thermal conductivity of germanium is K = 80 W/m·K, 
its specific heat is C ≈ 17 ¥ 105 J/m3K and the average sound velocity 
is vs = 4500 m/s. What is the mean free path of phonons at this 
temperature? 

 Q.7: What is the asymptotic value (T > qD) of the specific heat of a row of 
identical atoms when considered as a row of spatial oscillators? At 
low temperatures (T << qD) is the dependence T, T2, or T3?

 Q.8: What is the asymptotic value of the specific heat of a 3D solid from 
which the atoms will be constrained to vibrate in only one direction? 
At low temperatures will the evolution of Cv have a T, T2, or T3 
dependence?
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 Q.9: Is the concept of “phonon” related to a boundary condition?
 Q.10: What is the order of magnitude of the amplitude of atomic vibrations 

for solids when their temperature is approaching their melting 
point?

 Q.11: Why is helium a liquid even at 0 K (at atmospheric pressure)?
 Q.12: What is a soft mode?
 Q.13: What are the microscopic causes of the thermal expansion of a solid?
 Q.14: What is the Kohn anomaly?
 Q.15: Why does silicon absorb in the infrared?
 Q.16: Classify the following alkali halides by their infrared absorption 

wavelength in increasing magnitude: LiF, NaCl, KBr, RbI, and CsI. 
 Q.17: The static dielectric constant es and the optical index n (in the visible) 

of several alkali halides are as follows:
  LiF (es = 8.9; n = 1.38); NaCl (es = 5.9; n = 1.5); AgCl (es = 12.3; n = 2).
  Find the weight of ionic vibrations relative to the static dielectric 

susceptibility. What is the relation between the longitudinal and 
transverse resonant frequencies of ions, wL/wT, for k = 0?

 Q.18: What are the microscopic causes of a dielectric constant smaller 
than unity, eventually negative, in the infrared? (Specify the reasons 
in the case of ionic crystals). Experimentally, what are the optical 
consequences of this phenomenon? 

Q.19: Why diamond is a good thermal conductor despite its very low 
electrical conductivity? 

 Q.20: What is the specificity of the thermal conductivity of graphene with 
respect to that of graphite? 

Answers at the end of the book 



Course Summary

1. Hypothesis

We assume that electrons can propagate freely in certain solids 
without ‘seeing’ the ions of the lattice. This model is satisfactory for 
valence electrons in certain metals, in particular the alkaline metals, 
and can explain many of their physical properties.

2. Dispersion Relation and the Quantization of the Wave   
 Vector

Free electrons satisfy l = h/mg = h/p or h


k v= m . Their energy is 

uniquely kinetic: E mv k m= =1
2

22 2 2
h / , which corresponds to the 

dispersion relation.
 (a) 1D case:
  With V (potential energy) = 0, the Schrödinger equation 

reduces to d

dx

mE2

2 2
2 0y y+ =
h

.

  Substituting E
k
m

= h
2 2

2
, the solutions are

Chapter IV

Free Electrons Theory: Simple Metals

Understanding Solid State Physics: Problems and Solutions
Jacques Cazaux
Copyright © 2016 Pan Stanford Publishing Pte. Ltd.
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www.panstanford.com
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 ∑ Running waves of the form Y = Aeikx with periodic 
boundary conditions:

	 	 Y(x) = Y(x + L), implying k = 2pn/L where n is a nonzero 
integer, > or <0 (see Fig. 3 in Ex. 2).

 ∑ Standing waves of the form Y = C sin kx, with fixed 
boundary conditions Y(0) = Y(L) = 0, implying k = pn/L, 
where n is a positive integer (see Fig. 2 in Ex. 1).

 (b) 3D case:
  We generalize the above results: ( / ) .- =—h

2 22m Ey y
 ∑ Solutions in the form of running waves: 

y = + +1
V

i k x k y k zx yexp ( )z with periodic boundary 

conditions (PBC): kx = 2πnx/Lx, ky = 2πny/Ly, kz = 2pnz/Lz, 
where nx, ny, nz are integers where one or two of them can 
be zero.

	 ∑	 Standing wave solutions of form: 

y = Ê
ËÁ

ˆ
¯̃

◊ ◊8 1 2

V
k x k y k zx y z

/

sin sin sin  with fixed boundary 

conditions, FPC: kx = pnx/Lx, ky = pny/Ly, kz = pnz/Lz where 
nx, ny, and nz are positive integers (see Ex. 3).

 For infinite objects in 3D with a large number of states to be filled, 
the choice of periodic or fixed boundary conditions is free because 
it leads to the same evaluation for the density of states g(k) and for 
g(E). It is not the same for the first possible states of objects limited 
along one or several directions, for instance surfaces of a metal 
bounded by vacuum, a thin layer with parallel sides and of thickness 
of a few lattice distances (Ex. 7) or aggregates (clusters) of atoms 
(Exs. 5 and 6).
 The discrete values of nx, ny, nz correspond to the quantum 
numbers that a free electron (excluding spin) can take, as n, l, m, 
represent the quantum numbers of an electron subject to a central 
potential of an ion in atomic physics.

3. Electron Distribution and Density of States at 0 K:   
 Fermi Energy and Fermi Surface in 3D

As for an atom, the Schrödinger equation only allows the 
determination of all the possible states of electrons. The states 
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that are occupied will be obtained by filling each state (2p/Lx)· 
(2p/Ly)· (2p/Lz) in k-space with two electrons of anti-parallel 
spin (≠Ø). The electronic states thus differ from one another by at 
least different quantum numbers nx, ny, nz or spin s (from the Pauli 
exclusion principle) starting with the lowest energy levels. When N 
free electrons of the volume Lx, Ly, Lz are thus distributed, we obtain 
a sphere in k-space limiting the occupied and the empty states at 

0 K. The radius kF of this Fermi sphere is 4
3

2
2

3
3p p

k
L L L

N

x y z
F/ ( ) = , where 

k nF = ( ) /3 2 1 3p and n = N/V. The electron energy is uniquely kinetic 
and the velocity v  is proportional to



k  ( v k)m


h



= . The Fermi sphere 
visualizes the velocity vectors of the free electrons in a metal. The 

maximum kinetic energy is given by E
k
m m

nF
F= = ◊

h h

2 2 2
2 2 3

2 2
3( ) /p .

 For alkali metals, the orders of magnitude are n = 5 ¥ 1022 e. cm–3, 
kF = 1.2 ¥ 108 cm–1, vF ≈ 1.3 ¥ 108 cm/sec, EF = 5 eV.
	 ∑ Density of states: In k-space, the density of states g(k) between 

k and k + dk is the same as that evaluated previously for lattice 
vibrations (Chapter III). However, g(E) must take into account 
the particular dispersion of free electrons with two electrons 
of opposite spin per state. We thus obtain g(E)◊dE = 2g(k)◊dk. 
In 3D, this results in g(E) = (V/2p2)◊(2m/h2)3/2E1/2.

  The Fermi energy at 0 K can also be deduced from 

g E dE N
E

( ) =Ú0

F
.

4. Influence of Temperature on the Electron Distribution:  
 Electron-Specific Heat

Electrons obey Fermi–Dirac statistics: These are fermions because 
of their non-integer spin leading the Pauli exclusion principle (in 
contrast to phonons, Chapter III that are bosons from the Bose–
Einstein statistics). As a function of temperature, the occupation 
probability of an electronic state is given by f(E) = [e(E – EF)/kBT +1]–1.
The distribution obtained for T ≠ 0 differs from that at 0 K (where 
f(E) = 1 for E < EF) only for energies that are very close (several kBT) 
to the Fermi energy.
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 By definition EF(T) is deduced from f E g E dE N( ) ( )◊ ◊ =
•

Ú0
. Thus, 

the total energy of an electron gas Ue obeys U f E g E E dEe ( ) ( )= ◊ ◊ ◊
•

Ú0
, 

which in 3D becomes U NE k T Ee F B F( ) ( / ) / ( )= +3
5

0 4 02 2 2p  (see Exs. 8 

and 9).
 The electronic specific heat Ce = (∂U/∂T) can be easily deduced:
 Cv(electronic) = [p2/2EF(0)] ◊	N ◊	k2

BT, where N is the number of 
free electrons in a volume V.
 As opposed to the vibration energy of atoms, the kinetic energy of 
electrons in a metal is already large at 0 K, but it varies relatively little 
with temperature (see Ex. 14a). The electronic specific heat is always 
linear in T (in 1D, 2D, and 3D), but the coefficient of proportionality 
depends on the dimension (see the table in Ex. 14a).

5. Electronic Conductivity

 ∑ J nev v e m E
   

= - = -e e; ( / )t  from which one obtains the Drude 
Law, s = ne2t/m, where n = N/V.

 ∑ The time of flight of electrons is inversely proportional to the 
probability of collisions between electrons with phonons, 
impurities and deformations with the crystal lattice 1/t = Pp 
+ Pi + Pd, from which we obtain the Matthiessen’s rule r = 1/s 
= rp + ri + rD. The electric resistivity of a metal increases with 
temperature due to phonons and with the concentration of 
impurities and with deformations of the lattice. Note that the 
influence of the first two parameters is strictly the opposite of 
what is observed in semiconductors (see Ex. 16, and Chapter 
V, Pb. 4).

 Note that the action of an electric field has the effect of adding a 
small unidirectional velocity ve



 to the large but isotropic one (vF



) 
of electrons. The mean free path L between two collisions is given by  
L = vFt.
 In the case of thin films, the mean free path can also be limited by 
the thickness of the film t, which leads to an increase in the resistivity 
of such films for t < L (Ex. 20).
 In addition, the presence of a magnetic field leads to an electrical 
conductivity in the steady regime characterized by a tensor (Pb. 2), 
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which describes the Hall effect and magneto-resistance. Even if the 
Hall effect is more prominent in semiconductors as compared with 
metals, one can formally treat it by considering a gas of free electrons 
and find evidence of quantum effects (Ex. 26).
 In the sinusoidal regime, when the skin depth is smaller than the 
mean-free path, an anomalous skin effect appears (Ex. 21).

6. Wiedemann–Franz Law

The thermal conductivity K of a gas of particles obeys K = 1/3 CvL. 
For electrons in a metal, we have K = (p	2/3) (nk2

BT/m)t , where C = Cv 
(electronic) and v = vF from which we obtain the Wiedeman–Franz 
law: K/s = (p2/3)(k2

B/e2)T = LT (see Ex. 12).

7. Other Successful Models Obtained from the Free   
 Electron Formalism

With additional ingredients, the model of free electrons can be 
used to evaluate the cohesive energy of free electron metals 
(Ex. 27) and the formation of a surface barrier at the metal/vacuum 
interface (Ex. 28a), while the correlated work function effect plays 
an important role in the electron emission into vacuum (Ex. 29) 
with applications in particular in the thermo-electronic emission 
(Exs. 30–32), the tunnel effect and in scanning tunneling microscopy 
(Pb. 3), X-ray photoelectron Auger electron emission spectroscopy. 
The same model explains the paramagnetism of simple metals 
(Ex. 22) and the reflecting power of alkali metals in the ultraviolet 
(UV) (Ex. 32) or in the infrared (IR) (Ex. 34) as well as the index of 
refraction of X-rays (Ex. 33).
 Superconductors form a class of very particular materials. They 
are considered in this chapter (Pb. 7–9) for convenience even though 
their specific magnetic properties require the aid of perfect conductor 
(Pb. 7). Their specific heat and band structure are considered in 
Chapter V (see Exs. 2b and 23).
 Useful formulas for using the Fermi–Dirac function, f(E):

 F f E E dE E dE
k T

E T
E

E( ): ( ) ( ) ( )
( )

( )1
60 0

2
4•

Ú Ú= + ¢ +j j
p

j e
F

F

B
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 F
E dE

e
p

pp

E
p( ):2

1

1
1 61

1
2

20 g
c

c
p

g-
Ê
ËÁ

ˆ
¯̃

+•

+

=
+

+
Ê

ËÁ
ˆ

¯̃Ú  when g 1.

Exercises

Exercise 1: Free electrons in a 1D system: going from an atom 
to a molecule and to a crystal

Consider a segment with length L along which electrons are able to 
move freely (V = 0). Outside this segment, their potential energy V is 
infinite (V = • for x ≥ L and x ≤ 0).
 (1) What is the general form of the solutions to Schrödinger’s 

equation? Give the solutions in the case of fixed boundary 
conditions. Sketch the graph for the first three wave 
functions.

 (2) Deduce the allowed quantized energy levels. What is the 
expression for the first three distinct energy levels denoted 
E1, E2, and E3.

 (3) Application to an atom: L = 3 Å. What are the numerical values 
(in eV) for the E1, E2, and E3? The atom has two electrons 
assumed to be free, what is the minimal energy that these 
electrons must have to go from the ground state to the first 
excited state?

 (4) Application to a molecule: L = 15 Å. What are the numerical 
values (in eV) for the E1, E2, and E3? The formula for the 
molecule could be H2C CH–CH CH2 in which the symbol- - 
represents the existence of a p electron that is susceptible 
to propagate freely along the molecule. What is the minimal 
energy that one of these electrons must have in order to be 
excited from the ground to the first excited state?

 (5) Application to a metal: L = 3 mm. What are the numerical values 
(in eV) for the E1, E2, and E3? The row consists of identical 
divalent atoms (2 e– free/atom) equidistant by a distance a = 
3 Å.

  How many energy levels are occupied in the ground state? 
What is the energy EF of the last level occupied?
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  Show the dispersion curve of free electrons using fixed bound-
ary conditions. Give the numerical values of kF and EF and thus 
the minimal energy dE for an electron to go from the lowest 
level to the first unoccupied level. Comment on the transition 

from an atom to a crystal. ( , , ), .h m e
m
h

2

2
3 8= ◊

È

Î
Í
Í

˘

˚
˙
˙

 eV Å2

Solution:

 (1) The Schrödinger equation reduces to - =h

2 2

22m
d

dx
E

y y  or 

d

dx
k

2

2
2 0y y+ = , (1)

  where k
mE2

2
2=
h

. The solutions are of the form 

y = +A kx B kxsin cos .
  The fixed boundary conditions imply y(x = 0) = y(x = L) = 0.  

We thus findy = A sin kx with k = np /L, where n is a positive 
integer. (2)

  The graphs of the first three wave functions (n = 1, 2, 3) are 
shown in Fig. 1.

n = 1

0 L

x

n = 2

x

n = 3

x

LL0 0

Figure 1

 (2) Taking into account the relations (1) and (2), we obtain:

  E
m L

n= Ê
ËÁ

ˆ
¯̃

h

2 2
2

2
p , which gives 

E
m L

E
m L

E
m L1

2 2

2

2 2

3

2 2

2 2
4

2
9= Ê

ËÁ
ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

h h hp p p; ; .

 (3) In the case of an atom, we find: E1 = 4.2 eV; E2 = 16.7 eV; E3 = 38 eV.
  Among the possible states (deduced from the Schrödinger 

equation), only the lowest energy states will be occupied. We 



288 Free Electrons Theory: Simple Metals

fill these states by electrons that differ from each other by 
either quantum number (n) or spin (s = ±½).

 (4) In the case of a molecule, we find E1 = 0.167 eV; E2 = 0.67 eV; E3 
= 1.5 eV. When L increases, the allowed levels move closer in 
energy. Here also, only one level will be occupied (the grounds 
state) by 2 e– p (≠	and Ø). Em = E1 – E2 = 0.5 eV.

 (5) Compared with an atom, in the case of a metal considered here, 
L is 107 times larger and the energies will therefore be 10–14 
times smaller. E1 = 4.2 × 10–14 eV; E2 = 16.7 × 10–14 eV; E3 =  
38 × 10–14 eV. However, we must fill these energies starting at 
the lowest level with 2 × 107 free electrons, that is to say that 107 
states will be occupied in the ground state (from n = 1 to n = 107).

  The energy of the last occupied level is E
m

N
LF = Ê

ËÁ
ˆ
¯̃

h

2
2

2

2
p . The 

corresponding wavevector is k N
LF = p .We have N

L
a

= = 107 , 

which leads to k
aF = p  and E

m aF  eV= Ê
ËÁ

ˆ
¯̃

=h

2 2

2
4 2p . .

  The minimal energy between the last occupied state and the 
first empty state is

  d
p

E E N E N E N N
mL

= + - ª ¥ = ª ¥ -( ) ( ) .1 2 2
2

8 4 101

2 2

2
7h eV .

  We can also find this result starting from  

E
k
m

E
k

m
k= =

h
h

2 2 2

2
; Fd d , where d p

k
L

= .

  Figure 2 (top) shows schematically the transition from an 
atom (a) to a crystal (b). The electronic densities have been 
chosen to be identical in the two cases by taking EF of the 
crystal to be identical to the energy E1 of the atom. Apart 
from this coincidence (related to a linear identical electronic 
density), the essential result is that the distance between 
allowed energy levels is reduced, leading to those in a metal 
being quasi-continuous. As in an atom, the different electrons 
must differ by at least a quantum number (here either n or s).
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1 2 3 1023

E3

E2

E1

Energy

Atoms

10 energy
levels

23

(c)

E2

EF

E

E1

(a)

= E4 1

0 kF
(b)

K

E1 dE

p/L

Figure 2

  In fact, if there are multiple atoms side by side and they are 
interdependent, the discrete energy levels are fanned out as 
shown in Fig. 2c.

Exercise 2: 1D metal with periodic boundary conditions

Consider an infinite row of identical atoms that are equidistant by 
a.
 (1) Find the general expression of the electron wavefunction that 

can move along the row.
 (2) This wavefunction satisfies periodic boundary conditions, 

PLC, with a periodicity L: y(x) = y(x + L). Find the wavevector 
quantization and the possible quantized energy levels for the 
electrons.

 (3) Find the expression and then the numerical value for the 
first three distinct energy levels in the case of a monovalent 
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element (1e-/at.) in which the atoms are equidistant by a = 3 Å 
(take L = 3 mm). Find the expression and the numerical value 
characterizing the last occupied level at 0 K in terms of kF and EF 
(the wave vector is in unit of Å–1 and the Fermi energy in eV).

 (4) Find the answer for Question (3) using instead fixed boundary 
conditions, FBC, y(0) = y(L) = 0; see previous exercise. 
Illustrate the similarities and differences using a comparative 
graph.( , , )h m e

Solution:

 (1) As in the previous exercise, the Schrödinger equation reduces 

to d

dx
k

2

2
2 0y y+ = , where k mE2

2
2=
h

  When using periodic boundary conditions, it is best to use 
solutions in the form of y(x) = Ce

ikx, which represents a running 
wave (where k can take negative or positive values) compared 
with a standing wave (written in terms of sine wave with k > 
0), resulting from two running waves propagating in opposite 
directions.

 (2)	 y(x) = y(x + L) implies eikL
 =1, where k

n
L

= 2p  (with n as a 

non-zero integer): E
m

k
m L

n= = Ê
ËÁ

ˆ
¯̃

h h

2
2

2 2
2

2 2
2p .

 (3) The first three energy levels correspond to n = 1, 2, 3 are
  E E E1

14
2

14
3

1216 7 10 67 10 1 5 10= ¥ = ¥ = ¥- - -. ; ; . .eV   eV  eV
  On must place N electrons in cells with dimensions 2p/L 

because of the two electrons per state (Ø≠) and taking into 
account that n (and k) are nonzero integers: N = L/a = 107.

  k N
L a

E eVF F   = ◊ ◊ = = ª-1
4

2
2

0 52 11p p . ; .Å

 (4) This is the same as Question (5) in the previous exercise but 
with a monovalent element.

  
E E E

k N

1
14

2
14

3
144 2 10 16 7 10 38 10

1
2

= ◊ = ◊ = ◊

= ◊ ◊

- - -. ; . ; . eV  eV   eV

F
p
LL a

E= = ª-p
2

0 52 1. ; . Å   eV1
F
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E

EF

kF0–kF 2 /p L
Figure 3

  Comparing the two boundary conditions shown in Fig. 2 
(FBC) and Fig. 3 (PBC), the differences concern essentially 
the first occupied energy levels. The energies E1, E2, and E3 
are four times greater for periodic boundary conditions than 
fixed boundary conditions, but the corresponding states can 
be filled by twice as many electrons due to the negative values 
taken into account by n = –1, –2, –3, and by k.

  In total, the number and the size of the cells should be 
multiplied by 2 in the case of periodic boundary conditions 
compared with fixed boundary conditions leading to identical 
values for wave vectors and the Fermi energies, for given 
equal electronic densities. This result will be the same for the 
density of states (number of electronic states contained in 
an energy range between E and E + dE) when the number of 
electrons is large.

  In general, the choice of the boundary conditions thus leads to 
the same result. Exercise 7 and Pb. 1 show specific exceptions 
to this rule.

Exercise 3: Free electrons in a rectangular box (FBC)

Consider an electron of mass m subjected to zero potential energy 
inside of a rectangular box with sides a, b, and c along Ox, Oy, and Oz 
axes (Fig. 4). The potential function is infinite outside the rectangular 
box.
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Z
C

c M

YBb
0

X
A

a

Figure 4

 (1) What is the differential equation describing the wave function 
of the electron?

 (2) Find a solution to this equation using separation of variables 
of the type: f f f f( , , ) ( ) ( ) ( ).x y z x y zx y z= ◊ ◊

  Show that the equation of (1) can be written in the form 
1 1 1 22

2

2

2

2

2 2f
f

f
f

f
f

x

x

y

y

z

z

x y z

m
E

∂
∂

+
∂

∂
+

∂
∂

= -
h

,

  and that it is sufficient to resolve the equations 

d

dx
k

d

y
k

d

dz
kx

x x
y

y y
z

z z

2

2
2

2

2
2

2

2
20 0 0f

f
f

f
f

f+ =
∂

+ = + =, , ,

  where k k k E
m

x y z
2 2 2

2
2+ + =
h

.

 (3) Integrate the preceding differential equations.
 (4) Show that the limiting conditions at surfaces of the cavity 

impose solutions of the type

  f
p

f
p

f
p

x
x

y
y

z
zA

n
a

x B
n

b
y C

n
c

z= Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

sin , sin , sin  

  in which the quantum numbers nx, ny, nz are integers greater 
than zero. Find the complete expression of the resulting wave 
function.

 (5) Express the energy quantization as a function of nx, ny, and nz 
and the dimensions of the cavity.

 (6) If the cavity is now assumed to be cubic (a = b = c = L):
 (a) Find the different wave functions for the first three distinct 

energy levels.
 (b) Find the energy of each level.
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 (c) Determine the degeneracy of each level, that is, the 
number of independent wave functions having the same 
energy; neglect spins.

Solution:

 (1) The electron obeys Schrödinger’s equation 

- — + =h

2
2

2m
V Ey y y ,  where V = • outside the box (im-

plying that y = 0 and V = 0 inside the box. This results in 

- ∂
∂

+ ∂
∂

+ ∂
∂

Ê

ËÁ
ˆ

¯̃
=h

2 2

2

2

2

2

22m x y x
E

y y y y .

 (2) If we seek solutions using separation of variables for the 
spatial part of the wave function, after substitution we 

obtain f f
f

f f
f

f f
f

f f fy z
x

x z
y

x y
z

x y Z
d

dx

d

dy

d

dz

mE2

2

2

2

2

2 2
2+ + = -
h

 or 

1 1 1 22

2

2

2

2

2 2f
f

f
f

f
f

x

x

y

y

z

zd

dx

d

dy

d

dz

mE+ + = -
h

, which is of the form 

f x g y h z Cste( ) ( ) ( ) .+ + = < 0
  The variables x, y, z being independent, such an equation 

may be solved only when the functions f(x), g(y), and h(z) are 
separately equal to three constants kx

2 , k y
2 , and kz

2 .
  The initial equation thus reduces to the following three 

relations:

  d

dx
k

d

dy
k

d

dz
kx

x x
y

y y
z

z z

2

2
2

2

2
2

2

2
20 0 0f

f
f

f
f

f+ = + = + =, , , where 

h

2
2 2 2

2m
k k k E Cstex y z( ) .+ + = =

 (3) The solutions are of the type fx x xA k x D k x= +sin cos  (1)
  or equivalently fx x xA i k x D i k x= + -′ ′exp exp   (2)
 (4) The boundary conditions suggested by the question are 

the FBC and the wave function is zero at the borders of the 
cavity:

  f f f f f fx y z x y za b c( ) ( ) ( ) ; ( ) ( ) ( ) .0 0 0 0 0= = = = = =  
  The first boundary conditions (fixed) impose that the constants 

of integration such as D are zero.
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  The second boundary conditions results in kxa = nxp, kyb = nyp, 
kzc = nzp, where nx, ny, and nz are positive integers.

  The resulting wave function is f(x, y, z) = ABC sin 
n

a
x

n

b
y

n
c

zx y zp p p
◊ ◊sin sin , where ABC = ( / ) /8 1 2abc is obtained 

after normalization f2

000
1

cba
x y z dxdydzÚÚÚ =( , , ) .

 (5) Starting from E
m

k k kx y z= + +h

2
2 2 2

2
( ) and after substitution, we 

note that the energy depends on the quantum numbers nx, ny, 

and nz because E
m

n

a

n

b

n

c
x y z= + +

Ê

Ë
Á

ˆ

¯
˜

h

2 2 2

2

2

2

2

22
p .

 (6) Under the hypothesis of a cubic cavity, the general expression 

reduces to f
p p p( , , ) sin sin sin

/

x y z
L

n
L

x
n

L
y

n
L

zx y z= Ê
ËÁ

ˆ
¯̃

◊ ◊8
3

1 2

 

and the energy is E
mL

n n nx y z= + +h

2 2

2
2 2 2

2
p ( ). The first distinct 

energy levels correspond to n n nx y z
2 2 2 3 6 9+ + = , ,  . We exclude 

zero values of nx, ny, and nz because the resulting f is zero.
  The energy levels, their degeneracy (neglecting spin), and 

their corresponding wave functions are shown in the following 
table.

Levels Energy Degeneracy Wave functions

1
3

2

2 2

2
h p
mL

Ê

ËÁ
ˆ

¯̃

1:

nx = ny = nz = 1 f p p p( ) sin sin sin111 8
3= Ê

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃L

x
L

y
L

z
L

2
6

2

2 2

2
h p
mL

Ê

ËÁ
ˆ

¯̃

3:

nx = 2, ny = nz = 1

ny = 2, nx = nz = 1

nz = 2, nx = ny = 1

f p p p

f

( ) sin sin sin

( )

211 8 2 1 1

121 8

3= Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

=

L

x
L

y
L

z
L

L33

3

1 2 1

112 8 1

sin sin sin

( ) sin

p p p

f p

x
L

y
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L

L

x
L

Ê
ËÁ

ˆ
¯̃

Ê
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ˆ
¯̃

Ê
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ˆ
¯̃
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ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
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ˆ
¯̃

sin sin1 2p py
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L

3
9

2

2 2

2
h p
mL

Ê
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ˆ

¯̃

3:

nx = ny = 2, nz = 1

nx = nz = 2, ny = 1

ny = nz = 2, nx = 1

f p p p

f

( ) sin sin sin

( )

221 8 2 2 1
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ˆ
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Exercise 4: Periodic boundary conditions, PBC, in a 3D metal

An infinite metal is considered in which the electrons can propagate 
freely.
 (1 & 2) Using periodic boundary conditions (with a periodicity of a 

along Ox, b along Oy, and c along Oz), answer to Questions 
(1) and (2) of Ex. 3 above.

 (3) Starting from the solutions to Schrödinger’s equation, 
show that PBC leads to a quantization of the energy of free 
electrons. Express this energy as a function of the quantum 
numbers nx, ny, and nz and of a, b, and c.

  Find the resulting expression for the wave functions.
 (4) Assume a = b = c = L
 (a) Give the wave function for the first three distinct energy 

levels.
 (b) Find the energy for each level.
 (c) Neglecting spin, determine the degeneracy of each 

level.
 (5) For clarity, limit now the situation to 2D in order to show, in 

the wave vector (phase) k space, the distribution of states 
imposed by the periodic boundary condition. Compare 
this distribution with that resulting from fixed boundary 
conditions.

Solution:

This problem is a generalization to 3D of that in Ex. 2 using periodic 
boundary conditions, as the preceding exercise was a generalization 
to 3D of Ex. 1 using fixed boundary conditions.
(1 & 2) See Ex. 3 for the solutions to the first two questions.

 (3) We choose to represent the running waves by solutions of 
the form fx = A¢ exp i kxx; fy = B¢ exp i kyy; fz = C¢ exp i kzz; 
where kx, ky, and kz are >0 or <0 or eventually =0, except at 
least one.

  Periodic boundary conditions applied to these solutions 
result in k a n k b n k c nx x y y z z= = =2 2 2p p p; ;  , (1)

  where nx, ny, and nz are whole numbers with at least one 
different from zero.

  E
m

k k k
m

n

a

n

b

n

cx y z
x y z= + + = + +

Ê

Ë
Á

ˆ

¯
˜

h h

2
2 2 2

2
2

2

2

2

2

2

22 2
4( ) p .

  The resulting wave function will have the form
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  f( , , ) exp ( ) exp (k r)x y z D i k x k y k z D ix y z= + + = ◊¢ ¢
 

,  
where D¢ = A¢B¢C¢.

  The components of 


k  are given by relation (1).

 (4) Level 1: E
m L1

2 2

22
4=

Ê

ËÁ
ˆ

¯̃
h p

, where n n nx y z= ± =1 0; , or any 

other result obtained by circular permutation of nx, ny, and 
nz.

  For example, f p( , , ) exp- = ¢ - Ê
ËÁ

ˆ
¯̃

1 0 0 2
D i

L
x

 ∑ The degeneracy is of 6:(100); (–100), (010), (0–10);(001) 
and (00–1)

  Level 2: E2 = 2E1, where nx = ± 1, ny = ± 1, nz = 0, and any 
other result obtained by circular permutation.

  For example, f p( , , ) ' exp ( ).0 1 1 2- = + Ê
ËÁ

ˆ
¯̃

-D i
L

z y

 ∑ The degeneracy is of 12:(110);(–110);(1–10); (–1–10); 
(101);(10–1); (–101); (–10–1) and (011) (0–11) (01–1)
(0–1–1).

  Level 3: E3 =3E1; nx = ± 1, ny = ± 1,nz = ± 1.
	 	 For example, f p( ) exp ( / )( ).1 11 2- = + + -D i L x z y′
 ∑ The degeneracy is of 8: (111); (–1,1,1); (1–11); (11–1); 

(–1–11); (–11–1); (1–1–1) and (–1–1–1).

ky

+ +

+

+

+

+

+ +

+
+
+ + + +

+ + +

+ + +
+ + +kx

+ + +

ky

kx

(a) PBC (b) FBC

2 /p L

Plane = /k Lz pPlane = 0kz

p/L

Figure 5

 (5) Fig. 5a shows the end points of the 


k  vectors relative to 
periodic boundary conditions: the white circles correspond 
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to level 1, and the black circles to level 2 (in the kz = 0 
plane).

   Figure 5b uses the same symbols to show the end points 
of the 



k  vectors relative to fixed boundary conditions in the 
kz = p/L plane.

Exercise 5a: Electronic states in a metallic cluster: influence of 
the cluster size

Consider three metallic clusters in the form of a cube constituting, 
respectively, 8, 27, and 64 identical monovalent atoms. The center 
of each atom is located on the point of a cubic simple lattice with 
parameter a and we consider that the electron liberated by each 
atom can propagate freely in the interior of cubes, represented by 
dashes in Fig. 6, with edges successively equal to 2a, 3a, and 4a. We 
note that the choice of outside volume of these aggregates takes into 
account the steric hindrance of the atoms while still maintaining the 
electronic density n in the three clusters.

 (1) Using fixed limits, find the expression of the quantized kinetic 
energies of free electrons enclosed by such cubic boxes.

 (2) At T = 0 K, find in each case the numerical value of the 
quantum numbers nx, ny, and nz relative to the last occupied 
state. Compare the corresponding energies, EM(1), EM(2), and 
EM(3) at the Fermi energy EF of an infinite sample of the same 
nature and therefore has the same electronic density n.

 (3) Compare the same average electronic energies, E1 , E2  and 
E3 , with the average kinetic energy E  of a free electron 
propagating in an infinite metal.

 (4) For each cluster, find the energy difference DE = Ee – EM 
corresponding to an electronic transition between the last 
occupied level and the first unoccupied and non-equivalent 
level.

 (5) Each cluster receives an additional free electron (e.g., by 
substituting a divalent atom into a monovalent atom). 
Characterize the electronic state ( , , )n n nx y z

0 0 0 and the energy E0 
taken by this electron.

 (6) Numerical application: What are the values of the energies EM, 
E , DE, and E0 for EF = 5 eV?
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 (7) Comment on the physical results of this exercise. In particular, 
define the size limit of an aggregate for which it will acquire a 
metallic character (referring to the Kubo criteria: DE = kBT = 25 
meV at ambient temperature) and find the order of magnitude 
of the number of atoms NC of the corresponding aggregate.

2 a

3 a

4 a

3 a2 aa

Figure 6

Solution:

 (1) We use directly a consequence of Ex. 3:

  y ( , , ) sin sin sinx y z A k x k y k zx y z= ◊ ◊ , where

  k
n

L
k

n

L
k

n

Lx
x

x
y

y

y
z

z

z

= = =
p p p

; ;  and nx, ny, and nz are positive 

whole numbers.

  When Lx = Ly = Lz = pa, where p = 2, 3, or 4, we find

  E p m p a n n nx y z( ) ( / )( / )( )= + +h

2 2 2 2 2 2 22 p

 (2) The first cluster contains eight electrons that, when taking into 
account spin (±1/2), will be distributed on four characteristic 
energy levels by a combination of different nx, ny, and nz.

  First level:  111 (2e)
  Second level:  211, 121,112 (6e)
  The energy of this degenerate level is
  EM (1) = (3p2/2) (h2/2ma2).
  The Fermi energy of a free electron in an infinite metal is
  EF = (h2/2m)(3p2/n)2/3, where n = a–3 . Thus, we find 
  EM (1) EF = (3p2)1/3/2 = 1.54.
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  The second cluster contains 27 free electrons. The 27th must 
occupy the 14th level obtained by classifying the results 
from the sum n n nx y z

2 2 2+ + by increasing order and taking into 
account the degeneracy of certain levels: 1 when nx = ny = nz;  
3 when nx = ny ≠ nz; and 6 when nx ≠ ny ≠ nz . The desired 
sequence is

  111(1); 211(3); (221)(3); 311(3); (222)(1); (321)(6).

  The last five electrons occupy the levels of the 321 type, which 
may contain 12 electrons. The corresponding energy is

  EM(2) = (14p2/9) (h2/2ma2).

  Thus, we have EM (2) /EF = 1.6.

  The third cluster contains 64 free electrons and 32 dis-
tinct levels. By prolonging the sequence, we find 322(3); 
411(3); 331(3); 421(6), and from which we find the result in  
EM(3) = (21p2/16) (h2/2ma2) which leads to EM(3)/EF = 1.35. 
Note that the levels of type 421 are occupied by the maximum 
number of electrons they may accept. The corresponding clus-
ter would be an insulator at least at 0 K.

 (3) E E E( ) [ ( ) ( )]/ ( / )1 2 111 6 112 8 7 8= + = M (1) and the average 

energy of free electrons in a metal is E E= 3
5 F which leads to 

E E( ) /1 @ 2.25.

  Taking into account the quantity h2 2 218p / ma as a unit of en-
ergy, the half sum of electronic energies of the 2nd cluster cor-
responds to 3 6 3 9 3 11 3 12 14 2 5 128+ ¥ + ¥ + ¥ + + ¥ =( ) ( ) ( ) ( . ) ,

  which leads to E E( )/2 M = 0.677 and to E E( )/2 =1.8.
  For the third cluster, the above sum filled up to the 421 level 

leads to E( ) /3 474 32=  in units of h2 2 232p / ma .

  E E( )/ ( )3 3M ª 0.705 and E E( )/3 @1.59.

 
(4)

 
D
D
D

E E

E E

E

( )/ ( ) ( )/ .
( )/ ( ) ( )/ .

M

M

1 1 9 6 6 0 5
2 2 17 13 13 0 3

    
   
= - =
= - =

(( )/ ( ) ( )/ .M3 3 22 21 21 0 048E     = - =
 (5) For cluster 1, the levels of type 211 will all be occupied and an 

additional electron will be found in a level of type 221 from 
which the energy E°(1) will be

  E°(1) = EM(1) + DE1 = 1.5EM(1).
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  Similar result holds for cluster 3, the level 421 being filled and 
the next level to be filled is 332: E°(3) = (22/21)EM(3).

  On the contrary, for cluster 2, we find E°(2) = EM(2) because 
the corresponding levels, of type 221, are incompletely filled.

 (6) EM(1) = 7.7 eV ; EM(2) = 8 eV ; EM(3) = 6.7 eV ; EF
 ∼ 5 eV

  E( )1 = 6.7 eV; E( )2 = 5.4 eV; E( )3  = 4.7 eV; E = 3 eV

	 	 DE(1) = 3.85 eV; DE(2) = 2.4 eV; DE(3) = 0.32 eV

  E°(1) = 11.55 eV; E°(2) = 8 eV; E°(3) = 7 eV; E° = 5 eV

 (7) Starting from a small number of atoms, the increase of the 
size of the aggregates leads therefore to a reduction in the 
spacing between subsequent energy levels. By extrapolating 
the numerical values, we obtain an estimate of the limiting 
size for a transition from a non-metal to a metal in the order 
of several thousand atoms. For an order of magnitude, we can 

follow the method of Ex. 1: E
k
m

E
k

m
k= =h h

2 2 2

2
d dF (where dk 

= p/L), which leads to d d pE E k k L/ / / .F F= =2 2 3 . kF = 1.15 Å–1 
so that L = 270 Å and NC = nL3 ª 7 ×	105 – 106 atoms. Thus, the 
cluster 3 is an insulator at T = 0 K but not at room temperature 
where kBT = 25 meV.

 For more details, see J. Friedel, Helvetica Physica Acta 56, 1983, 
507 and W. P. Halperin, Rev. Mod. Phys. 58, 1983, 533.

Comments: Metallic clusters and nanoparticles

There is no sharp discrimination between the terms “cluster” and 
“nanoparticle” even if clusters are mostly considered as species, 
exactly defined in chemical composition and structure, and 
nanoparticles often linked with their dimension in the nanometer 
range. Thus clusters are groups of bound atoms intermediate in size 
between molecules and bulk solids and exhibiting specific physical 
and chemical properties, between molecules and solid state, related 
to their size dependence or “size quantization.”
 The size quantization occurs in many nano-objects that have 
been the subject of a great attention in solid state physics. The 
present exercise, Ex. 5a, and the following, Ex. 5b, are limited 
to metallic clusters while other exercises and problems related 
to semiconducting quantum wells or to carbon-based objects 
(graphene; single and multi-walls C-nanotubes and fullerenes in the 
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form of soccer balls) are considered in Chapter V. The Jahn–Teller 
effect occurring in alkali halides is considered in the present section, 
Ex. 6, because it is easily deduced from the present developments of 
quantization in rectangular or cubic boxes.
 Despite its large simplifications, the present exercises, Ex. 5a 
and 5b, illustrate well certain aspects of small metallic clusters that 
have electronic states intermediate between an isolated atom (with 
very large separations between the levels) and an infinite metal 
(where the levels are quasi-continuous). The cohesive energy being 
decreasing when the kinetic energy of the electrons is increased, 
the present exercise shows simply that the maximum and average 
kinetic energies of an electron in a cluster are all greater than the 
energies corresponding to an infinite sample. In addition, it shows 
that this difference decrease as the size of the clusters increases 
because successive levels move closer together more quickly than 
the increase in electronic density (the dependence is essentially the 
p–2 factor in the expression for E(p) in 1). This result is physically 
satisfying because the cohesion energy of an infinite metal is surely 
larger than that of clusters (otherwise the metal would break into 
clusters) and the increase in kinetic energy of the constituents of 
a solid would tend to reduce its cohesive energy. The fact that 
EM(2)>EM(1) is accidentally related to the discrete and nonlinear 
character of the progression because some clusters are more 
stable than others. The relatively more stable metallic clusters are 
composed with a “magic” number of atoms (2, 8, 20, 34, 40, 58, ...) 
where the last occupied states are fully occupied and where the 
addition of one more electron induces a jump in their mean kinetic 
energy.
 From the theoretical point of view, a more precise evaluation of the 
magic numbers is detailed in M. K. Harbola, Proc. Nat. Acad. Sci. U S A. 
89, 1992, 1036 and in E. Engel and J. P. Perdew, Phys. Rev. B 43, 1991, 
1331 for the asymptotic size dependence of electronic properties 
within a Thomas Fermi approximation for jellium spheres. Also 
mentioned in Ex. 27 for the cohesive energy of free electron metals 
there is the more general and more sophisticated use of density 
functional theory (DFT) to describe complex electronic structures, to 
accurately treat large systems and to predict physical and chemical 
properties (Density functional theory (DFT) of molecules, clusters, 
and solids, W. Kohn et al., J. Phys. Chem. 100, 1996, 12974.)



302 Free Electrons Theory: Simple Metals

 From the point of view of applications of metallic clusters 
and besides a wide range of specific physical properties such as 
luminescence and molecular magnetism, one must mention their 
decisive role in catalysis. Because catalysis by metals is a surface 
phenomenon, many technological catalysts contain small (typically 
nanometer-sized) supported metal particles with a large fraction of 
the atoms exposed. Metal catalysts are used on a large scale for refining 
of petroleum, conversion of automobile exhaust, hydrogenation of 
carbon monoxide, hydrogenation of fats, and many other processes. 
The smaller the metal particles, the larger the fraction of the metal 
atoms that are exposed at surfaces, where they are accessible to 
reactant molecules and available for catalysis. Such a considerable 
industrial impact justifies the intense research on the influence of 
the size and of composition of mono or bimetallic catalysts that are 
in a finely dispersed form as particles on a high-area porous metal 
oxide support.

Exercise 5b: Electronic states in metallic clusters: influence of 
the shape

Consider three aggregates of metal atoms (clusters) with the same 
volume V = L3 but, as shown in Fig. 7, each having a different form: 

aggregate A = L ¥ L ¥ L; aggregate B L
L L= ¥ ¥2
2 2

; aggregate 

C L L L= ¥ ¥2 2/  .

L

L
L 2 L L

L/ 2÷

L/ 2÷

L/ 2÷

L÷2

Figure 7

 For each one, find the increasing sequence of energy levels 
specifying the degeneracy of each level (but neglecting spin). Limit 
the discussion to the first four distinct levels, take the quantity 
h

2 22/ mL as unity, and use fixed boundary conditions to take into 
account the reduced size of the clusters.
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 What is the relation between Lx, Ly, and Lz to obtain non-
degenerate electronic levels (except the spin)?

Solution:

E m n L n L n Lx x y y z z= + +( / )/( / / / )h

2 2 2 2 2 2 2 22p  (see Ex. 5a above).
For aggregates A, B, and C, we find, respectively, (in h2 22/ mL units):

E n n n

E n n n

E n n n

x y z

x y z

x y z

A

B

C

= + +

= + +

= + +

2 2 2

2 2 2

2 2 2

4 2

2

/

/

 

 The table below is easily obtained (D: means degeneracy). It 
shows the influence of the geometry of the clusters on their electronic 
states.

Aggregate First level Second level Third level Fourth level

A nx, ny, nz

EA
D

111
3
1

211, 121, 112
6
3

221, 122, 212
9
3

311, 131, 113
11
3

B nx, ny, nz

EB
D

111
4.25

1

211
5
1

311
6.25

1

411
8
1

C nx, ny, nz

EC
D

111
3.5
1

121
5
1

211
6.5
1

131
7.5
1

 The energy of the initial level 111 in clusters B and C is larger 
than in cubic cluster A but the subsequent levels are closer together. 
Consequently to determine which form is the most stable, one must 
take into account the degeneracy of the levels in a cubic cluster. 
Thus, if we suppose that the minimal kinetic energy of an ensemble 
of electrons is the only stability criteria, the clusters A and C will 
be more stable than the cluster B when they are filled with six free 
electrons and cluster A will be more stable than C when filled with 
eight electrons.
 In order to not obtain the same energies in the general expression, 
we should have Lx/Ly π nx/ny and Lx/Lz π nx/nz, that is, to say that the 
ratio of dimensions has to be irrational.
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Exercise 6: F center in alkali halide crystals and Jahn–Teller 
effect (variation of Ex. 5a and 5b)

An F-center in an alkali halide crystal occurs when there is the lack 
of a negative ion, a vacancy, in the lattice, creating a cubic cavity in 
which an electron can be trapped. The side of this cavity is nearly 
equal to the lattice parameter a. It is aa, where a ≈ 1.13. Find the 
expression of the energy E0 for the different states of this electron.
 Find the energy hn	 and the wavelength l of photons, which, 
when absorbed, can induce an electronic transition from the ground 
state E1

0 toward the first excited state E2
0 in LiF (a = 4 Å) and in RbI 

(a = 7.34 Å).
 When the electron is in its excited state, suppose that the cavity 
spontaneously deforms at a constant volume to take the form of a 
parallelepiped in which one of its dimensions is double than the 
two others. What is the new expression for the energy E¢ of the new 
electronic states?
 Find the energy hn	¢ and the wavelength l¢ of fluorescent photons 
that are emitted from the transition of an electron from its excited 
state E ¢2  to its ground state, E ¢1. (h2 2/ m = 3.8 eV·Å2)

Solution:

The solution to the present exercise is formally identical to that in 
Exs. 5a and 5b with both cases highlighting the implicit presence of 
positive ions (those in the lattice of the atomic clusters and here the 
positive charge carried by the vacancies to assure the neutrality of 
the crystal.)

 For a cubic cavity, E
m a

n n nx y z
0

2 2

2
2 2 2

2
= ◊ + +h p

a( )
( ) .

 The only quantitative difference here is the reduced 
dimensionality of this cavity. The ground and first excited states are 

E
m a

E E1
0

2 2

2 2
0

1
0

2
3 2= ◊ =h p
a( )

; .

 We find hn = 5.5 eV, l = 2250 Å (in UV range) for LiF; hn = 1.53 eV, 
l = 7580 Å (red in the visible range) for RbI.
 The effective dimension of the side is of the cavity results from 
the distortion of the lattice around the vacancy (via the Madelung 
constant effect) and the attraction of the trapped electron by the 
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positive ions surrounding it. The nature of an alkaline halide only 
comes from the value of the lattice parameter that increases with the 
size of the ions. The name “color centers” given to such defects is a 
result of the fact that when lit by natural light, the spectrum of light 
re-diffused by the crystal no longer contains the color that has been 
absorbed.
 Optical absorption measurement thus represents an elegant 
method to probe electronic levels. The experimental verification 
of the law hn = C(aa)–2, called the Mollwo–Yvey law, permits the 
evaluation of a.
 The deformation of the cavity at a constant volume allows a partial 
lifting of the degeneracy between the levels 211, 121, and 112. This 
deformation is spontaneous because one of the levels takes a lower 
energy than the degenerate state E2

0 (see table in Ex. 5b). This lower 
energy stabilizes the F center: it is the Jahn–Teller effect, which is 
also observed in semiconductors.

 In the case, the statement we find E m a

n
n nx

y z¢ = + +
È

Î
Í
Í

˘

˚
˙
˙

h

2 2 2 3

2

2
2 2

2
2

4
p
a

/

( ) ,  

where Lx = 2Ly = 2Lz and LxLyLz = (aa)3.

hv

E 0
2

hv¢A F
D

E 0
1

E 0
1

E 0
2

Figure 8

 The state E ¢2, is the 211 state. Its energy is less (by 79.3%) than 
that of E2

0 because 3 2 62 3
2( ) , ( )/ < = LiFE ¢  8.73 eV; E ¢2 (RbI) = 2.56 eV.

 On the contrary, the ground state E ¢1 is larger (by 20%) than E1
0, 

as shown in Fig. 8. E1
0 (LiF) = 6.55 eV; E1

0 (RbI) = 1.94 eV, hn	¢ (LiF) = 
2.18 eV; l¢ = 5690 Å (yellow) and hn	¢(RbI) = 0.62 eV; l = 2 mm (IR).
 As an additional exercise, the reader can verify that the ratio 
Lx/Ly = 2 is a minimum minimorum for the energy of the 211 state. 
To know more, see Y. Queré, [21], p. 150 and 353), which was the 
inspiration of this exercise.
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Exercise 7: Fermi energy and Debye temperature from F and P 
boundary conditions for objects of reduced dimensions

Consider a gas of electrons enclosed in a cubic cavity (C) of sufficiently 
small dimension L to impose the use of fixed boundary conditions 
(FBC). Assume also that the number of electrons, N, is sufficient to 
allow the evaluation of kF and EF by the construction of a type of 
Fermi sphere without the evaluation of a discrete summation of too 
many states (see Ex. 5a).
 The boundaries extend successively toward infinity in 1-, then 2-, 
and finally 3D. The initial cube thus changes into a rod with a square 
cross-section (T) next to a plate with parallel faces (L) and finally 
to an infinite crystal (I) by substituting fixed boundary conditions, 
FBC, by periodic boundary conditions, PBC, over a length conserved 
L as the dimensions are elongated. The electron density n (= N/L3) 
remains a constant in these different situations. We thus propose to 
establish the evolution of the Fermi energy as a function of L when 
the FBC are changed into PBC.

 (1) For each situation, state the general expression of the wave 
functions and of the energy levels as a function of the quantum 
numbers nx, ny, and nz. Indicate the constraints imposed by the 
FBC and next by the PBC for these quantum numbers.

 (2) In wave vector space (kx, ky, kz), show the Fermi surface 
specifying the position of the excluding planes for the ends of 
the 



k  vectors.

 (3) Find the expressions relating the Fermi wave vectors kF(T), 
kF(L), and kF(I) to kF(C). Same question for the relations 
between the Fermi energies EF(T), EF(L), and EF(I) to the 
Fermi energy EF(C).

 (4) Numerical application: kF(C) = 1 Å–1, so that EF = 3.8 eV with 
L = 100 Å and next L = 1000 Å. Find the relative variation of 
energy, —EF/EF, for the different systems specifying the sign of 
the change relative to EF (C), taken as a reference. Comment 
on the result when L tends to infinity.

 (5) Consider a plate bounded with parallel and infinite planes. Its 
initial thickness Lz is very large, but it decreases progressively 
keeping the electronic density constant. How will EF(Lz) vary 
as a function of Lz? Continuing this decrease of Lz until the 
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thickness a of a single monolayer, one can hope to go from a 
3D electron gas to a 2D electron gas. Is it the case? Why?

 (6) We are interested now in the lattice vibrations in objects of 
type C, T, L, and I. Briefly reconsider the preceding questions to 
find the relative variation of the Debye temperature qD of the 
different objects as a function of the characteristic dimension 
L of these objects when fixed boundary conditions are used. 
The approach consists of pointing out the similarities of the 
conditions imposed on k for electrons and for phonons to use 
next the phonon relation w = nsk (where ns is the speed of 
sound).

  Find the qualitative evolution of the lattice specific heat (for a 
single atom as unit) as a function of the size reduction of the 
sample when fixed boundary conditions are used.

Solution:

 (1) The general wave function is the product of three wave 
functions Fx ◊	Fy ◊	Fz. For the directions (x,y,z), when fixed 
boundary conditions are imposed, the corresponding wave 

functions are of the form: Fx xA k x= sin , where k n
Lx x

x

=
Ê
ËÁ

ˆ
¯̃

p

and nx is a necessarily a positive whole number because nx = 0 
results in a null value for Фx (see Ex. 3 for details).

  For directions in which we consider periodic boundary 
conditions, the corresponding wave function is of the form 

Fx =A¢eikxx, where k n
Lx x

x

=
Ê
ËÁ

ˆ
¯̃

2p and nx is a whole number that 

can be positive, negative, or zero. When nx = 0, Фx = A¢ and 
the only forbidden situation is when nx, ny, and nz are zero 
simultaneously.

  The general expressions for the energies will thus be

  E C
m L

n n nx y z( ) ( )=
Ê

ËÁ
ˆ

¯̃
+ +h

2 2

2
2 2 2

2
p , where nx, ny, nz = Nx

  E T
m L

n n nx y z( ) ( )=
Ê

ËÁ
ˆ

¯̃
+ +h

2 2

2
2 2 2

2
4p , where ny, nz = Nx; nx = Z
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  E L
m L

n n
n

x y
z( ) =

Ê

ËÁ
ˆ

¯̃
+ +

Ê

ËÁ
ˆ

¯̃
h

2 2

2
2 2

2

2
4

4
p , where nz = Nx; nx, ny = Z

  E I
m L

n n nx y z( ) ( )=
Ê

ËÁ
ˆ

¯̃
+ +h

2 2

2
2 2 2

2
4p , where nx, ny, nz = Z

 (2) See Fig. 9 that shows the exclusion planes of the fixed 
boundary conditions, planes defined by kx = 0 and ky = 0; kx 
= 0 and kz = 0; ky = 0 and kz = 0. These are the planes that 
introduce a difference between fixed and periodic boundary 
conditions when evaluating the corresponding kF wave vectors. 
Effectively, with the exception of these planes, the transition 
from fixed to periodic conditions in one given direction results 
in a doubling of the step variation of k in this direction (p/L Æ 
2p/L) and also in the covered domain (nx > 0 goes to |nx| > 0 
or <0).

kz

C

kz

ky

kx

ky

kx

0

LT

kx

kz

ky

Kz

ky

kx

0

Figure 9

 (3) For the cubic cavity, taking into account fixed boundary 
conditions as a reference, we find

  N k V
2

4
3 8

3

= Ê
ËÁ

ˆ
¯̃

p
p

F  with V = L3 and KF(C) = (3p2n)1/3.
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  In the case of a long rod, a part of the N electrons occupy the  
states in the kykz quadrant of the plane: 

  N k V k
L

2
4
3 2 4 4

3 2

2
2= Ê

ËÁ
ˆ
¯̃ ◊

+ ◊p
p

p
p

F F , which gives 

  k C k T
L

k TF F F
3 3 23

2
( ) ( ) ( )= + p  or

   k C k T
k LF F

F
( ) ( )

/

= +
È

Î
Í

˘

˚
˙1 3

2

1 3
p

.

  In the case of a plate, the quadrant becomes a half-circle 
(plane ky, kz). In these planes, the surface of the states will 

double p p2

2

2

2
2

L L
Æ

Ê

ËÁ
ˆ

¯̃
, which leads to a doubling of the surface 

states compared to case T and the expected result to which 
one must add the states situated along the kz axis (>0): 

k k
k L k LF F

F F
C L( ) ( )

/

= + +
È

Î
Í
Í

˘

˚
˙
˙

1 3 6
2 2

1 3
p p

  Finally, for an infinite sample, the states located in the planes 
kx = 0, ky = 0, and kz = 0 are logically tripled (compared to case 
T) and those located on the axis are tripled also compared 
with case L.

  We have k C k I
k L k LF

F F
( ) ( )

/

= + +
È

Î
Í
Í

˘

˚
˙
˙

1 9
2

18
2 2

1 3
p p .

  Taking the square of this and having neglected the second 
order terms in (kFL)–2/3, we find

  E C E T
k L

E L
k L

E I
k LF F

F
F

F
F

F
( ) ( ) ( ) ( )ª +

Ê
ËÁ

ˆ
¯̃

ª +
Ê
ËÁ

ˆ
¯̃

= +
Ê
ËÁ

1 1 2 1 3p p p ˆ̂
¯̃

.

  Note that in these expressions, the wave vectors kF are related 
to the Fermi energy of the corresponding system, for example, 

E
k

mF
FL L( ) ( )

=
h

2 2

2
 (4) Numerical application: There is a reduction in the Fermi energy 

when starting from a cube, we successively increase the 3D. 

This decrease is of the order 
p p p

k L k L k LF F F
, ,2 3

with respect to the 
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systems T, L, I so that 
DE

E
F

F
 = 3 6 9% %, , % for L = 100 Å and 

for L = 1000 Å.

  As L goes toward infinity, the four Fermi energies tend to a 
common limiting value EF(•), which is the same. The choice of 
the boundary conditions is regardless for macroscopic objects 
in the three directions (typically for L > 1 mm).

 (5) Taking as a reference the infinite object (periodic boundary 
conditions) and denoting by dkF the increase of the Fermi 
wave vector kF(I) related to the introduction of fixed boundary 
conditions on the two surfaces of the infinite plate we find 
from (4) that

 ( ) ( ) ( )k k
L

k k
L

k k k
L

k
L

kF F F F F F F F F+ + + + + = + +d p d p d p p3 2
2

3 2
2

3 6 9 18

  Limiting this to the first order (in dkF), this becomes 

3 6 3
2

12
2 2k

L
k

L
k

LF +Ê
ËÁ

ˆ
¯̃

= +p d p p
F F . When the terms in L–2 related 

to the contribution of the axes are negligible, we have

  dkF = p/2Lz and E L E
k LF z F

F z
( ) ( )= • +

Ê
ËÁ

ˆ
¯̃

1 p
.

  When LZ decreases, the Fermi energy increases as expected. 
The asymptotic value for LZ = a is of the order of 2.5EF(•) 
taking kF = (3p2n)1/3 and n = a–3 because the first energy state 
is ( / )( / )h

2 2 22m ap .

  But for this method, to go from 3D to 2D is not correct 
because one of the first consequences of using fixed boundary 
conditions is that nx, ny, nz ≥ 1 or equivalently kx, ky, kz π 0 (see 
solution to Ex. 1), thus forbidding the propagation of electronic 
or acoustic waves parallel to the planes or edges where the 
fixed boundary conditions are applied. In the case of an 
infinite plane and with fixed boundary conditions, we cannot 
make a continuous transition from 3D to 2D by reducing the 
thickness Lz toward zero, even if we change the solutions by 
adopting cosines, which will cancel at ±Lz/2. On the contrary, 
by using periodic boundary conditions, we can reduce Lz to 
zero because eikxz goes to 1 (whereas sinkzz = 0) and we thus 
obtain the correct wave functions of form Aeikxx eikyy.
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 (6) For atomic displacements 

u , we seek sinusoidal 
solutions with form (see Course Summary, Chapter III): 
u A k x k y k z ex y z

i t
 

= ◊ ◊ ◊sin sin sin w for fixed boundary conditions 
(C) and u A i k x k y k z ex y z

i t
 

= + +exp ( ) w for periodic boundary 
conditions (I).

  In the intermediary situations (T,L), we use the product of 
sine and exponential functions, resulting in strictly the same 
conditions on k for phonons and for free or bound electrons.

  The differences appear when are the different dispersion 
relations are used.

  The Debye wave vector kD for a cube will be kD = (6p2na)1/3, 
where na is the atomic density. The relations established in 
(3) for kF apply to kD as well as to nD,(2pvD = vskD), and to qD  
(hvD = kBqD), because all the quantities are proportional to 
each other.

  We thus find

  q q p
D D

D
( ) ( )

( )
C T

k T L
= +

◊
È

Î
Í

˘

˚
˙1 3

2

1
3

  q q p p
D D

D D
( ) ( )

( ) ( )
C L

k L L k L L
= +

◊
+

◊

È

Î
Í
Í

˘

˚
˙
˙

1 3 6
2 2

1
3

  q q p p
D D

D D
( ) ( )

( ) ( )
C I

k I L k I L
= +

◊
+

◊

È

Î
Í
Í

˘

˚
˙
˙

1 9
2

18
2 2

1
3

 As for electrons, starting from very large dimensions qD(•), we 
expect an increase of the Debye temperature when one or several of 
its dimensions are reduced progressively.
 At constant T, the smaller the object, the more the specific heat 
(brought to an atom) will decrease, since T/qD will decrease. The 
weight of this decrease, however, will depend on the value of T. When 
T >> qD, the decrease will be negligible because the law of Dulong 
and Petit applies. When T << qD, in the region where Cv increases in 
T3, this decrease will be important, see figure in Chapter III, Course 
Summary.
 In fact when studying atomic vibrations, one may ask the question 
of the physical meaning of fixed boundary conditions because they 
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impose to atoms located on external planes to remain fixed. For 
electrons, on the contrary, this point is not important because it is 
obvious that their wave functions must go to zero on the surface or 
at a point close to it. See Ex. 26, for instance.
 The present exercise is related to academic objects of the type 
L and T, but it opens the investigation of important devices and 
materials such as semiconducting quantum wells or layers of 
graphene and carbon nanotubes in Chapter V.

Exercise 8: Fermion gas

In this problem, we study several aspects of the theory of a fermion 
gas in which the particles obey Fermi–Dirac statistics and where the 
Pauli principle limits the occupation of their quantum states.
 (1) (a) In the momentum space, we consider the number of 

fermions for which the end of momentum vector 


p is 
situated in an elementary volume dpx dpy dpz. This number 

dN is given by dN
gV

h
f E dp dp dpx y z= 3 ( ) , where

  f E
E
k T

( )
exp

.=
+ -Ê

ËÁ
ˆ
¯̃

1

1 m

B

  V is the volume of the space considered; g is the maximal 
number of fermions per quantum state; h is the Planck 
constant; E is the kinetic energy of the fermion; m, known 
as the chemical potential or the Fermi level, varies weakly 
with temperature but will be considered in Question (1c) 
as a positive constant, kB is the Boltzmann constant, T is 
the thermodynamic temperature of the gas. The fermions 
are assumed to be non-interacting with each other or with 
their environment so that their potential energy is zero.

  Sketch the representative curves for f(E) qualitatively and 
specify its asymptotic value when T Æ 0 K and when T Æ 
•.

 (b) The chemical potential m is a function of T and it is 
determined from the number of fermions N enclosed in 
the volume V. We denote n = N/V and we assume that the 
energies involved are much smaller than the speed of light.

  Find the distribution of dN/dE as a function of E. Calculate 
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m0, the value of m at absolute zero, as a function of the 
fermion mass. Find the average energy E0 at T = 0 K and 
express it as a function of m0.

 (c) Now consider variable temperatures but always such 
that kBT << m0. Calculate m and the average energy E  as 
a function of T using a limited expansion in powers of  
kBT/m0. (Use F1 in the Course Summary.)

 (2) Electron gas
 (a) Assume that in the interior of a metal electrons are 

subject to a constant potential that does not influence the 
above calculations but which prevents the electrons from 
escaping into vacuum (Ex. 28a).

  Consider silver (atomic mass = 107, mass density, r = 
10,500 kg/m3) and assume that there is one free electron 
per atom. Take g = 2 and justify this choice. Calculate m0 in 
eV. Find m at T = 300 K and compare the result with kBT. 
Calculate the speed of the most energetic electrons at T = 
0 K.

  The relation m0 = kBTF defines the Fermi temperature TF. 
Find TF. For what value of E does the function f(E) equal to 
0.99 and next to 0.01? Remark on the results.

 (b) Calculate the heat capacity of this electron gas, Ce, assuming 
again that it is without interactions and therefore that the 
changes in energy with temperature are due only to the 
change of kinetic energy as calculated previously.

  Compare the numerical value of Ce thus obtained for N 
(Avogadro’s number) of metal atoms at T = 1 K and next 
at T = 300 K with C, the lattice heat capacity at a constant 
volume. In the first case, one can use C T= a 3, where 

a
p
q

=
2 4 4

3
. kB

D

N  and qD = 225 K for Ag. The second case C 

corresponds to the classical limit. Use F(1). (e, h, kB, m, N)

Solution:

 (1) (a) Using E
k T

x
- =m

B
., the function f(E) takes the form 1

1ex +
. 

When T = •, x = 0 and f(E) = ½.
  When T = 0, it becomes a step function with f(E) = 1 for  
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E – m < 0 (x = – •) and f(E) = 0 for E – m > 0 (x = + •). 
Outside of these two limiting values (T = 0 and T = •), the 
calculation of its first derivative shows that the function f(E) 
is constantly decreasing and the 2nd derivative shows the 
presence of an inflection point at x = 0, where f(E) = ½.

f ( )E

0 5

0.5

1

–3 –2 –1 0+1+2 +3

100
m

ª
KT

m-E

KT

E
KT

Figure 10

  In a solid, the temperature T of a gas of electrons is limited 
by its melting point even though m, of the order of several 
eV, corresponds to Fermi temperatures (m = kTF) of the 
order of 50,000 K. The quantity m/kBT is thus always 
large compared with 1 (Question (1c)) and f(E) varies 
essentially in the energy range near m. To specify this 
variation, we consider the following values:

  E–m = kBT  F(E) = 0.27 ;
  E-m = 3kBT  F(E) = 0.047
  E–m = –kBT  F(E) = 0.73;
  E-m = –3kBT  F(E) = 0.952
 (b) When fermions are free and non-relativistic, their energy, 

which is uniquely kinetic, is given by E p m k m= =2 2 22 2/ ( / ) h .
  In momentum space (proportional to wave vector space 

by p k


h



= ), the number dN of fermions in which the energy 
is between E and E + dE have a vector 



p  of which the 
extremity is between the spheres of radius p and p + dp 
where dE = p.dp/m.

  If in the formula from the statement, the elementary 
volume dpxdpydpz is replaced by the volume in momentum 
space 4pp2dp, we find
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  dN
gV

h
f E p dp

gV

h
m f E E dE= ◊ = ◊ ◊ ◊3

2
3

3 2 1 24 4 2( ) ( )/ /p p ,

  which leads to dN
dE

gV

h
m f E E= ◊ ◊4 2

3
3 2 1 2p / /( ) .

  In the general case, we deduce m(T) from N dN=
•

Ú0
 .

  Here T = 0 and f(E) = 0 for E > m0 and we, therefore, obtain 
m0 starting from the integration:

  N dN
gV

h
m

u
= = ◊ ◊Ú 8 2

3 30

3 2
0

3 20 p m/ / , which gives

   m
p0

2 3 2
2 33

8 2
=

Ê

ËÁ
ˆ

¯̃
◊ ◊

g

h
m

n
/

/ , where n = N/V.

  The average energy of a fermion will thus be given by the 
integral

  E
E

N

E dN

dN

A E dE

A E dE

u

u

u

u= =
◊

=
◊ ◊

◊ ◊
=

Ú
Ú

Ú
Ú

Total 0

0

3 2

0

1 2

0

0

0

0

0

0

3
5

/

/
m , 

  where A
gV

h
m= ◊ ◊ ◊4 2

3
3 2p / .

 (c) If T ≠ 0, we can deduce m(T) from

  m ( ) ( ) /T de N A f E E dE= ◊ ◊
•

Ú 1 2

0
.

  Taking into account F1, which is valid when kBT << m0 
(general case in solids), we find

  N A
k T

A= + ◊ + ◊◊◊
È

Î
Í
Í

˘

˚
˙
˙

=-2
3 6

1
2

2
3

3 2
2

1 2
0
3 2m

p
m m/ / /( ) .B

  Replacing m by m0 in the expansion, we note that the error is 

in k TB
m0

4Ê
ËÁ

ˆ
¯̃

 from which we have m m p
m

= -
Ê
ËÁ

ˆ
¯̃

+ ◊◊◊
È

Î
Í
Í

˘

˚
˙
˙0

2

0

2

1
12

k TB .

  Following the same procedure for E (T), we find 

E
A
N

f E E dE
A

N
k T

= ◊ ◊ = +
Ê
ËÁ

ˆ
¯̃

+ ◊◊◊
È

Î
Í
Í

˘

˚
˙
˙

•

Ú ( ) /
/

3 2

0

5 2
2

0

2
2
5

1 5
8

m p
m
B  or 
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equivalently E k T
= +

Ê
ËÁ

ˆ
¯̃

+ ◊◊◊
È

Î
Í
Í

˘

˚
˙
˙

3
5

1 5
120

2

0

2

m p
m
B .

  Remarks:
 (a) The Fermi level decreases weakly with temperature 

(~ 10–4 for kBT/m0 ~ 10–2). We can compare this 
evolution, obtained in 3D, with that deduced in 1- 
and 2D (see Ex. 14a).

 (b) The energy E of a gas of fermions is the sum of a very 
large term independent on T and of a residual term 
in T2 thus the influence of the temperature will affect 
this energy only a little.

  The electronic specific heat C E
Te = ∂

∂
 will be linear in 

T and zero at 0 K, as in 1- and 2D (see Ex. 14a).
 (2) (a) The spin of an electron, ±1/2, implies that one can only 

place two electrons per quantum state, thus g = 2. The 
concentration of free electrons in silver is such as 6 × 1023 
electrons occupy 1.02 × 10–5 m3, from which we find

  n = 5.9 × 10 28 e/m3; m0 = 8.86 × 10–19; J = 5.52 eV.
  At 300 K, kBT is of the order of 26 meV, therefore

  kBT/m0 ≈ 4.7 × 10–3, which results in a correction of the 

Fermi level of p
m

2

0

2
5

12
1 8 10k TB .

Ê
ËÁ

ˆ
¯̃

ª ¥ - .

  The most energetic electrons are at the Fermi energy. Their 

speed vF corresponds to 1
2

2
0mvF = m , or vF = 1.4 ¥	106 m/s 

(approximately 1/200 the speed of light) and the corre-
sponding Fermi temperature is TF = 64,200 K.

 ∑ f(E) = 0.99 when exp .E
k T
- =m

B
0 01, or

  E E k T k T= = - -1 m mB Blog 100 = 4.6

 ∑ f(E) = 0.01 when exp E
k T
- ªm

B
 100, or

  E E k T k T= = + +2 m mB Blog 100 = 4.6 .
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  The important variation zone is a few kBT around m (as 
already discussed in 1(a).

 (b) C
E
T

E
T

k T
k

T
Te

o F
total == ∂

∂
∂
∂

= =
Ê
ËÁ

ˆ
¯̃

N N N
p

m
p2 2 2

2 2
B

B  from 

which we find Ce = 6.4 ¥ 10–4 J/K at 1 K and Ce = 0.19 J/K 
at 300 K. The specific heat of the lattice at these same 
temperature is C = 1.7 ¥ 10-4 J/K (at 1 K) and C = 3R = 25 
J/K (at 300 K).

  The total specific heat (Ce
 + C) is of the form gT + aT3, the 

electronic term dominates at 1 K but it is comparable to 
the lattice term from 2 K, and it becomes negligible at 
higher temperatures. It is thus necessary to operate at 
very low temperature to determine Ce from the sum. In 
practice, one built a staight line ∑C/T = f(T2) from which 
the intercept at the origin gives g (see Ex. 10).

Exercise 9: Fermi energy and thermal expansion

Consider a sample of volume V containing N free electrons.
 (a) Find the expression for the Fermi energy at temperature T, 

EF (T), as a function of the Fermi energy at 0 K, EF(0), taking 
into account both (i) the conservation of the total number 
of electrons N and (ii) the volumetric thermal expansion 
coefficient aV.

 (b) Compare numerically the weight of each of these corrections 
for aV ≈ 15 × 10-5 K-1 and TF = 50,000 K.

 (c) Find the average energy of an electron and the corresponding 
electronic specific heat. Remark on the influence of the thermal 
expansion on Ce.

Solution:

 (a) The definition of EF(T) is based on the conservation of the 

total number of electrons N: N g E f E dE=
•

Ú ( ) ( )
0

, where in 3D 

g E AV E( ) . .=  and A
m= Ê

ËÁ
ˆ
¯̃

1
2

2
2 2

3 2

p h

/

. Taking V = Vo(1 + avT) and 

using F1, we have 
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  N V A T E T
k T

E To v/ ( ) ( ) ( ) ( ) .F
/ B

F
/= + +
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Î
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˘

˚
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-1 2
3 12
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  The same formula applied at T = 0 K gives N V
A

E/ ( )/
o F= 2

3
03 2 .

  Identifying the two expressions for N/Vo and noting 
that E T EF F

- -1 2 1 2 0/ /( ) ( )  in the correction term, we have 

E T E T
k T

EF F v
B

F
( ) ( )[ ] ( )

( )
/ª + -

◊
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Î
Í
Í

˘

˚
˙
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12 0

2 3
2

2a
p .

  The first term (between the []) takes into account the thermal 

expansion. Its variation, essentially in - 2
3

avT , could be 

foreseen because E m nF
/( / )( )= h

2 2 2 32 3p  where n = N/V. Thus, 

an increase of volume avT leads to a proportional decrease 
in the electronic density, n, which in turn, leads to a relative 
decrease in EF, by, taking into account the exponent 2/3 in the 
expression for EF.

  The second term (between the []) is the normal contribution 
to the decrease in the Fermi level at constant volume (see Ex. 
8).

 (b) When T increases, the two contributions both tend to reduce 
the Fermi energy, but they have significantly different weights. 
For an increase of 1 K, the weight of (i) will be of the order 
–10–4, whereas of (ii) will be of the order –4 × 10–10.

 (c) The total energy of an electron gas is

  U AV E f E dE AV E T
k T

E
K Fe

B= = +
È

Î
Í
Í

˘

˚
˙
˙

•

Ú 3 2

0

5
2

1
22

5 4
/ ( ). ( ) ( )p

  By expressing EF(T) as a function of EF(0), and then dividing 

by N
AV

E=
2

3
00 3 2

F
/ ( ) , we obtain the average energy of an 

electron: Ee
B= + +

È

Î
Í
Í

˘

˚
˙
˙

-3
5

0 1 1 5
12

2 3
2

2E T
k T

EvF
/

F
( )( ) ( )

a
p .

  We find correctly that the average energy of a free electron in 
3D at T = 0 is (3/5)EF.

  The conventional term for the specific heat at constant volume 
for a free electron results from the derivative with respect to T 
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of the third term, that is, C
E
T

k
T
T

e
e B

F
=

∂
∂

=
Ê
ËÁ

ˆ
¯̃

p2

2
 , which leads 

to the law of form Ce = gT.
  As in (a), the term av describes the decrease of EF due to the 

thermal expansion. Its derivative with respect to T leads to the 

introduction of the terms - +2
3

10
9

2a av vT .

  Reduced to one electron, the specific heat at constant pressure 
becomes

  C k T k T T k T Te v B F v B F B F= - + +2
5

2
3 2

2
2

a a p / .

  The numerical application allows us to note that the 
contribution of the thermal expansion to the term linear in T 
is 7.6 times greater than the coefficient g.

Exercise 10: Electronic specific heat of copper

Measurements of the specific heat of copper at constant pressure, CP, 
and low temperature give the following results:
 CP

1J mole= ¥ - - -3 53 10 4 1. deg at 0.5 K

 CP
1J mole= ¥ - - -7 41 10 4 1. deg at 1 K

 CP
1J mole= × − − −17 66 10 4 1. deg at 2 K

 By assimilating Cp to CV, extract the electronic contribution and 
compare the result with the theory for free electrons. In addition, find 
the Debye temperature qD, the Fermi temperature TF, as well as the 
temperature T0 from which the two expected contributions will have 
the same weight. The atomic density of Cu (which is monovalent) is 
N = 8.45 × 1028 m–3. ( )N ,kB

Solution:

At low temperature, the specific heat of metals is described by C =  
gT + aT	3 in which the first term represents the electronic contribution 
(where theoretically g = (p2/2TF0)kB per free electron) and the 
second term is the contribution from atomic vibrations (where a = 
12p4kB/5q	3D per oscillator).
 As seen in Fig. 11, the experimental determination of g can be 
done by determining the value of the ordinate at origin of C/T = 
f(T2).
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 Another possibility is to solve the two equations for the last two 
values of C for g and a and next verify that the results are compat-
ible with the first experimental data. We thus obtain g = 1.153 × 
10–27 J at–1 K–2 and a = 7.86 × 10–29 J at–1 K–4.
 With EF = 7 eV, TF = 81,200 K, the theoretical value of g is  
0.838 × 10–27 J at–1 K–2. The difference with the experimental value 
can be justified by the use of an effective thermal mass for the 
electrons m me

x  = 1 38 0. .
 By identifying the experimental values of a with the theoretical 
one, we find qD

 = 345 K.
 The two contributions are equal at a temperature T0 such that 
T0 = g a/  = 3.83 K.

Exercise 11: Density of electronic states in 1, 2, and 3D from a 
general formula

 (a) In a 3D solid and starting from the general formula, 

g E
V dS

E
( )

( )
=

—ÚÚ2
2 3p

E

k

 

, find the expression for the electronic 
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density of states: (i) for free electrons, (ii) for electrons that 

obey the isotropic dispersion relation: E E
ka= - - Ê

ËÁ
ˆ
¯̃o 2

2
g cos , 

where E0, g > 0.
 (b) After having established the corresponding expression for 2D, 

find g(E) for the hypothesis (i) and (ii) above.
 (c) Same question for 1D.

Solution:

 (a) The general expression giving the density of electronic states 
g(E) is formally similar to that giving the density of vibrations 
for a lattice g(n) except a coefficient of 2 for the spin of 
electrons. It is thus sufficient to follow the method previously 
applied to phonon density in 2D and 3D (see Chapter III, Ex. 
19) by evaluating — =kE vg

 

h



using the following hypotheses:
 (i) Free electrons: E k m= h2 2 2/ leading to — =kE k m

 

h

2 / .

 (ii) Bound electrons: E E kao= - - 2 2g cos( / )  leading to

— = ◊kE a
ka 

g sin .
2

  Taking into account the isotropy, we can replace the integral 
by the quantity S EE k/—

 

, we find

 


h

h

g E
V k

k m

V m
E( )

( ) /
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  where - - £ £ - +E E E0 02 2g g .
 (b) As in Chapter III, Ex. 19, we note that in 2D, the isoenergy 

surfaces become lines in the wave vector planes so that g(E) 

obeys: g E
L dl

E
E

kl E E

( )
( )

0

2

2
2

0 0

= Ê
ËÁ

ˆ
¯̃ —=

Úp
 

 

.
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  In an isotropic case, this leads to g E
L k

Ek

( ) = Ê
ËÁ

ˆ
¯̃

◊
—

2
2

22

p
p
 

  Thus

  

( ) ( ) .

( ) ( )
cos

i

ii

g E
mL

Cste

g E
L

a

E E

E E

= =

=
-

+

-
+Ê

2

2

2 2

0

0
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p
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ˆ
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È

Î
Í
Í

˘

˚
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˙

2 1 2/
, 

  where - - £ £ +E E E0 02 2g g .

 (c) Finally, in 1D, the isoenergetic line reduces to two points (k 
and –k) and the density of states obeys the general relation 

g E
L

E
( ) = ◊

—
2 2

2
1

p k
form which we find

  

( ) ( )

( ) ( )

/

i

ii

g E
L

h
m
E

g E
L
a

E E

= Ê
ËÁ

ˆ
¯̃

=

-
+Ê

ËÁ
ˆ
¯̃

È

Î
Í
Í

2
2

2 1

1
2

1 2

0
2

p

p
g

g

˘̆

˚
˙
˙

1 2/

  Remarks:
 (a) The results obtained in Questions a(i), b(i), and c(i) are 

identical to the evaluations in Exs. 13 and 14.
 (b) When — =kE

 

0., we find g(E) = •, the corresponding 
critical points coincide with large electronic concentrations 
known as Van Hove singularities, which occur when E = 
–E0 – 2g(k = 0) for the particular case of bonded electrons 
[case (ii) in the exercise]. The schematic evolution of the 
curves E = f(k) and g(E) nearly correspond to 1D system 
and are shown in Fig. 1 of Chapter V, Ex. 1.

Exercise 12: Some properties of lithium

 (1) Knowing that lithium crystallizes in a cubic system with lattice 



323Exercises

[simple cubic, body-centered cubic (bcc), or face-centered 
cubic (fcc)] taking into account its atomic mass (7) and its 
volumetric mass (546 kg·m–3).

 (2) Knowing that the valence electrons of this metal (1 per 
atom) behave as free electrons, find the shape of the Fermi 
surface and its expression and then calculate its characteristic 
dimension kF.

 (3) Compare kF obtained in (2) to the distance dm, which in 
reciprocal space separates the origin from the first boundary 
of the first Brillouin zone nearest the origin. (Evaluate dm using 
simple geometric considerations without having to sketch the 
first Brillouin zone.)

 (4) Find the Fermi energy of lithium EF, the Fermi temperature TF, 
and the speed of vF of the fastest free electrons.

 (5) Knowing that the resistivity r of lithium is of the order 10–5 
W·cm at ambient temperature, find the time of flight, t, and the 
mean free path L of conduction electrons.

 (6) Find the drift velocity vd of conduction electrons subject to a 
electric field of 1 V/m and compare it with the Fermi velocity 
vF.

 (7) Starting from the relation k C ve e F= 1
3

L (or with the help of the 

Wiedemann–Franz expression), find the thermal conductivity 
due to electrons Ke of lithium at ambient temperature T = 300 
K.

 (8) From the point of view of the photoelectric effect, free electrons 
are considered to be enclosed in a potential well with height E0 
equal to 6.7 eV, measured by taking as the origin the energy of 
electrons at zero speed. What is the work function f of lithium 
and the wavelength l0 relative to the photoelectric threshold? 
( , , , , )Bh m k e N

Solution:

 (1) The mass of an atom of lithium M A◊ =
N

is 1.166 ¥ 10–26 kg and 

the mass contained in a cube of edge a is 546 ¥ (3.48)–3 ¥ 10–30 
≈ 2.3 ¥ 10–26 kg. There are therefore two atoms per cube and 
lithium must be bcc.
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 (2) For free electrons, the Fermi surface is spherical and kF obeys 
the relation ( / ) ;( / ) /4 3 2 23 3p pk L NF = , which gives

  kF = (3p2n)1/3, where n = N/V = 4.7 × 1022 e/cm3,
  kF = 1.11 × 108 cm–1.
 (3) The reciprocal lattice of the bcc is fcc and the closest point to 

the origin in reciprocal space is 110, at a distance from 0 of 2p
2/a, so that we have dm = p 2 /a = 1.27 × 108 cm–1.

 ∑ dm > kF, the Fermi sphere is entirely enclosed in the first 
Brillouin zone without any contact with it. We can find this 
result by considering that the first authorized reflection 
at normal incidence that electrons can undergo is the 
reflection 110 (h + k + l = even); the wavelength will thus 
be l = 2d110 = a/ 2  and the corresponding wavevector 
reaching the first Brillouin zone will have a modulus  
dm = p 2 /a.

 (4) E
k
m m

n eVF
F /( ) .= = ª

h h

2 2 2
2 2 3

2 2
3 4 72p  

  T
E
k

v
k
mF

F

B
F

F  K   km/s= = = =64 800 1300, , h

 (5) s t= ne
m

2
so we have t

r
= ◊ = ¥ -m

ne2
141 0 76 10 s.

  L = ªvF  Åt 100

  j E nev
  

= = -s d
 (6) The drift velocity is vd = 0.133 cm/s. Its value is very small 

compared with the isotropic velocity vF.
 (7) The electronic specific heat of a metal is (see Ex. 8):

  C nk
T
Ee = p2

2

2 B
F

, which leads to

  K C v C v
nk
m

Te e F e F
B= = =1

3
1
3 3

2
2 2

L t
p

t .

  Using the Wiedemann–Franz law, we have

  K
K k

e
Te

e B◊ = = Ê
ËÁ

ˆ
¯̃

r
s

p 2 2

3
.

  K
L

e
T= =
r

0.735 W/cm-degree.
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 (8) See figure and Ex. 28a for details on the origin of f:

E E eV
hc

o o o o
o

= + ª = =F , ,F F
F

3 4133l Å .

EF

f0

E0

Exercise 13: Fermi energy, electronic specific heat, and 
conductivity of a 1D conductor

Consider a linear lattice of N identical atoms distant by ‘a’ from one 
to each of its nearest neighbors (see Chapter III, Ex. 11). One electron 
per atom can propagate freely along the line.
 (a) Recall the dispersion relation E = f(k) of these free electrons 

and deduce the energy EF(0) and the Fermi temperature TF(0) 
at 0 K. Numerical application for EF in eV when a = 3 Å.

 (b) What is the density of electronic states g(E) in energy space. 
Express the result as a function of EF(0) and show the 
corresponding characteristic curve. Establish the expression 
for EF(0) at 0 K starting from g(E) and deduce the average 
energy E  of an electron in this metal.

 (c) Specify the evolution of EF as a function of temperature T 
where T << TF, and find the internal energy Ue of the electron 
gas at temperature T.

 (d) Deduce the evolution of the electronic specific heat Ce(T) at 
constant volume as a function of T.

  Compare this result with that obtained approximately by 
considering only neighboring electrons within one kBT energy 
near from the Fermi energy will gain kBT in energy when the 
metal goes from 0 K to T K.

 (e) Compare the exact expressions of Ce(T) and CR(T), where 
CR is the specific heat of a lattice at low temperature:

C Nk
T

R B
D

= ◊( / )p
q

3 3  (see Chapter III, Ex. 11), and determine 

the numerical value of the ratio Ce/CR where qD = 240 K.
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 (f) Consider a metal made of identical parallel rows along the 
axis Ox, analogous to those studied above. In the yOz plane, 
these rows form a square lattice with side b. Find the electric 
resistivity r along the axis Ox, starting from the numerical 
values given in the preceding steps and assuming that the 
mean free path of electrons along this axis is such that L = 10a 
and b = 5 Å.

  Use F2 or F1 from the Course Summary. (h, m, e, kB)

Solution:

 (a) The dispersion relation for free electrons is E
k
m

= h
2 2

2
. As the 

density of states in k-space, g(k) = L/p , is constant (Chapter 
III, Ex. 11), the first Brillouin zone contains N states with two 
possible electrons (Ø≠) per state. The wave vector kF and the 
Fermi energy EF are thus:

  k
a

E
m aF F; ( )= =1

2
0

2 4

2 2

2
p ph ; EF = 1.04 eV when a = 3 Å;

  T
E
kF

F

B
= = 12,000 K.

 (b) For electrons, the density of cells in the k-space is the same 
as for phonons in the same space. The only difference is the 
different dispersion as a function of frequencies or energies:

  g k
Na( ) =
2p

, where - £ £p p
a

k
a

, which leads to g k( )  = 2g(k)

  g E dE g k dk( ) ( ) ,( )= ◊ fi≠Ø2 2 , which gives

  g E
Na dk

dE
Na m

E
N

E E
( )

( ( ) )

/

/= ◊ ◊ = Ê
ËÁ

ˆ
¯̃

=
◊

4
2

2
2 2 0

1 2

1 2p ph F

  (Note that this is the result of Ex. 11c)

  The Fermi energy at 0 K is g E dE N
E

( )
( )

=Ú0

0F
 or E

maF( )0
8

2 2

2= h p
.

  The average energy E  of an electron in a linear metal is 
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E
g E E dE

g E dE

E
E

E=
◊ ◊

◊
=

Ú
Ú

( )

( )

( )
( )

( )
0

0

0

0
0

3

F

F

F .

 (c) At the temperature T, EF is given by g E f E dE N( ) ( )
0

•

Ú = , 

where f E
E E

ek T

( ) = -
+

1

1
F

B

.

  This gives N

E

E dE

e
N

P

E2 0 11 2 10
F( ) / [( / ) ]ÈÎ ˘̊

◊
+

=-

•

Ú g c , where p = –1/2, 

c g= =E T
E T
k TF
F

B
 ( ), ( )

, and using F2.

  Since I E T
k T

E T1 2
1 2

2 2 2

22
2 6/

/[ ( )]
( )

ª -
◊

+ ◊◊◊
Ê
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ˆ

¯̃
F

B

F

p , we deduce

  E T
E

k T

E T
F

F

B

F
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/

0
1

24
1

1 2 2 2 2

2
È

Î
Í

˘

˚
˙ -

Ê
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ˆ

¯̃
ªp  and

  E T E
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TF F
F

( ) ( )
( )

= + ◊
È

Î
Í
Í

˘

˚
˙
˙

0 1
12 0

2 2

2
p by substituting the correction 

term E TF
2( )  by E k TF

2
B F( ) [ ( )]0 0 2= . This result can be obtained 

directly using F1.

N E( )

E
EF

N
E2 F

Figure 12 Evolution of g(E) for a 1D free electron gas.
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  In the same way, the expression for the energy of an electron 
gas corresponds to

  U g E f E E dEe ( )= ◊ ( )◊ ◊
•

Ú0
. Using F2,

  U
N

E

E dE

E

p

Ee / [( / ) ][ ( )]
= ◊

+

+

-

•

Ú2 0 11 2

1

10F
g c , one may deduce

  U
N

E
E T

k T

E Te /[ ( )]
( ) ( )

( )
/

= ◊ + ◊
È

Î
Í
Í

˘

˚
˙
˙2 0

2
3 121 2

2 2

2
3 2

F
F

B

F

p or equivalently

  U
NE T

Te
( )

( )
= +

Ê
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ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

F

F

0
3

1
8 0

2 2
p , taking into account the 

previously calculated evolution of EF(T). The first term 
N

E
3

0F( )Ê
ËÁ

ˆ
¯̃ is the internal energy of an electron gas at 0 K.

 (d) C
U
T

N k
T

Te
e

v
B

F
=

∂
∂

Ê
ËÁ

ˆ
¯̃

= p2

2 0( )

  We could have obtained more rapidly an expression close to 
this result by considering that only the n neighboring electrons 
near the Fermi energy EF within energy kBT ( ( ) )n g E k Tª ◊F B  
can win an energy kBT when the metal temperature goes from 
0 K to T K. The corresponding increase in electronic energy is

  DU
N

E
k Te

F
B= ◊

2 0
2 2

( )
 and C

U
T

Nk
T

Te
e

B
F

ª
∂

∂
=

( )
( )

.
D

0

  These two results correspond to the same temperature 

dependence excepting the exact coefficient p2

2
5ª .

 (e) In 1D, the lattice specific heat is also linear in T at low 

temperatures (see Chapter III, Ex. 11). The ratio 
C
C T

e

R

D

F
= 1

2
q

is of order 10–2 and is independent of T.
  We cannot experimentally separate the two contributions 

by varying T, which is different from the 3D case (see Exs. 8 
and 10), where we can obtain the contributions from a plot of  
C/T = (g + a/T2).
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 (f) Measured along the axis Ox, the electric conductivity obeys the 

relation s tª ne
m

2
, where t = L L

v
m
EF F

=
Ê
ËÁ

ˆ
¯̃2

1 2/

. Numerically we 

find n
A

=
◊
1

75 3  = 1.33 × 1028 e/m3, t = 5 × 10–15 s,

  σ = 1.8 × 106 W–1m–1 or r = 55 × 10–6 W·cm.

Note: 1D Conductors

Certain compounds of platinum such as K2Pt(CN)4Br0.3·2.3H2O are 
good examples of quasi-1D conductors because the overlapping of 
DZ2 orbitals (see Fig. 13) leads to good electrical conductivity along 
the chains of Pt–Pt while they are insulators perpendicular to the 
chains.

CN

CN CN

CN
Pt

Pt CNCN
CNCN CN

Pt

Pt

Pt

CNCN

CN CN

CN
CNCN

CN
CN

C N∫

C N∫N C∫

N C∫

Pt

dz2

Figure 13

 The discovery of this phenomenon by Gando et al. (Solid 
State Comm 12, 1973, 1125), in combined molecules of 
tetracyanoquinodimethane (TCNQ) and tetrathiofulvalene (TTF) 
resulted in numerous theoretical and experimental researches and 
the mechanisms of these phenomena stimulated investigations 
of specific effects related to 1D and 2D that contributed to the 
development of molecular electronics. We note that this exercise 
neglects electron–phonon interactions related to the Kohn effect 
and to Peierls distortions (presence of a forbidden band in the 
neighborhood of the Fermi energy; see Chapter V, Ex. 4). The present 
purpose is to focus the readers’ attention on these fascinating 
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materials (to which we can also add chains of type S—N—S—N--) 
without going into a more realistic but more complicated description. 
A detailed analysis of the specific properties of another class of 1D 
objects, carbon nanotubes, is developed in Section V.

Exercise 14a: Fermi energy and electronic specific heat of a 2D 
conductor

In the xOy plane, consider identical atoms distributed at the points 
of a square lattice with side a (see Chapter III, Exs. 9 and 18).
 (a) Show the first Brillouin zone in reciprocal space. Recall the 

dispersion relation E = f(k) for free electrons and specify the 
energy (EX and EM) of electrons for which the wave vectors 
( OX
 

 and then OM
 

) of origin O (or G ) are in contact to the 
1st Brillouin zone, X and M, in the 10 direction and the 11 
direction. What are the numerical values of EX and EM when a 
= 3 Å?

 (b) Starting from cyclic Born-von Karman conditions taken for 
the length L = Na along x and y in direct space, find in the 
reciprocal lattice, the density of states g(k)dk contained in the 
circumference of radii k and k + dk. Deduce the energy density 
of states g(E) of a 2D gas of free electrons.

 (c) Find the expression and the numerical value of the Fermi 
wave vector, kF



, the speed, vF, the energy, EF, and the Fermi 
temperature, TF, of the metal assuming that a single electron 
per atom can move freely in the plane (a = 3 Å). What is the 
average kinetic energy E  of such an electron? Sketch the 
Fermi curve on the scheme of Question (a).

 (d) Establish that, in a 2D lattice, the Fermi energy does not vary 
with temperature T and deduce the expression for energy 
U(T) and electronic specific heat Ce(T). Was it possible to 
obtain directly an order of magnitude for the latter result?

 (e) Knowing that the specific heat at low temperatures 
associated with atomic vibrations in the plane is of the form 

C N k
T

R B
D

=
Ê
ËÁ

ˆ
¯̃

28 8 2
2

.
q

(see Chapter III, Ex. 18), find at what 

temperature, Tc , the electronic contribution to the total 
specific heat is equal to that of lattice vibrations. Find its value 
for qD = 270 K.
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 (f) Compare the results of g(E), E , and Ce(T) obtained here with 
those obtained for a linear chain in the previous exercise as 
well as for a 3D metal. Use F1 or F2. (e, m, h, kB)

Solution:

 (a) If 


a  and 


b  are the basis vectors in the direct space (




b a^  and 




a b a= = ), the basis vectors A


and


B  of the reciprocal lattice 

are ( )A a B b A b B a
       

◊ = ◊ = ◊ = ◊ =2 0p and  orthogonal to each 

other and have the same modulus 2p
a

. In reciprocal space, the 

median of segment 00-10 and thus the medians of equivalent 

segments 00–01, 00–01, 00–10 delimit a square of side 2p
a

, 

which limits the first Brillouin zone (see Chapter III, Fig. 14 
and Ex. 9).

  The dispersion relation for free electrons is 

E
k
m m

k kx y= = +h h

2 2 2
2 2

2 2
( ) , which leads to the following values: 

E
m a

E
m a

X M= ◊ = ◊
h h

2 2

2

2 2

22 2
2p p, .

  Numerically we have Ex = 4.23 eV and EM = 8.45 eV.
 (b) The density of states in wave vector space is the same as that 

of phonons in the same lattice (see Chapter III, Exs. 9 and 18): 

g k
k

Na

N a k Sk( ) =
Ê
ËÁ

ˆ
¯̃

= =2
2 2 22

2 2p

p p p
.

  Taking into account the dispersion relation and g(k)dk = 

g(E)dE, we find g E
N a m

Cste( ) = =
2 2

2p
h

. This result takes into 

account two electrons per state.
 (c) The system has one free electron per atom: N2 electrons 

are distributed in N2/2 states and are contained in the 

circle of radius kF such that p

p

k

Na

NF
2

2

2

2 2Ê
ËÁ

ˆ
¯̃

=  leading to 
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k
a

aF

/( ) . / . Å= = = -2 0 8 0 835
1 2

1p p  .

1 Brillouin zonest
M

10
x

0 0 ( )r

f
01

10
K

F

01

Figure 14

  We can also find this result by considering that the area 
(volume in 3D) of the Fermi surface is, for a monovalent 
metal, equal to ½ the area of the first Brillouin zone (volume 
in 3D) because the first Brillouin zone contains as many cells 
as atoms in the crystal (N2) and we can put two electrons (≠Ø) 

into each cell inside the Fermi surface so that p p
k

aF
2

22 1
2

= Ê
ËÁ

ˆ
¯̃

◊ .

  The Fermi velocity( )h

 

k mvF F= , the Fermi energy EF and the 
Fermi temperature TF can be deduced simultaneously:

  v
m a

T
E
kF

/

F
F

B

( ) ,= ◊ =h 2 1 2p  , where E
maF = h

2

2
p

  Taking into account this result, we find g E
N
E

( ) =
2

F
, which 

could also be deduced from g E dE N
E

( )
0

2FÚ ◊ = .

  At 0 K, the average energy is E
g E EdE

g E dE

E
E

E= =
Ú
Ú

( )

( )

0

0

2

F

F

F .
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  The numerical values are VF = 967 × 103 m/s ≈ 103 km/s ,
  EF = 2.7 eV, TF = 31,300 K.
  The Fermi circumference is shown in Fig. 14.
 (d) The Fermi energy EF(T) can be deduced from 

g E f E dE N( ) ( )◊ =
•

Ú0

2, where f E
e E E k T( ) .( )/=

+-
1

1F B

  In 2D, g E
N

E
cste( )

( )
= =

2

0F
, and can be removed from the 

integral so that we find

  N
E

dE

e
NE

2

10

2

0 1F( ) ( / )g c -

•

+
=Ú , where c = EF(T) and g = ª

E T
k T

T
T

F

B

F( )
.

  The integral can be solved using F2 and making p = 0 we find 

E T
E

T
T

F

F F

( )
( )0

1 0
2

= + ◊
Ê
ËÁ

ˆ
¯̃ .

  In a 2D lattice, the Fermi energy does not vary with temperature 
(see note at end of exercise).

  The energy Ue(T) of an electron gas obeys the relation 

U E g E f E dE
N

E
EdE

e Ee
F

[( / ) ]( ) ( )
( )

,= ◊ ◊ ◊ =
+

•

-

•

Ú Ú0

2

100 1g c

  from which we find U N E
T
Te F

F
( )= +

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

2
2 2

0 1
2 6

p .

  In this expression, the term that is independent of T corre-

sponds to the energy of N2 electrons at 0 K is N E
N E2

2

2
= F .

  The electronic specific heat Ce is given by

  C
U
T

N
k

T
Te

e

v
B

F
=

∂
∂

Ê
ËÁ

ˆ
¯̃

=
2 2

3
p .

  If we consider that the only electrons having an energy E 
between EF – kBT and EF gain energy kBT when an 
electron gas goes from 0 K to T K, the corresponding 
increase in energy of the electron gas is such 

that DU g E k T k T
N k T

Ee F B B
B

F
ª ◊ =( )

2 2 2
. The order of magnitude 
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of Ce will thus be C
U
T

N k
T
Te

e

v
B

F
=

∂
∂

Ê
ËÁ

ˆ
¯̃

=
( )

.
D

2 2

  We find that Ce is linear as a function of T and that only the 
numerical coefficient (2 instead of 3.3) is different.

 (e) At low temperatures, the total specific heat CT is

  C C C N k
T T

T
TT R e B

D F
    = + =

Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

= +2
2

228 8 3 3. .
q

a gTT .

  The electronic contribution will equal the contribution of the 
lattice to the temperature Tc = g/a = 0.27 K.

  Above this temperature, the contribution of phonons is greater 
than that of electrons. We can experimentally determine the 
coefficients a and g by considering the curve CT/T = f(T), 
which is theoretically a line in 2D and therefore the intercept 
at the origin gives g.

 (f) To facilitate the comparison, we assume that the parameter 
a is the same for all the 1-, 2-, and 3D lattices and we assume 
that the objects all have z free electrons per elementary cell of 
the lattice.

  The results obtained in the present exercise and in Exs. 8 and 
13 are summarized in Table 1 (see also the table in Ex. 22 
relative to the paramagnetism of free electrons in 1-, 2-, and 
3D).

 nl, ns, nv are respectively the density of electrons in 1-, 2-, and 3D; 
N and V represent the total number of free electrons and the total 
volume. The density of states g(E) is proportional to E–1/2, constant 
and proportional to E1/2 for lattices in respectively 1-, 2-, and 3D 
but contrarily to the corresponding result for lattice vibrations (see 
Chapter III, table of Ex. 18), this does not affect the linearity of the 
electronic specific heat as a function of temperature.

Note: The expression N
E

dE

e
NE E k T

2

0

2

0 1F F B( ) ( )/-

•

+
=Ú can be integrated 

directly to obtain the exact result:

EF(0) = EF(T) + kBT  log( +1)F B( )/e E T k T- . This confirms that EF is not 
sensitive to temperature for a 2D electron gas.
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Table 1 Essential parameters for free electrons in 1-, 2-, and 3D objects
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Exercise 14b: p-electrons in graphite (variation of Ex. 14a and 
simplified approach for graphene)

Graphite is a lamellar crystal in which the atoms of carbon in a 
given graphene layer are distributed in regular hexagons (of side d 
= 1.42 Å) to form a honeycomb structure (see Chapter I, Ex. 17). The 
p-electrons of graphite, one electron per atom, are restricted to move 
in these layers to form a 2D (assumed here to be free) electron gas.
 (a) What is the density of states g(E)? Find the Fermi energy EF(0), 

the Fermi temperature of graphite TF(0), and the average 
energy E  of these electrons at 0 K as a function of the surface 
electronic density ns. What are the numerical values of TF(0) 
and EF(0)?

 (b) In reciprocal space, draw the Fermi circumference and the 
first Brillouin zone. Are there intersections between the two?

 (c) After having shown that the Fermi level does not change with 
temperature, calculate the total energy of an electron gas at 
temperature T (T << TF) and deduce the electronic specific 
heat Ce per mole. Find the numerical value of Ce at ambient 
temperature. (h, m, e, kB)
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Solution:

 (a) g k
LxLy

k g E
LxLy m

g E dE N
EF

( ) ; ( ) ; ( )
( )

= = =Ú2 2 0

0

p p
h

;

  E
m

N
L Lx y

F( )0
2

= ◊ ◊h p  in which N
L L

n
x y

= s (electronic density per 

unit area).

  Here n
d

E eVs = = = ¥ ª
2 4

3 3
38 10 0 92

18

Hex. area
e/m  2

F; ( ) ; 

T K E EF F( ) ( ), /0 10 25ª ∞ =  (see Ex. 14a).
 (b) Graphite can be considered as monovalent (1p e– per atom) but 

there are two atoms in non-equivalent position in the unit cell 
of order 1. One must therefore distribute these two electrons 
≠Ø per cell. The surface occupied by the Fermi circumference is 
therefore equal to that of the first Brillouin zone (and not equal 
to half of it as seen in Ex. 14a above). The Fermi circumference 
thus intercepts the first Brillouin zone and this can be verified 
numerically by comparing kF

1 Å ; A  Å= =- -1 545 2 1 4741. / .


  Effectively a d


= ∞2 30cos  =2.46 Å and a A A a
   

◊ = = ◊ ∞2 30p cos , 
see Chapter I, Ex.17.

  Note that the Fermi circumference leaves unoccupied cells 
near the summits of the hexagon in the 1st Brillouin zone and 
it leads to occupied cells in 2d Brillouin zone along the sides 
of the hexagon. The density of holes (unoccupied states) is 
therefore equal to the density of electrons.

  In fact the crystal potential modifies the parabolic dispersion 
relation of electrons in particular at intersections between 
Brillouin zones and Fermi surfaces. This is of specific 
importance for graphene layers either from the theoretical 
point of view or for the practical applications in spintronics: 
see the more detailed investigation in Chapter V.

 (c) See Ex. 14a.

  
E E T k T e

U E T T

E T k T
F F B

e F F

l F B( ) ( ) og( )

( ) ( / )

( )/0 1

0 1
2 6

2
2

= + +

= ◊ ◊ +
È

-

N
p

ÎÎ
Í
Í

˘

˚
˙
˙

  C
N

k T Te B F( / ) /deg.= = ¥ -p2
2

3
82 10 J



337Exercises
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Figure 15

Exercise 14c: Fermi vector and Fermi energy (at 0 K) of an 
electron gas in 1-, 2-, and 3D—comparison with the residual 
vibration energy of atoms

Consider N atoms of a monovalent metal that are successively used 
to build a 1D structure of length L, a 2D structure of surface L2 and a 
3D structure of volume L3.
 (1) Find the expression for the Fermi wave vector kF in each case. 

Compare kF to kD, the Debye wave vector relative to the atomic 
vibrations. Compare the dimension of the Fermi length, 1D, 
circle, 2D, radius, 3D, to the corresponding dimensions of the 
1st Brillouin zone.

 (2) Knowing that the density of states of free electrons 
g(E) in 1-, 2-, and 3D take respectively the forms: 
g E B E g E B g E B E( ) / ; ( ) ( ) ; ( ) D),= = =1 2 31 2 3( D)  constant ( D) (  
find the constants B1, B2, and B3 as a function of N and of the 
Fermi energy EF. Express the average energy of a free electron 
E  as a function of EF and the total energy Ue(0) of N electrons 
at 0 K.

 (3) Compare this energy Ue(0) to the residual atomic vibration 
energy Ue(0) at the same temperature by expressing the ratio 
Ue(0)/UP(0) as a function of Fermi temperature TF and of the 
Debye temperature qD. In the latter take into account that g(n) 
for the vibrations has the form g(v) = A1, A2 v, A3 v2 in 1-, 2-, 
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and 3D, respectively (Chapter III, Ex. 20b). Find the ratio of 
the increased energies DUe(T)/ DUP(T) when the temperature 
changes from 0 K to T K where T > qD. For DUe(T) an estimate 
is sufficient instead of the exact value.

Solution:

 (1) Because there are two electrons (≠Ø) per cell of dimension(s) 

2 2 2p p p
L L L

◊Ê
ËÁ

ˆ
¯̃

, we find

  1 2
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ˆ
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 Æ k N LF = ( ) //3 2 1 3p

  kD is respectively 2, (2)1/2, and (2)1/3 times larger than the 
corresponding kF values because there is one oscillator per 
cell (see Chapter III, Ex. 20b).

  For the same reason, the length, surface, and volume 
occupied by electrons are always two times smaller than the 
corresponding values for the oscillators (Debye).

 (2) g E dE N
E

( )
F

0Ú = , where 

B N E B N E B N E1
1 2

2 3
3 22 3 2= = =/ ; / ; /( )/ /

F F F

  

E Eg E dE g E dE

E E E E E E

E E
=

= = =

Ú Ú( ) ( ) ;

( ) / ; ( ) / ; ( ) / .

F F

0 0

1 3 2 2 3 3 5D D DF F F

 (3) U NEe( )0 =  that gives Ue(0)/Up(0) = (4/9)(TF/qD) for 1D, 
(TF/3θD) for 2D, and (8/15)(TF/qD) for 3D.

  The expressions for Up(0) can be deduced from kD (evaluated 
in Question (1)). We find vD = ukD/2p and qD(hvD/kB), taking 
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into account g(n) (see Chapter III, Ex. 20a, which used the 
same method).

  Since TF ≈ several 104 K and qD ≈ several 102 K, Ue(0) is always 
larger than Up(0).

  Going from 0 to T K, DUe is of order of DUe ª g(EF) ◊kBT 
◊kBT (see reasoning in Ex. 13d) and DUD = 3NkBT when 
T > qD.

  D DU U T T T T T Te D F F FD D D/ / ( ); / ( ); / ( )ª ª ª6 1 3 2 2 3
  This ratio corresponds to the ratio of specific heats. It shows 

that if the initial energy of electrons at 0 K is larger than that 
of the lattice vibrations, its increase as a function of T is far 
smaller.

Exercise 15: Surface stress of metals

Consider a monovalent (1 electron/atom) fcc metal with lattice 
parameter a.
 (1) Assume that the atom in the center of a face (100) is in contact 

with its four neighbors and sketch the atomic distribution on 
the (100), (110), and (111) faces.

 (2) Express the atomic density nv (at. number/volume) and the 
surface density ns along the following surfaces: (100), (110), 
and (111).

 (3) Write the general expressions for the density of state, gv(E), 
and the Fermi energy, EFV, for a 3D electron gas as a function 
of the electronic density nv. Find the average energy of an 
electron EV  as a function of EFV. Specify EFV as a function of a.

 (4) Assume that, the electrons of surface atoms behave as a free 
electron gas in 2D over the thickness of a single atomic layer. 
For each surface, find the general expression of the density of 
state gs(E), the Fermi energy EFS of such an electron gas as a 
function of ns. Express the average energy E  as a function of 
EFS.

 (5) Evaluate the surface Fermi energy for the (100), (110), and 
(111) faces, denoted as EFS(100), EFS(110), and EFS(111). Class 
EVS and the different EFS in order of increasing energy (in units 
of h2 2p/ma ). Sketch the different curves, g(E), and indicate the 
position of EF and E .
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 (6) For obvious thermodynamic reasons, the maximal kinetic 
energy, EFS, of surface electrons is the same as EFV of volume 
electrons (alignment of the Fermi level). Taking this common 
value as a new origin, sketch the new corresponding graph. 
State (in units of h2 2p/ma ) the energetic distance E0 between 
the minimum of the surface energy (relative to each of the 
three faces considered) and the minimum volume energy.

 (7) Deduce the difference DE  between the average energy of a 
surface electron and that of a volume electron:

  DE  = Es – Ev .  Express this difference as a function of a for the 
faces considered: DE (100), DE  (110) and DE  (111).

  Numerical application: Find the different values of DE  for 
ħ2/2m = 3.8 eV Å2 and a = 3.5 Å.

 (8) Estimate the surface stress σ (energy per surface: s = DE S/ ) 
of the different surfaces: s(100), s(110) and s(111).

  Numerical application: Express σ in J/m2. Comment on the 
results.

Solution:

 (1) See Fig. 16.
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Figure 16
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  EFS(110) < EFS(100) < EFS(111) < EFV

  since 2 2 4
3

< < ª 2.31 < 3.84

  The graph is shown in Fig. 17.

(111)(100)

(110)

E

g En( )g Es( )

E Sr( )

E Sr( )

E Sr( )

E SF( )

0

E( )v

Figure 17

 (6) See Fig. 18.
  E0 = –EFS + EFV; E0 = 1.53, 1.84, 2.43 (in units of h2 2p/ma ) for 

EFS(111), EFS(100), and EFS(110), respectively.

(110)
(100)

(111)

0

E

E0 EFS(111)

–EFV

EV

Figure 18

 (7) DE E E= - +( / ) ( / )1 2 2 5FS FV , which gives DE ( ) .111 0 114= - ,
  DE( )100 = +0.536 and DE ( )110 = 0.83, all in unities of 

h

2 2p/ma that equals 1.95 eV for a = 3.5 Å.
  Thus we have D D DE E E( ) . ; ( ) . ; ( ) .111 3 23 100 1 05 110 1 62= - = = eV   eV   eV(111) = –3.23 eV; D D DE E E( ) . ; ( ) . ; ( ) .111 3 23 100 1 05 110 1 62= - = = eV   eV   eV(100) = 1.05 eV; 
  D D DE E E( ) . ; ( ) . ; ( ) .111 3 23 100 1 05 110 1 62= - = = eV   eV   eV (110) = 1.62 eV
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 (8) s s s

s

= = - =n Es    J/m   J/m

J/m

D ; ( ) . ; ( ) . ;

( ) .

111 2 43 100 2 7

110 3

2 2

2ª
  We thus have a contraction when σ > 0 and lateral expansion 

when σ < 0.

Note: Units

Thus, although joule has the same dimensions as the Newton-meter 
(1 J = 1 N·m = 1 kg·m2·s−2), these units are not interchangeable. 
Joule is the unit of energy while Newton-meter (N·m) is the unit of 
torque.

Comment

The effect of surface stress is to reconstruct the surface in order to 
minimize its average energy DE . The atomic position of reconstructed 
surface atoms is different from that of an ideal surface, as imagined 
in this problem. More sophisticated approaches involving the change 
of the work function with crystalline orientation of surfaces are 
detailed in Ex. 26.
 Experimentally, this reconstruction can be studied by diffraction 
of slow electrons at normal incidence (see Chapter I, Pb. 3) or rapid 
electrons at grazing incidence (see Chapter I, Pb. 4) or with the 
widespread use of a scanning tunneling microscope, Pb. 3.

Exercise 16: Effect of impurities and temperature on the 
electrical resistivity of metals: Matthiessen's rule

 (a) A beam of electrons with uniform density n and velocity v
strikes different spheres of radius r that are homogenously 
diluted in a target with a density per unit volume of ns.

  After evaluating the number/second of electrons that strike 
the target, find the probability Pi of electron collision with the 
scattering centers and deduce when this probability is equal 

to 1 for an electron mean free path of L whereL =
◊

1
2pr ns

. (To 

find this result, assume that the electron is a point charge and 
strikes hard spheres.)

 (b) Now consider a monovalent metal, sodium, in which there are 
impurities with atomic concentration c (c = atomic density 
of impurities/atomic density of sodium) and conduction 
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electrons with velocity vF that interact only with these 
impurities following the rule in a).

  Find the electrical resistivity ri due to the impurities. What is 
the numerical value of ri when the concentration of impurities 
is 1% and the radius of an impurity is ª1 Å?

 (c) Due to thermal vibrations, the atoms of sodium also act like 
scattering spheres having an apparent radius of rp. Starting 
from elementary considerations concerning the collision 
probability, show that the total resistivity rt of a metal with 
impurities follows the Matthiessen's rule: rt = ri + rp, where 
rp is the electrical resistivity due to thermal vibrations.

  At ambient temperature (300 K), the resistivity of pure sodium 
is 4.3 × 10–8 W-m, find the value of the resistivity for sodium 
containing 1% impurities.

 (d) At high temperature (T > qD), one may admit that the apparent 
radius rp follows the relation r up

2 2ª , where r up
2 2ª  represents 

the average quadratic displacement of a metal atom. Find the 
expression of rp as a function of T by considering that each Na 
atom behaves classically as a harmonic oscillator vibrating at 
the Debye frequency nD(hvD = kBqD). Compare the numerical 
result to the experimental value. Find the thermal coefficient 

of sodium (which obeys a
r

r= ∂
∂

1
T

) and compare it with the 

experimental value of a ≈ 4 × 10–3.
  For sodium, use the following values: M(N) = 23 g, qd = 160 K, 

nF = 1.07 × 106 m/sec. (e, m, kB, h, N)

Solution:

 (a) The number of electrons per second that strike a scattering 
center is contained in a cylinder of length v and section 
area pr2 is n·vpr2, as shown in Fig. 19. The total number of 
collisions per second between electrons of the beam and the 
diffuse centers will be: n ◊ v ◊ pr2 ¥ S ◊ v ◊ ns (where S is the 
cross-section area of the electron beam). The probability of 
collisions will thus be Pi = pr2◊ v◊ ns.

  The time of flight between two collisions is
  t = 1/Pi = 1/pr2 ◊ v◊ ns and the mean-free path L = v · t = 

1 2/pr ns (in which pr2 is the scattering cross-section).
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 (b) r
s t

p r
p

i F s i
Fm

ne

m

ne
r v n

r mv

e
c= = = ◊ ◊ =

◊
◊1

2 2
2

2

2( ),  , where

  c = ns/n. Since sodium is monovalent, n is both the density of 
conduction electrons and the density of sodium atoms.

  For an impurity concentration of 1%, ri = 1.2 ¥ 10–8 W-m.

Target particles
(density )ns

vBeam
(density )n

Figure 19 Scattering probability (or cross-section).
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Pure Cu

Distorted lattice

ri

Cu 1.12 % Ni+

Cu 2.16 % Ni+

Cu 3.32 % Ni+
¥10–8

0

Figure 20 Addition of the different components of resistivity: Temperature 
ρp and impurities ρi.

 (c) When there are two types of scattering centers with cross-
sections σ1 and σ2 and densities n1 and n2, the electron-
scattering probability is equal to the sum of probabilities:
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  P P P n n v= + = + =1 2 1 1 2 2
1( ) .s s
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1
1 1t

s= n v  and 

1

2
2 2t

s= n v, the time of flight is 1/t = 1/t1 + 1/t2. Thus, taking 

into account the general expression of the resistivity,
  r = m/ne2t , we find the Matthiessen's rule: r = r1 + r2. 
  Numerically, we note that the resistivity due to an impurity 

concentration of 1% is of the same order as the intrinsic 
resistivity: rt = ri + rp = 5.5 ¥ 10–8 Wm.

 (d) Each atom of Na acts as a classical oscillator of mass M and of 
frequency nD . Therefore, its energy of vibration is of 3kBT. The 
average quadratic displacement thus obeys (see also Chapter 
III, Ex. 21b) 3kBT = M (2pvD)2 ◊u––2, which is equivalent to

  u
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M k D
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2
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◊
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.

 At high temperature, the electrical resistivity is linear in T and 
the temperature coefficient a is 1/T.

  We have r = AT, Dr = ADT and a
r

r= ∂
∂

= -1 1

T
T .

 Numerically, we find rp = 7.9 × 10–8 W-m and a = 3.33 × 10–3, 
which taking into account the implicit approximations made, is in 
good agreement with the experimental values.

Comment

Electronic waves propagate nearly without attenuation in an ideal 
crystal: L can attain several centimeters in very pure metals such 
as Ag at very low temperatures. Deviations from an ideal crystal are 
due to impurity atoms or crystalline defects, and they also result in 
the thermal vibration of atoms that is non-zero even at 0 K and are 
responsible for the electrical resistivity of real metals.
 The rigorous calculation of the electrical conductivity of a metal 
outside the context of the present exercise can explain the T–5 
evolution of σ at low temperature by taking into account the electron 
waves scattered by phonons (from which the average quadratic 
displacement was considered in Chapter III, Ex. 21a).
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 Despite the simplifications of this exercise in metals, it explains:
 ∑ The additivity of partial resistivities and the influence of 

impurities.
 ∑ The linear increase (as a function of T) of the resistivity at high 

temperatures (T > qD).
 ∑ The thermal coefficient that is equal to 1/T and is independent 

of the metal considered (a ≈ 3–5 × 10–3 for most metals 
excluding specific alloys such as manganin (86% Cu, 12% Mn, 
and 2% Ni) where a ≈ 10–5.

 These results, illustrated in Fig. 20 (see also Exs. 17 and 18), 
can be completed by the size effect studied in Ex. 20. They are 
characteristics of metals and radically different from the electric 
behavior of semiconductors (see Chapter V).

Exercise 17: Effect of the vacancy concentration on the 
resistivity of metals

According to Peter Matthiessen, the resistivity r of a metal obeys the 
relation r = rT + ri where rT is uniquely a function of temperature and ri 
depends on the concentration of impurities or atomic vacancies. The 

concentration of vacancies, c1, follows a low of the form c T e
E

k T
1( ) =

- F

B ,  
where Ef is the formation energy of vacancies.
 The resistivity of two pure gold wires is measured at 78 K after 
having heated one, denoted A1, to a temperature T1 = 920 K, and the 
other, denoted A2, to a temperature T2 = 1220 K, and then quenched 
immediately to 78 K, in order to stabilize the concentration of 
vacancies. The relative change of resistivity is Dr/r = 0.4% for A1 
and 9% for A2 using as a reference value r = rT of a sample that was 
not subject to any thermal treatment. Find the energy of formation 
of vacancies, in eV, and their concentrations.

Solution:

r r r r

r r
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( / / )/ exp

78 78 78
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B
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, resulting in

Ef = 0.996 eV; c1 (78/920/78) = 3/5 × 10–6; c2 (78/1220/78) =  
7.8 × 10–5.
 This exercise illustrates the influence of thermal treatments 
on the resistivity of metals with the significant increase of r for a 
density of vacancies that is relatively small.
 In metallurgy, this simple method, easy to operate, allows one to 
find Ef and c1. It gives satisfactory results when the measurements 
are done at low temperatures and when the concentration of 
vacancies is not too large (otherwise Dr is not proportional to c1). 
Another experimental approach simultaneously combines the 
measurements of the linear expansion (Dl/l) and of the change in 
the lattice parameters, Da/a (see Ref. [20] for further details).

Exercise 18: Effect of impurity concentration on the resistivity

 At low temperatures, the addition of impurities to a pure metal 
of resistivity r leads to an increase Dr of this resistivity that is 
proportional to the concentration of impurities, ci, weighted by a 
coefficient (Dz)2, where Dz is the difference between the valence of 
the impurity and that of the host metal.
 Find the resistivity r of a copper sample containing, respectively, 
(a) 2 × 10–3 at/at of In+3; (b) 5 × 10–4 at/at of Sn4+; (c) 10–3 at/at of 
Sb5+; (d) a 10–3 concentration of vacancies.
 The initial resistivity of pure Cu is r(Cu+) = 10–10 W-m and 
becomes 5 × 10-10 W-m when it contains 10–3 at/at of cadmium 
Cd2+.

Solution:

Dr = (Dz)2 ciA, where A = 4 × 10–10 W-m
 (a) r (Cu + 2 × 10–3 In) = 33 × 10–10 W-m
 (b) r (Cu + 5 × 10–4 Sn) = 19 × 10–10 W-m
 (c) r (Cu + 10–3 Sb) = 65 × 10–10 W-m
 (d) r (Cu + 10–3 vacancies) = 5 × 10–10 W-m
 The increase of the resistivity related to the addition of impurities 
is due in part to the distortion of the lattice from the change in 
the size of the impurities atoms and in part to the electrostatic 
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interaction of metallic ions (Rutherford scattering cross-section in 
Z2) or vacancies that act as missing ions+. When the metal contains 
magnetic impurities (Fe or Ni for instance), the resistance exhibits a 
low-temperature minimum resulting from the scattering of electrons 
by magnetic moments, an effect known as Kondo effect not taken 
into account by the Matthiessen law.
 One application of the present exercise is the control of the degree 
of purity of a metal from the measurement of its residual electrical 
resistivity at a very low temperature (T < 20 K).
 This exercise also permits to qualitatively understand why the 
resistivity of certain alloys, for instance CuZn, can be greater than 
that of the constituents mainly when the alloy lattices are disordered 
[20]. This exercise was inspired by Ref. [22].

Exercise 19: Another expression for the conductivity σ

When an electron gas is subject to an applied electric field, 


E , each electron feels a drift velocity v
eE
m





e = - t
, which adds to 

its initial velocity resulting from Fermi Dirac statistic. Geometric 
considerations show that the electric conductivity σ can take the 

form s t= ◊ ◊ ◊1
3

2 2e v g EF F( ) , where vF is the Fermi velocity and g(EF) 

is the density of states per unit volume.
 (a) Verify that the proposed expression gives the classical result 

for σ in the case of a free electron gas. What physical arguments 
argue for the use of this expression instead of the classical 
one?

 (b) Can you establish simply this expression, up to a coefficient of 
1/3, from the use of a representation of the displacement of 
the Fermi sphere in k-vector space?

Solution:

 (a) We have g E A E( ) = , where A m( / )( / ) /1 2 22 2 3 2p h  for a unit 
volume.

  Therefore, we can write g E A E( )F F=  and 

g E dE n AE
E

( ) ( / ) /= =Ú 2 3
0

3 2F

F
.
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  Consequently g(EF) =(3/2)n/EF and the proposed expres-

sion thus gives s = ne2 t/m by taking into account that 
( / )1 2 2mv EF F=  .

  The proposed expression is physically more acceptable 
because under the action of the electric field, the Fermi volume 
is translated by a momentum of hdk  (or equivalently mve ), 
which is equal to e Et . Figure 21a amplifies this displacement 
00’ that is small compared with hkF. Thus, as shown in Fig. 
21b, the only electrons in the neighborhood of the Fermi 
energy—and Fermi density g(EF)—are in fact implied in the 
current transport.

  If the two expressions lead to the same result when the 
electrons are perfectly free, the proposed expression can also 
explain experimental results observed in materials in which 
the electrons do not strictly follow the free electron theory. 
When conduction electrons are sensitive to the crystalline 
potential, their dispersion relation is no longer parabolic, the 
Fermi surface is no longer spherical and the density of states 
in the neighborhood of EF no longer follows a E  law. This is 
practically the case for all materials except the alkali metals. 
In particular, the proposed expression takes into account the 
conductivity of divalent metals for which the measurement 
of the Hall constant leads to a density of carriers significantly 
different from the expected 2e per atom. Also, a large density 
of Fermi states can explain the superconducting properties of 
certain copper oxides (see Chapter V, Ex. 2b) and g(EF) may be 
involved into a more elaborate expression for the electronic 
specific heat (see Chapter V, Ex. 8).

 (b) We can find the proposed expression up to a 1/3 coefficient 
by considering the current density 



j , corresponding to 
the displace of dn electrons crossing from the white to the 
hatched part in Fig. 21a; 



j n e v@ ◊ - ◊d ( ) F , where d dn g k k= ◊( )F ,  
where dk represents the average thickness of the depleted 
zone ( / )= eEt h  and vF is the average speed imparted to dn 
electrons. This results in g(kF) = g(EF) ◊ (∂E/∂k)k=kF

 and
  J 	@ g(EF) ◊ (h2kF/m) ◊ (eEt/h) ◊ evF, leading thus to
  s ª g(EF)e2v F2 t.
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E

kF

E

EF

k
0

(b)(a)

eEt/

O O

Figure 21

Exercise 20: Size effects on the electrical conductivity of 
metallic films

Consider a metallic thin film between the planes defined by z = 0 and 
z = a where the thickness, a, is smaller than the mean free path l0 of 
conduction electrons in the bulk metal (a/l0 ≤ 1).
 (a) Find the mean free path l(z) of an electron scattered at a 

point P at z assuming that the scattering probability in a solid 
angle is isotropic. Next, assume that the scattering probability 
is the same for all points between 0 ≤ z ≤ a and show that 
the mean free path of electrons l  in the metal film obeys 

l l/ [ ( / ) ( / )]0
1
2

1 3 2= +k klog for k a= £/ .l0 1

 (b) Show the sketch of the curve s/s0 = f(log k) where σ is the 
electrical conductivity of the thin film and σ0 is the electrical 
conductivity of the bulk material.

  Numerically specify the resistivity and the resistance, R, 
along the length l of a ribbon of gold with the following two 
thicknesses: a = l0 and a = l0 /10, where the length l and the 
width b are equal such that l = b >> l0.

  Use σ0 (Au) = 0.44 × 106 W–1-cm–1, l0 (Au) ≈ 420 Å.

  Recall that x x dx
x

x
xlogÚ = -

2 4

2 2
log .

Solution:

 (a) From Fig. 22 , one may observe that the electron mean free 
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path in thin films is equal to l0 only for angles q such that  
q1 < q < q2. 

Z P0 a

q2 q q1

Z

Figure 22

  On the contrary, for the other angles, one has

  l q
q

( )
cos

= -a z  for 0 ≤ q ≤ q1, where cos 1q
l

= -a z

0
, and

   l q
q

( )
cos

= -z for q2 ≤ q ≤ p, where cosq
l2 = -z

o

  The scattering probability over 4p steradian is equal to 1 so 
that the isotropic scattering probability in a solid angle dW is 

P
d= W
4p

.

  Taking into account dW = 2p sinq dq, we have P d= 1
2

sin . ,q q  

which results in

  l q q l q q q q
q

q

q

q

p

( ) . ( ) ( )z a z t g d d ztg do= -( ) + -
È

Î

Í
Í

˘

˚

˙Ú Ú Ú1
2

0

1

1

2

2

sin
˙̇

  l( )z = 1
2

[(z – a)log a z
a z

o

- + -
l

log  z

ol
].

  Postulating that the scattering probability obeys to the same 

law for all the points between 0 and a, one obtains l l= Ú1

0
a

a

(z)dz = 1
2 2

2
2 2

a
a

a
a

a
o

- +
È

Î
Í
Í

˘

˚
˙
˙

log
l

 or l
l l l lo o o o

log= -
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

3
4 2

a a a ,

  which corresponds to the proposed expression with k = a/lo.
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 (b) The electrical conductivity σ of the ribbon is such that 

s t l= =ne
m

ne
mvF

2 2
.

  It differs from that of the bulk material σ0 only by the mean 
free path l that is limited by the boundaries of the ribbon. 

Thus, s
s

l
l0 0 2

1 3
2

= = +Ê
ËÁ

ˆ
¯̃

k
k

log .

100
80
60
40
20
0

s s/ (%)0

0.25 0.5 0.75 1 k a= /l0

Figure 23

 The result is shown in Fig. 23 wherein the lower limit of k has to 
correspond to a realistic lower limit for the minimal thickness of a, a 
few atomic layers, corresponding to uniform thicknesses.
Numerical application:

 ∑ a k= = =l s
s0

0
1; ;   0.75 ; 1/s (Au, 420 Å) = 3 × 10–6 W.cm; 

R(Au, 420 Å) = (1/s) (l/ba) = 0.71 Ω.

	 ∑	 a k= =
l0
10

; 0.1; s/s0 = 0.19; 1/s (Au, 42 Å) = 12 × 10–6 W.cm; 

R(Au, 42 Å) = 28.6 Ω. 

Comment

This problem was inspired by the article of J. J. Thomson, published 
in 1901, to explain an experimental phenomenon known since 
1898: the electrical resistivity of thin films is larger than that of the 
corresponding bulk material. The present classical calculation can be 
improved by using the Boltzmann transport equation and supposing 
that electrons are subject to a partial specular reflection on the 
surfaces. These classical size effects should be added to the quantum 
effects related to the discrete variation of the electron wave vector 

of the material, k k n
az z z( )= 2p (see also Ex. 26). One can find a more 
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detailed description of this phenomenon and the corresponding 
experimental techniques in the article of D.C. Larsen Physics of Thin 
Films 6, 1971, 81.

Exercise 21: Anomalous skin effect

An electromagnetic plane wave with its electric field, Ex(z), polarized 
along x, propagates along Oz with an angular frequency w in free 
space of permittivity e0 and permeability m0. At z = 0, it encounters the 
surface Oxy of a metal, which occupies the half space for z positive.
 (a) Starting from the Maxwell’s equations and neglecting the 

displacement current, find the evolution of the electric field 
Ex(z) in the metal characterized by its magnetic permeability 
m0 and its electrical conductivity σ0. Express as a function 
of m0, σ0, and w, the skin depth d0, the distance at which the 
amplitude of the incident wave has decreased to 1/e: E(d0) 
= E(0)e–1. Also determine the surface impedance Z = R + iX 
[defined by the ratio between the electric and magnetic field 
at z = 0 : E(0)/H(0)]. Finally state the classical expression for 
σ0 as a function of the electronic density n and the relaxation 
time t and then as a function of n, vF, and l0 (where vF is the 
Fermi speed and l0 is the electron mean free path).

 (b) When the wave frequency increases up to f0 = w0/2p, the skin 
depth decreases down to d0 and is of the order of l0. For 
frequencies greater than f0, it is no longer possible to admit 
that the n electrons move in the constant electric field between 
collisions, as implied in the classical expression above. The 
mean free path of electrons is thus limited by this new skin 
depth d	¢. Find the new expression for the conductivity σ (f ≥ f0) 
as a function of σ0, l0, and d	¢. Next deduce the expression of 
thickness of the anomalous skin depth d	¢ as a function of m0, 
σ, and w and next as a function of m0, σ0, l0, and w. What is the 
corresponding expression for the surface impedance?

 (c) By choosing the appropriate scale, find schematically the 
evolution of d = F(f) and R = F(f) around the frequency f0.

  Specify the numerical values of R and l (wavelength of the 
incident electromagnetic wave of frequency f0) for copper at 
300 K with σ = 6 × 105 W–1-cm–1, l = 3 × 10–6 cm.
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Solution:

 (a) This first question, relative to the normal skin effect, is treated 
by the majority of texts on electromagnetism using the 
following differential equations:

  
 





— ¥ = + @∂
∂

H j
D
t

Es0

  
  

— ¥ = -∂ ∂ = -E B H in the sinusoidal regime/ ( )t iwm0

  
 

— ¥ — ¥( )E  = - = - + —◊i E Ewm s0 0

 

D —( ),E  where the Laplacian 
symbol is D = —2.

  In cartesian coordinates and taking into account the 
polarization of 



E  along Ox, we find
  ∂ ∂ - = ∂ ∂ - =2 2

0 0
2 2

0
22 0E z i E E z i Ex x x x/ / ( / )wm s d ,  

where d
ws m0

0 0

1
22=

Ê
ËÁ

ˆ
¯̃

.

  Using i
i= +1

2
 and keeping only the solution that introduces 

the damping, we find

  E z t E z i t zx x( , ) ( )exp( / )exp ( / )= - -0 0 0d w d and

  H
i

E
z

i
E z i t zy

x
x=

∂
∂

= - - -∞1 1

0 0 0
0 0wm wm d

d w dexp( / )exp ( / )

  so that we have 

Z
E

H i

i
ix

y

= =
-

=
+

= +
Ê
ËÁ

ˆ
¯̃

( )

( )

( )
( )

0

0 1

1

2
1

2
0 0 0 0 0

0

1
2wm d wm d wm

s

  Finally, we write s t l
0

2 2
0= =ne

m

ne

mvF

 (b) When the mean free path is limited to the depth of d¢, we have 

s d s d
l

= = ◊ne

mv

2

0
0

′ ′

F

  By substituting σ0 for σ, the skin depth becomes 

  d
wm s

¢ =
Ê
ËÁ

ˆ
¯̃

2

0

1 2/

=
2 0

0 0

1 2
l

wm s d ′
Ê
ËÁ

ˆ
¯̃

/

  or equivalentlyd
l

wm s
′ =

Ê
ËÁ

ˆ
¯̃

2 0

0 0

13/

.
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  By the same substitutions, we find 

Z i i= +
Ê
ËÁ

ˆ
¯̃

= +
Ê

Ë
Á

ˆ

¯
˜( ) ( )

/ /

1
2

1
4

0 0

0

1 2 2
0
2

0

0

1 3
wm l

s d
w m l

s′

Normal

1
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f0
Anomalous

8

Figure 24

 (c) The evolution of d and R as a function of frequency f is of the 
form d = A	f–1/2( f < f0) and d =	B	f –1/3( f > f0); R = C f 1/2( f < f0) 
and R = Df 2/3( f > f0).

  This is shown schematically in Fig. 24 where we have used 
logarithmic axes.

Numerical application:
At 300 K, l d l pl s m e0 0

2
0 0 0

1 2300 64= = = = Å, m( / ) ./ m

 R = =1

0 0s l
 0.55 W

Remark: This exercise was inspired by the method followed by 
Pippard to take into account qualitatively the anomalous skin effect 
with some slightly different physical hypotheses (see Sondheimer, E. 
H. in Advances in Physics 1-1952-1).
 This method can correctly explain the evolution of the essential 
parameters, R and d, as a function of frequency and shows that 
the anomalous skin effect appears in the IR for ordinary metals at 
ambiant temperature and down to the microwave region for pure 
metals at low temperature.
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 Physically, the measurement of Z that is obtained from the 
measurement of the reflection coefficient can be used to obtain the 
quantity s0/l0 and therefore to evaluate the density of electrons “n” 
participating in the conduction. One can also use this to evidence 
anisotropic effects in single crystals.

Exercise 22: Pauli paramagnetism of free electrons in 1-, 2-, 
and 3D

Consider N free electrons per unit volume of a metal set in a magnetic 
induction B


 applied along the Oz axis. The magnetic moment of 

each electron is m  proportional to its spin and its projection on the 

Oz axis can take only two values: +mB and –mB (where mB = e
m
h

2
 is the 

Bohr magnetron).

EF

g E( )

Total energy

Anti // B

2 BmB

// B

Figure 25

 (a) Find the total energy E of electrons, which have a kinetic energy 
Ec and a magnetic moment that can be parallel or anti-parallel 
to B


. Find the magnetization per unit volume of the sample M


 

as a function of the number of electrons N≠ and NØthat have 
a magnetic moment m , respectively, parallel and anti-parallel 
to B


. Also deduce the paramagnetic susceptibility c of the 

sample.
 (b) 3D at 0 K. From the expression of the electron density of states 

in 3D and with the help of Fig. 25, establish the expression of 
N≠ and NØ in the form of integrals. Deduce the susceptibility 
c as a function of the electronic density N, mB, m0 (magnetic 
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permeability of vacuum), and TF (Fermi temperature). Use 
the hypothesis that mBB << EF and check initially that EF is 
practically independent of B


.

 (c) 2D at 0 K: Following the same method, find the susceptibility 
c of a layered metal in which the free electrons move only in 
the planes.

 (d) 1D at 0 K: Same question as in (b) but assuming that the 
electrons move only along lines.

 (e) 3D at T K: Taking into account the Fermi distribution f(E) in 
the integral expressions N≠ and NØ . Find the expression of 
c(T) as a function of c(0), T, and TF(0) after the evaluation of 
EF as a function of T K.

 (f) 2D at T K: Same question as in (e) but for a 2D layered metal.
 (g) 1D at T K: Same question as in (e) but for a 1D metal.
 (h) Numerical application: Summarize the previous results 

in a table. Next, evaluate numerically c(0) in 3D where N = 
1022 cm–3, mB = 0.927 × 10–23 A·m2. (use F1 in Questions 
(e), (f), and (g)) ( , , , )mo m eh

Solution:

Note that the first two questions of this problem are treated in detail 
in the many textbooks (see for instance Ref. 15b). Note also that 
the magnetic moment of an electron is opposite its spin because 
m


= -gmB S , where g = 2.

 (a) The energy of the magnetic moment of an electron m  placed 
in the magnetic induction B


 is Wm = – m B


. The total energy E 

of a free electron is therefore

  
E E B

E E B

= -

= +

≠ ≠

Ø ≠

c B

c B

B

B

m

m

( )

( )

m

m

 

 

  The magnetization per unit volume of the sample is: 
M N N N NB B B= + - = -≠ Ø ≠ Ø( ) ( ) ( )m m m

  The paramagnetic susceptibility c corresponds to: 

M H B
 

= =c c m( )/ 0  so that c
m

m m= = -≠ Ø
M

B
N N B0 ( ) / .0 B

  The remaining parts of the problem thus reduce to the 
evaluation of the population difference N N≠ Ø- .
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 (b) As shown in Fig. 25, the magnetic induction increases the 
population of electrons having m



parallel to B


while decreasing 
the anti-parallel population and maintaining the position of 
the Fermi level.

  At 0 K, the two populations are thus N g E B dE
B

E

≠ -
= +Ú ( )m

m
B

B

F

and N g E B dE
B

E

Ø = -Ú ( )m
m

B
B

F
, while in 3D we have (see Exs. 8 

and 11): g (E) = aE1/2 where a p= 2 23
3 2V

h
m( ) / .

  (Note the elimination of coefficient in Ex. 8 because it was 
including the 2 spin orientations.) After integration, we find 

N E B≠ = +2
3

3 2a m( ) /
F B and N E BØ = -2

3
3 2a m( ) /

F B

  The Fermi energy EF is derived from the sum N N N= +≠ Ø, thus 

N E
B

E
Eª +

Ê

ËÁ
ˆ

¯̃
ª4

3
1 3

8
4
3

3 2
2 2

2
3 2a

m
aF

B

F
F

/ /

  and the population difference is

  N N E
B

E
N B

E≠ Ø- = ◊ =2 3
2

3 2a
m m

F
B

F

B

F

/ , which gives the 3D suscepti-

bility at 0 K: c
m m

( , )3 0 3
2

0
2

d
N

E
∞ =K B

F
 (c) In 2D: g(E) is a constant (see Ex. 14a) and we have 

N C E B N C E B≠ Ø= + = -( ), ( ),F B F Bm m  which gives N CE= 2 F,

N N C B≠ Ø- = 2 mB , and a susceptibility of c
m m

( , )2 0 0
2

d
N

E
∞ =K B

F
.

 (d) In 1D: g(E) = bE–1/2 (see Ex. 14a) and we have 
N E B N E B≠ Ø= + = -2 21 2b m b m( ) , ( )/

F B F B

N N N E
B

E
E= + = -

Ê

ËÁ
ˆ

¯̃
ª≠ Ø 4 1 3

8
41 2

2 2

2
1 2b

m
bF

B

F
F

/ /

N N
B

E

N B

E≠ Ø- = =2
21 2b

m mB

F

B

F
/  and a susceptibility of: 

c
m m

( , )1 0
2

0
2

d
N

E
∞ =K B

F
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 (e) When the temperature is taken into account, N≠ and NØ  must 

be evaluated using N f E B g E B dE
B≠ -

•
= + +Ú ( ) ( )m m

m
B B

B

 and 

N f E B g E B dE
BØ

•
= - -Ú ( ) ( )m m

m
B B

B

.

  As previously, we deduce EF(T) from N N N= +≠ Ø and then use 
the result for the population difference. Taking into account 
F1, we have:

  N E B
k T

E B≠
-= + + +2

3 6
1
2

3 2
2

1 2a m
p

a m( ) ( ) ( ) ,/ /
F B

B
F B

  N E B
k T

E BØ
-= - + -2

3 6
1
2

3 2
2

1 2a m
p

a m( ) ( ) ( )/ /
F B

B
F B

  and thus we find EF(T) (see Ex. 8) as:

  E T E
k T

EF F
B( ) ( ) ( )

( )F
ª - + ◊◊◊

È

Î
Í
Í

˘

˚
˙
˙

0 1
12 0

2

2
p from which we find 

N N N E T
k T

E E= + = + =≠ Ø
-4

3 6
4
3

03 2
2

1 2 3 2a
p

a aF
B

F
/

F
/ /( ) ( ) ( )

  The population difference is:

  

N N BE T
k T

E B
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2
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2 0 1
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1 2
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3 2
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  The 3D susceptibility at temperature T is:

  c c p( , ) ( , K)3 3 0 1
12

2 2

d T d
T
T

∞ = ∞ -
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙F

 (f) In 2D, the density of states is a constant, thus N≠ and NØ reduce 
to N C E T B≠ = +[ ( ) ]F Bm  and N C E T BØ = -[ ( ) ]F Bm .

  We thus find N = 2CEF(T) = 2CEF(0) and c(2d, T°K) = c(2d, 0°K).
  In 2D, neither the Fermi energy nor the magnetic susceptibility 

of free electrons is influenced by temperature up to (T/TF)4.
 (g) Taking into account the density of states in 1D, 

g(E) = bE–1/2, the expressions for N≠ and NØ are: 
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  The population difference is thus
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  The magnetic susceptibility in 1D at arbitrary temperature T 

is as follows: c c p( , ) ( , )1D 1D K  
F

T
T
T

= ∞ +
Ê
ËÁ

ˆ
¯̃

+ ◊◊◊
È

Î
Í
Í

˘

˚
˙
˙

0 1
12

2 2

  Numerical application: N = 1028 m–3, EF = 2.44 × 10–19 J =  
1.525 eV, c(0°K) = 6.6 × 10–6.

  The following table summarizes the main results for the 
paramagnetism of free electrons (also known as Pauli 
paramagnetism) in 1-, 2-, and 3D objects. Compared with 
atomic paramagnetism (Brillouin and Langevin) where c 
= C/T, note that here the effects of temperature on c are 
comparatively small because EF introduces a corrective term 
(T/TF)2 which at ambient is of order 10–4 smaller than the 
unity for 1- and 3D systems.

1D 2D 3D

g(E)

E
EF

bE
–

1
2

E EF

C

EF
E

aE
1
2
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Exercise 23: Quantum Hall effect

Consider a parallelepiped sample (Lx, Ly, c) subject to a magnetic 
induction B along the z-axis (// to c) and in which a current Ix flows 
when the Hall voltage Vy is measured.
 (1) Express the ratio Vy /Ix as a function of the density per unit 

volume nv of free electrons, V and the thickness c. Suppose 
that c approaches zero and reconsider the results as a function 
of ns (the surface density of conduction electrons in the x–y 
plane).

 (2) In an appropriate arrangement (see comment), ns is increased 
by increasing the Fermi level of a 2D electron gas. Express the 
density of 2D electronic states as a function of EF to deduce 
next the ratio Vy/Ix = f(EF).

 (3) Show the curve of Vy/Ix = f(EF).
 (4) In fact under the action of B the density of states (evaluated 

in 2) is not continuous but it is formed with discrete (Landau) 

levels localized at energies E eB
m

jL = Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

h 1
2

, where j = 0, 1, 2, 

3. The EL(j) level contains as many electronic states as initially 
distributed in the interval DEL = EL(j + 1)– EL (j) in the absence 
of B. Find the number of electronic states DN contained in one 
Landau level and the corresponding quantity Dns. Starting 
from the result established in 1), find the evolution of the Hall 
resistance Vy/Ix when EF crosses a Landau level (EF varying 
from EL(j) to EL (j + 1)). Sketch the curve Vy/Ix = f(EF). Compare 
the result with that found in 3). Numerically evaluate Vy/Ix(j) – 
Vy/Ix(j – 1) for j = 1. Comment on the results. ( , )h e
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Solution:

 (1) In a classical Hall device (see Pb. 2), the trajectory of 
conduction electrons is rectilinear when - - =ev B eE

  

L H 0 or 

equivalently E v B
  

H = - L . The current density is J n evx

 

= - v  

from which the Hall field can be written as: E
j B
n e
x

H
v

=
◊ . We 

thus have V L E I j L cy y x x y= ◊ = ◊ ◊H  ; ;  and ns = nv ◊ c. This leads 
to Vy/Ix = B/envc = B/ens.

 (2) In 2D the density of states is a constant (see, e.g., Ex. 14a):

  g E
L L mx y( ) =

p
h

2  and ns = N/LxLy so that 

  n
L L

g E dE
m

E
x y

E

s F
F

= =Ú1
20

( )
h p

, which results in the ratio 

V

I
B
emE

y

x

= ph2

F
.

 (3) See Fig. 26 (left). The Hall resistance decreases when the 

density of carriers (and thus EF) increases.

EF
0

g(E)

E

V Iy x/ V 1y x/

1

2

3
4 5 EF

E

g E( ) DEL

1 2

1     2     3     4     5     6
Figure 26

 (4) D DN g E E
L L e

Bx y= =( ) L ph
 which gives Dn

eB
hs = 2 .

  When EF crosses the jth Landau level, the Hall resistance is 
discontinuous and changes from B/e(j – 1) Dns = h/2e2(j – 1) 
to B/ej Dns = h/2e2 j.

 The corresponding evolution is shown in Fig. 26, right. Observe 
that the frequency associated with the Landau levels is the cyclotron 
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frequency, which implies a large magnetic induction or small 
effective masses so that the different steps can be easily observed. 
The difference between two consecutive steps corresponds to 

h

e j j2
1 1

12 -
+

Ê
ËÁ

ˆ
¯̃

, which is 6.45 kW for j = 1.

Comment: Quantum Hall effect; Nobel Prizes in physics in 1985 
and 1998

The quantum Hall effect was observed by von Klitzing et al. (Phys. 
Rev. Lett. 45, 1980, 494) in a field-effect transistor (MOSFET). At the 
semiconductor/oxide interface of such a transistor, one can consider 
that the conduction electrons move freely with effective mass m* in 
the plane of the interface. One can change the surface density by 
changing the Fermi level via a gate voltage. The experiment was 
performed at a very low temperature, T = 1.5 K, and with very large 
magnetic induction (B = 15 T). It can be more easily observed in 
epitaxial hetero-structures (see Chapter V, Pb. 9, for properties of 
such heterostructures), for instance at T = 4 K and B = 8 T (Tsui and 
Gossard; Appl. Phys. Lett. 38, 1991, 550).
 Von Klitzing’s experiment, for which he won the Nobel Prize in 
1985, contains a great much more physics than is presented in this 
exercise. In particular, one of the interests of the quantum Hall effect 
is that, for each step, the Hall resistance is a unique function of h/2e2 
= 25.812 kW (see the result in Solution (4) above), which allows 
the establishment of a resistance standard based only on h and e. 
Conversely a precise measurement of the Hall resistance (to 10–8) 
can be used to determine the fine structure constant a via a new and 
independent method.
 Finally, we have to point out also the existence of the fractional 
quantum Hall effect (FQHE) that has been reported for the first time 
by Tsui et al. (Phys. Rev. Lett. 48, 1982, 1559). This FQHE effect ) is a 
physical phenomenon in which the Hall conductance of 2D electrons 
shows precisely quantized plateaus at fractional values of e2/h. It is 
a property of a collective state in which electrons bind magnetic flux 
lines to make new quasi-particles, having a fractional elementary 
charge of magnitude e* = e/q (where q is the integer) that are neither 
bosons nor fermions and exhibit anyonic statistics. When the Hall 
resistance is a constant the longitudinal resistance, Vx/Ix = 0.
 The Nobel Prize in physics in 1998 was awarded to R. Laughlin, 
H. Störmer and D. Tsui for the discovery and explanation of the FQHE 
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(H.L. Störmer Rev. of Modern Physics 71, 1999, 875; R.G. Haug, Surf. 
Sci. 196, 1988, 242).

Exercise 24: Simplified evaluation of the interatomic distance, 
compression modulus, B, and cohesive energy of alkali metals

The cohesive energy of a solid is equal to the difference between the 
total energy of free atoms and the total energy of the same atoms in 
a crystal lattice. For an alkali metal, this energy (for a single atom), 
approximately obeys the relation: E E E Ec i e F= - -



where Ei is the 
ionization energy of an isolated atom, EF  is the average kinetic 
energy of a conduction electron and Ee is its electrostatic energy in a 
field of ions and other electrons.
 (a) Evaluation of Ee: Assuming that the conduction electron is 

uniformly distributed with a density r inside a sphere of radius 
r0 , find the potential energy of this electronic distribution 
submitted to a central ion, E(–e, i), next its interaction energy 
E(–e, –e) when limiting this evaluation to the sphere of radius 
r0. Deduce the resulting expression of the energy, Ee, as a 
function of a single variable r0.

 (b) Find the average kinetic energy, EF , as a function of r0 for a 
conduction electron assumed to be free.

 (c) Deduce an expression for the cohesive energy (where Ei is a 
constant) and thus the expression and numerical value of r0 at 
equilibrium. Knowing that the volume of the sphere of radius 
r0 is equal to the volume occupied by an atom in the crystal 
(Wigner–Seitz method) and that the alkali metals crystallize 
in a cubic-centered structure, find the numerical value of the 
side a.

 (d) Find the expression for the stiffness modulus B at 0 K: 

B V
P
V

V
E E

VT

= - ∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂ +

∂

2

2
( )

.e F

  What are the numerical values taken by the Fermi energy EF 
and by B? Compare with those of lithium:

  EF = 4.7 eV, B = 1.16 × 1010 Pa; a = 3.49 Å. ( , , , )e0 h m e

Solution:

 (a) The electric field created by a uniform distribution of electronic 
charges is given by Gauss’s theorem and it corresponds to 

E
r

r

r
r r E

r

r

r

r
rr r= = £ = =4

3
1

4 3
4

3 4 3

3

0
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2

p r
e p

r
e

p r
e p

r
e

( ); ( ≥≥ r0 ).
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  Taking into account the limiting conditions V(•) = 0 and V 
at r = r0, the corresponding expressions for the potential 

created by isolated electrons are V r
r

r
r r( ) ( )  = ≥

r
e

0
3

0
03

 and 

V r
r r

r r( ) ( )= - + £
r
e

r
e

0
2

0

0
2

0
06 2

, where r p◊ = -4
3 0

3r e .

  The potential energy of the electronic distribution in presence 
of a single central ion is equal to the potential energy of the 
central ion in the presence of r(r): Ep = (i, –e) = –3e2/ (8pe0r0). 
This result can also be obtained directly using

  E e i V r dv
e

r
r dri

r

p( , ) ( ) .- = ◊ = ◊Ú ÚÚÚ r r
pe

p
4

4
00

20

  The electrostatic interaction of electrons obeys

E e e V r dv
e

r
( , ) ( )- - = ◊ =

◊ÚÚÚ1
2

3
4 5

2

0 0
r

pee  and the total 

electrostatic energy Ee is thus E
e

re = - 9
40

2

0 0pe
.

 (b) In 3D, the average kinetic energy of a free electron is 

equal to 3/5 of the Fermi energy: E
E

m
nF

F= = Ê
ËÁ

ˆ
¯̃

3
5

3
5 2

3
2

2 3 3h ( ) /p  

(see Ex. 8). The electronic concentration is n r= Ê
ËÁ

ˆ
¯̃

1
4 3 0

3p . We 

thus find E
m r

F = ◊ Ê
ËÁ

ˆ
¯̃

◊3
10

9
4

12 2 3

0
2

h p /
.

 (c) The cohesive energy E E E Ec e F i= - + -( ) is of the form
  Ec = +(A/r0) – (C/r0

2) + Ei. It reaches a maximum for r0 
corresponding to ( / )∂ ∂ ==E r r rc 0

0:

  r C A h me0
2

0
2 1 32 3 2= =/ ( / )( / ) /e p

  r0 = 1.3 × 10–10 m and a0 = (8p/3)1/3 ◊ r0 = 2.65 Å
  We note that for this value of r0, the electrostatic energy term 

is, in absolute value, two times larger than the kinetic energy 
term.

 (d) B V
E

V
V
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r r
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B
r

A e

r
= ◊ = =1

6 2
3

1600
4

2

2
0 0

4p p e
1.93 × 1010 Pa, EF = 7.4 eV

  Although very simplified, the present model gives an acceptable 
value for r0 and thus for EF and B. Note that because the ionic 
radius has been ignored, it leads to the same value for all the 
alkali metals. A better precision can be obtained by assuming a 
value of r0 (or electron density n) specific to each alkali metal. 
(See following exercise.)

Exercise 25: Pressure and compression modulus of an electron 
gas: application to sodium

 (a) After having calculated the total energy of a free electron gas of 
density n, find the pressure P at 0 K that these electrons exert 
on the walls of the sample containing them. Find the result 

starting from the kinetic theory of gases P nmv=Ê
ËÁ

ˆ
¯̃

1
3

2
eff .

 (b) Deduce the modulus of compressibility B of this gas: 

B V
P
V

= - ∂
∂

.

 (c) Numerically find P and B for sodium, where n = 2.54 × 
1022 cm–3 and compare it to the experimental value of B =  
0.68 × 1010 Pa. ( , )h m

Solution:

This exercise is analogous to the preceding exercise but here the 
kinetic energy of electrons is only taken into account and it is 
combined to the experimental value of r0 (and thus for n).
 (a) We can calculate the pressure P starting from the Helmholtz 

free energy F: P
F
V T

= - ∂
∂

Ê
ËÁ

ˆ
¯̃

, which at T = 0°K becomes 

P
U
V

NE
VT T

= - ∂
∂

Ê
ËÁ

ˆ
¯̃

= - ∂
∂

È

Î
Í

˘

˚
˙

= =0 0

( )
.

  The average energy E  of a free electron is such 

that E E= 3
5 F or U NE= 3

5 F  for N electrons. We have 

U
m

N

V
P

m
n= ◊ =3

5 2
3 8 1

5
3

2
2 2 3

5 3

2 3

2
2 2 3 5 3h h( ) (see Ex. ), ( )/

/

/
/ /p p  
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  U
m

N

V
P

m
n= ◊ =3

5 2
3 8 1

5
3

2
2 2 3

5 3

2 3

2
2 2 3 5 3h h( ) (see Ex. ), ( )/

/

/
/ /p p  ,  where n = N/V.

  The same result may be obtained directly from the kinetic 
theory of gases:

  P nmv= 1
3 eff

2 , where 1 =
2

3
5

2mv Eeff F .

 (b) At 0° K, B V
P
V m

n= - ∂
∂

= 1
3

3
2

2 2 3 5 3h ( ) / /p

 (c) For sodium where n = 2.65 × 1022 cm–3, we obtain
  P = 49.7 × 108 Pa = 49,000 atm, B = 0.83 × 1010 Pa (which is 

comparable to the experimental value of 0.68 × 1010 Pa).
 In the previous exercise, the cohesive energy Ec includes an 
electrostatic term Ee that is twice the kinetic term EF but when 
calculating B, the kinetic term was 1.5 times larger than the 
electrostatic term. This explains why the estimates of B in the 
two different exercises remain comparable. A more sophisticated 
approach is given in Ex. 27.

Exercise 26: Screening effect

In a metal or a plasma or an electrically neutral electrolyte, the 
potential created by positive ions (+e) attracts the electrons (–e) 
and the electronic concentration n(r) in the vicinity of a given ion is 
greater than the average electronic concentration n0: this electron 
cloud screening the potential created by a single ion. In this problem 
we study two methods that allow the evaluation of this screening 
effect and which, in a spherically symmetric system centered on a 
positive ion, consists of finding two equations that relate the potential 
F  (r) at a point r and the concentration of electronic charges n(r) at 
this same point.
 (1) The Thomas–Fermi Model: It assumes that the total energy of 

an electron at point r is constant and equal to the Fermi energy 
of a gas of free electrons with an average concentration of n0. 
The kinetic energy of this electron is equal to the Fermi energy 
of a gas of free electrons with concentration n(r):

 (a) What is the relation between n(r) and F(r) that results 
from this hypothesis? How can this result be simplified 
if we assume that the difference of the densities around 
equilibrium, n(r) – n0, is weak compared to the average 
electronic concentration, n0?
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 (b) Compare this result with that given by the Poisson 
equation relative to the same difference in density. Show 
that the potential function F(r) obeys:

  DF F F F= + =d

dr r
d
dr

k
2

2
22
S

  Find ks as a function of n0 and integrate the equation using 
the change of variables U = r F; find the solution which 
satisfies the boundary conditions: F = 0(r Æ •) and 

F = Æ1
4

0
0pe

e
r

r( )

 (c) Find the screening length rTF = 1/ks for silver where
  n0(Ag) = 5.85 × 1028 m–3.
 (2) Debye Potential: Suppose that the electronic concentration 

(ne) and the ionic concentration (ni) obey the relations:

  n r n
W r

k Te
e

B
( ) exp

( )
= -0 and n r n

W r
k Ti

i

B
( ) exp ( )

= -0 in which We 

and Wi represent the potential energy of electrons and ions 
at a point r. Write the Poisson equation and then simplify it 
taking into account the fact that eF(r)/kBT is much smaller 
than 1. Show that the potential function obeys an analogous 
equation to that established in 1b. What is the expression for 
the screening length rD? Compare rTF and rD assuming that  
T = TF. ( , , , , )Be m kh e0

Solution:

 (1) (a) p r
m

e r E n
m

ni
2

0

2
2

0
2 3

2 2
3( ) ( ) ( ) [ ] /- = =F F
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p r
m m

n ri
2 2

2 2 3

2 2
3( ) [ ( )] /= h p

  We thus deduce: eF (r) = p r
m m

n ri
2 2

2 2 3

2 2
3( ) [ ( )] /= h p (3p2)2/3 [n2/3 (r) – n0

2/3] or

  equivalently e r
m

n
n r n
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E n
n r n
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F ( ) ( )
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  Taking into account the development: 
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n r n
n r n

n
2 3

0
2 3 0

0
1 2

3
/ /( )

( )
= +

-
+ ◊◊◊

Ê
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ˆ
¯̃

 (b) If we combine this result with Poisson equation relative to 
the density of electronic fluctuations, where the average 
electronic density is neutralized by the average ionic 
density, we have

  DF = - = -r
e e0 0

0
e

n r n[ ( ) ], and we find

  DF
F

F= =2
3 0

0
2

0

2

e
n e
E n

k
F

S( )
, where k

m e
nS

/
/2

4

1 3

0

2

0
1 33= Ê

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃p e h

.

  From a solution of the form U = r F , we find

  d U

dr
k U

2

2
2 0- =S and U A k r B k r= - +exp( ) exp( )S S .

  The stated boundary conditions allow the determination 
of A and B (r Æ • : F = 0 from which B = 0; r Æ 0 : U Æ A) 
and the complete solution takes the form:

  F( ) expr
e

r
k r= ◊ -

4
1

0pe S

 (c) Numerical application: kS = 1.78 × 1010 m–1, rTF = 0.56 Å. 
The corresponding influence of the screening effect is 
illustrated in Fig. 27.
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Figure 27 (Left) Screening effect. (Right) Electron potential energy 
attracted by a positive ion with and without screening effect 
for Ag with rTF = 0.56 Å.
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 (2) W e r W e rie = - =F F( ), ( ) from which we have

   n r n
e r
k Te

B
( ) exp ( )= 0

F and n r n
e r
k Ti( ) exp ( )= -0
F

B
.

  Inserting these expressions in Poisson’s equation, we find

  DF F F= - = - -
Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
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r
e e0

0

0

n e e
k T

e
k T

exp exp
B B

 or equivalently 

d

dr r
d
dr

n e
sh

e
k T

2

2
0

0

2 2F F F+ =
e B

  When kBT >> eF, this equation reduces to the form DF F= kD
2 , 

where k
n e
k TD

B

2 0
2

0

2
=

e
  We note that at a temperature of an electron gas T = 

TF , the two screening lengths rTF and rD differ only by a 
numerical coefficient of order of unity (because kBT = EF): 
k k r rD s TF D/ / / .= = =2 3 1 15.

Note: Debye length and Fermi length

The Debye method applies especially to electrolytes, plasma and 
semiconductors. In doped Si semiconductors the Debye length is LD 
= [eSikBT/e2Nd]1/2 where eSi is the Si dielectric constant and Nd is the 
density of dopants (either donors or acceptors). It is the distance, 
screening radius, over which local electric field affects distribution 
of free charge carriers. It decreases when increasing the free carrier 
density.
 The Thomas–Fermi method allows the calculation of the 
surrounding potential, in dilute alloys, of impurity atoms of metal A 
dissolved in metal B. In this latter case, the asymptotic value of the 
potential Ze2/4pe0r must take into account the difference between 
the valence of the impurity and that of the solvent, for instance, 
Z = 3 – 1 = 2 for Al dissolved in Cu or Z = 1 for atomic vacancies 
in copper. More precise calculations show that screening in a 
metal results in an oscillatory behavior in the electron density. 
These “Friedel” oscillations provide the mechanism for long-range 
interactions and hence dictate many physical phenomena briefly 
considered in Pbs. 2a and 2b.
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Exercise 27: Thermionic emission: the Richardson–Dushman 
equation

A metallic plane surface (cathode) perpendicular to the axis Oz is 
held at a temperature T and the extraction potential of free electrons 
in the conductor is F (work function eF).
	 (a) In vector space, kx, ky, and kz, one considers a volume element 

of dimension dkx, dky, and dkz. What is the condition on kz, 
expressed in the form of an inequality, for electrons to escape 
from the cathode? Find the corresponding expression for the 
elemental current density dJz as a function of T.

 (b) Find the total current density emitted from the cathode. Show 
that the final result can be put in the form of the Richardson–

Dushman equation: J AT
e
k Tz = -

Ê
ËÁ

ˆ
¯̃

2 exp F

B
and find the 

expression for A.

  Recall that e dxx-

-•

•

Ú = Ê
ËÁ

ˆ
¯̃

a p
a

2
1 2/

and assume kBT << eF.

 (c) In fact, the experimental values of A are less than the theo-
retical values which neglect internal reflection on the metal/
vacuum interface. Starting from the experimental values of 
A and F, find the current density emitted from the cathodes 
indicated below, each one given at a working temperature Tf 
slightly less than the melting temperature. Comment on the 
results. (kB, h, m, e)

Cathodes W BaO + eFon Ni LaB6

A (104 A/m2·°K2) 75 0.05 40

F (volts) 4.5 1 2.4

T ( in° K) 2700 1100 1800

Solution:

 (a) As shown in Fig. 28, the electrons that can escape the cathode 

must have a velocity component in z such that: 1
2

2mv E ez ≥ +F F

(where the origin is taken to be the bottom of the conduction 

band. From mv kz z= h , we have h h

2 2 2 2

2 2
k
m

k
m

E ez zo≥ = +F F.
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Figure 28

  The infinitesimal current density dJz corresponding to the dn 
electrons contained in the element dkx dky dkz is dJz = –dn e vz, 

where dn
dk dk dk

V

f Ex y z= ◊
2

2 3( )
( )

p
.

  Here the volume is unitary and f E

e

E E
k T

( ) =

+
-Ê

ËÁ
ˆ
¯̃

1

1
F

B

 reduces to 

e e
E

k T
E

k T
F

B B◊
-

since E E e≥ +F F and eF/kBT >> 1. We thus have 

dJ e
dk dk dk

e e
k
mz

x y z
E
k T

E
k T z

F

= - ◊ ◊ ◊
-

4 3p
B B

h .

 (b) Writing E explicitly as a function of the wave vector: 
E m k k kx y z= + +( / )( )h

2 2 2 22 , the integral expression of the 
current density becomes (omitting the minus sign only 
indicates that the current flows positively, in the opposite 
direction of the electron motion):

  J
e

m
e e dk e dk e k dkz

E
k T k

x
k

y
k

z z
k

x y z

z

= -

-•

+• -

-•

+• -+

Ú Úh

4 3

2 2 2

0p
a a a

F

B
••

Ú , 

  where a = h

2

2mk TB
. The product of the first two integrals  

is 
p
a

. The result of the 3rd is 
1

2
0

2

a
aÊ

ËÁ
ˆ
¯̃

-
e

kz . 
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  We thus obtain the complete Dushman formula where 
A mek h= = ¥4 1 6 102 3 6 2 2p B/ . / .  A m K

 (c) The numerical values are as follows:

  Tungsten (at 2700 K) Æ J = 2.2 A/cm2, where e
k T

F

B
ª19.3

  Alkaline–earth oxide on nickel (at 1100 K)Æ J ≈ 1.6 A/cm2, 

where e
k T

F

B
 ª 10 5.

  Lanthanum hexaboride (1800 K) Æ J ≈ 25 A/cm2, where 
e
k T

F

B
 ª 15 4. .

 The temperatures mentioned in this problem are just an 
indication: one can increase J by increasing T, but to the detriment of 
the lifetime of the filament.

Notes: Production of electron beams

 (a) The thermo-electronic power of tungsten is comparable or 
slightly better than that of oxide cathodes. The latter require 
a much smaller heating power so that the energetic width of 
the emitted beam is much narrower as seen in the following 
exercise. The oxide cathodes however are more prone to 
contamination and do not support well contact with air. They 
are almost always exclusively used in sealed tubes (such as 
oscilloscopes). In electron microscopy, filaments of tungsten 
were competed with cathodes of LaB6, which deliver current 
densities of at least 10 times greater and constitute an emissive 
source with a smaller size.

  Since the 2000s, modern electron microscopes are based all 
on the use of a different principle: the field electron emission. 
A field emission gun (FEG) is a type of electron gun in which a 
sharply pointed Müller-type emitter is held at several kilovolts 
negative potential relative to a nearby electrode, so that there 
is sufficient potential gradient at the emitter surface to cause 
field electron emission. A comparison between the principle 
of thermal electron emitters and of field electron emitters is 
illustrated in Fig. 29.
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Figure 29 Principle of thermo-electronic emission (left) and of field-
electron emission (right).

  The open arrows indicate the energetic position of most of the 
emitted electrons.

  In the FEG, a cold cathode is usually made of single crystal 
tungsten sharpened to a tip radius of about 100 nm and this 
electron source is de-magnified by a set of electron lenses 
in order to obtain a small electron spot on the sample to be 
imaged. The result in both scanning and transmission electron 
microscopy is a significant improvement of the signal-to-noise 
ratio and of the spatial resolution compared with thermionic 
devices. The same principle of field electron emission is 
used in scanning tunneling microscopy where the end of the 
emitting tip is a single atom very close to the sample surface, a 
few angstorms, and thus without any electron optical devices 
(see Pb. 3 for details).

  The devices based on a cathode field emission are governed 
by the Fowler–Nordheim law of the form:

  j
e

t y

F m
eF

y= ◊ -
Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô

3

2

3
2

8
8 2

3p f
p f q

h

h( )
exp ( ) ,

  where F is the electric field strength; f the work function 
of the metal, and t(y) and q(y) tabulated functions of 

the variable y e e
F= ◊
f

. The approximate relation is 
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j
F Eª ¥ ¥ ¥- - ¥1 4 10 10 106

2
4 39 2 82 107 3 2

. . .

f
f f f

 (b) To experimentally verify the Dushman law, it is sufficient 
to measure the saturation current of a vacuum diode as a 
function of the temperature of its cathode and trace a straight 
line:

  log log A
B

J

T
f

T
e
k T2

1Ê
ËÁ

ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

= -( ) F
. The slope e

k
F

B

Ê
ËÁ

ˆ
¯̃

 can be used 

to evaluate f and intercept can be used to determine A.

Exercise 28a: Thermal field emission: the energy width of the 
emitted beam

A metallic plane surface (the cathode) is raised to a temperature T 
and the work function of the (free) conduction electrons is f (see 
preceding exercise).
 (a) In vector space, find the position corresponding to the vacuum 

level of electrons where electrons having energy between E 
and E + dE and contained in the emission angle between q and 
dq, measured relative to the normal z¢ – z at the surface. Take 
E = 0 to be at the bottom of the conduction band.

 (b) Find the number n(E, q) dEdq of electrons occupied at 
temperature T assuming that kBT << eF. Independently 
deduce the number of electrons emitted N(E)dE between E 
and E + d(E) and the energy distribution jz(E) of the current 
emission density. Starting from the latter result deduce the 
total current density Jz, known as the Dushman law.

 (c) Sketch jz(E). Indicate the approximate numerical value of the 
energy width (measured a half-width) when the temperature 
of the cathode is changed from 1100 K to 2700 K.

Solution:

 (a) In k-space, electrons that can leave the metal must have wave 
vector 



k  of which kz (normal to the surface) such that

  h
h

2 2 2
0

2

2 2
k
m

E e
k
m

z z≥ + =F F , where the zero energy is measured at 

the bottom of the conduction band.
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  Figure 30 shows the conditions for electron emission in which 
the energy is between E and E + dE, the angle is between q and 
dq are situated in the half space kz ≥ kz0 and the hatched part 
between the two spherical shells with radius k and d + dk are 
such that E k m= h2 2 2/ .

 (b) The corresponding volume of the spherical shell is Vc.s. = kdq ◊ 
dk ◊ 2pk ◊ sinq. Taking into account the volume of a state is 2p/
L3 (L3 = 1 is the unitary volume of the cathode) and that the 
occupation probability of the states is 2f(E) ª 2eEF/kBT ◊ e–E/kBT, 
the number n(E,q)dEdq of electrons occupying these states is 
such that

  n k dk d k d dk k e E E k T( , ) [ sin /( ) ] ( )/q q q p q p◊ ◊ = ◊ ◊ ◊ ◊ -2 2 2 3 F B , where 
kz ≥ kz0 and 0 < Arc cos q < Kz0/k (see Fig. 30a).

KF

1 2 3 40

0.5

1

F Ez( )

F

B

- + FE E e
K T

DE 1/2Kz

dq

q
q

Kz0

(a) (b)

Figure 30

  Taking into account E k m= h2 2 2/  for free electrons, we find

  n E
h

m E e E E k T( , ) sin/ / ( )/q p q= ◊ -4 2
3

3 2 1 2 F B

  and writing cos /
/

q0 0

1 2

= =
+Ê

ËÁ
ˆ
¯̃

k k
E e

Ez z
F F , we find 

N E n E d
h

m E e
E e

E
E E k T( ) ( , ) / / ( )/= = ◊ ◊ -

+Ê
ËÁ

ˆ
¯̃Ú -q q pq 4 2 130

3 2 1 20
F B F F 11 2/È

Î
Í
Í

˘

˚
˙
˙

.

  The partial current density along z due to the motion n(k,q)of 
electrons is such that

  dj k
d

n k e v n k e
k

m
z

z
( ) ( , ) ( ) ( , )( ) cos
q

q q q= ◊ - ◊ = - h
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  or equivalently

  dj k
d

eh

m
k dk e E E k Tz F B

( ) sin cos ( )/

q p
q q= - ◊ ◊ -

4 3
3

  We thus find: j E dE
em

h
E dEe d

meEdE

h
e

E E k T

E

z
F B

F

( ) sin cos( )/◊ = ◊

=

-

-

Ú8

4

3 0

3

0p q q q

p

q

EE
k T E e

E
B F1-

+Ê
ËÁ

ˆ
¯̃

F .

  Completing the integration, J j E dEz z
E e

= ◊
+

•

Ú ( )
F F

, we find the 

Dushman expression (see previous exercise): J AT ez

e
k T=
−

2
Φ

B , 

where A
me

h
k= 4

3
2p
B .

  The functions N(E) and Jz(E) are of the form 

N E e E E e e x a
E

k T x( ) ( ) ( )µ - +
È

Î
Í
Í

˘

˚
˙
˙

µ -
-

-B
F

1
2

1
2F

  and J E e E E e e x a
E

k T x( ) [ ( ) ( )]µ - + µ -
-

-B
F F ,

  where x
E

k T
a

E e
k T

= =
+

B

F

B
 and F .

 (c) These two functions are zero when E = EF + ef. Their evolution 
as a function of E are comparable at every point because 
J(E) is obtained by multiplying N(E) by ( )x a+ , which is 
essentially constant ( )2 a  when E and EF + ef differ by only 
few kBT. They both go through a maximum at E = EF + eF + kBT 
and their full width at half max corresponds to x2 – x1 ≈ 2.5  
(where x1 = a + 0.23 and x2 = a + 2.7). This is depicted in Fig. 
30b.

  Numerically, we obtain the following:

  T = 1100 K, DE = 0.24 eV; T = 2700 K, DE = 0.6 eV.

  The energetic width of the emitted beam is thus highly 
dependent on the temperature of the emitting filament.
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Exercise 28b: Thermionic emission in 2D

A metal occupies the negative half space of z in 2D along xOz. This 
metal is characterized by its Fermi energy EF and its extraction 
potential f and is held at temperature T.
 (a) What condition is imposed on the component kz of the wave 

vector 


k  for an emitted electron (z ≥ 0)?
 (b) After evaluating the number of electrons nd(s) contained in 

the surface element dkx, dkz in 


k -space, find the corresponding 
current density djz(s).

 (c) Find the areal current density j(s) emitted by the cathode 
(where kBT << ef).

  Show that j BT
e
k Ts

n= -
Ê
ËÁ

ˆ
¯̃

exp F

B
 and find B and n explicitly.

Solution:

Note that this exercise is a variation in 2D of Ex. 27.
 (a) Emitted electrons must have kz ≥ kz0, where h2

0
2 2k m E ez / = +F f  

(see Fig. 28).

 (b) dn s
dk dk

S f Ex z( )
( )

( )= ◊ ◊2
2 2p

. Here S is unitary and f(E) reduces to 

e
E E
k T
F -

B . We also have dj s dn s e vz z( ) ( ) ( )= ◊ - ◊ .

 (c) v
k
m

E
m

k kz
z

x z= = +
h h; ( ) 

2
2 2

2 . The integration (limited to kx 

and kz) is analogous to that developed in Ex. 30b. We find 

j s B T en
e

k T( ) = ◊ ◊
- f

B , where B
e m

k=
h

2
3 22( ) /

B and n = 3/2.

  We can compare this result leads to the Dushman formula in 
3D (Ex. 30):

  j s
mk T

AT e
e

k T( ) ( ) /
B¥ ¥ =

-
2 1

2

1 2
2p

p

f
B
h

.

Exercise 29: UV reflectivity of alkali metals (simplified variation 
of Pb. 6)

The behavior of alkali metals in UV light is correctly described by the 
complex dielectric of the form:
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 e w
w

w gw
 r

p( ) = -
-

1
2

2 i
, where w

ep
2

2

0
= Ne

m
, g is the damping, which 

is equal to t–1; N is the density of free electrons, which is equal to 
atomic density for monovalent metals.
 Starting from this complex dielectric constant e1 – ie2, we can 
define the complex propagation speed for the electromagnetic 
wave v j e e m= -( ) /

0 0
1 2

r , and the complex index of reflection 

N n ik c v = - =( / )j . We can thus generalize the wave propagation in a 

vacuum E E i t
z
c

x = -Ê
ËÁ

ˆ
¯̃0 exp w  to that in a medium characterized by 

e e0
 r and m0 .

 (1) Find the expression for a medium characterized by e r. Find 
the existing relations between n and k and e1 and e2.

 (2) Neglecting the damping term, g, find the pulse interval 0 << w 
< wp. Sketch the evolution of e1(w) and specify it sign. What is 
the value of value of e2. Discuss the nature of the wave which 
propagates in the plasma (formed at the interface between 
two planar medium). Also discuss the amplitude E



r of the 
reflected wave that is associated with the incident wave Ei



, 
which originally propagated in the vacuum and encountered 
the plasma at normal incidence.

 (3) Explore the interval wp < w < • when g is small but non 
negligible compared with w. What is the form and nature of 
the wave propagating in the plasma? What is the amplitude of 
the wave reflected into the vacuum by the plasma at normal 
incidence?

  Recall that: r
E

E

n

n

r

i
= =

-

+









1

1
, where r is the amplitude of the 

coefficient of reflection.
 (4) Evaluate the plasmon energy, hwp, for Na with one free 

electron per atom and N(at) = 2.5 × 1022 at/cm3. Describe 
its optical properties in the UV range, l < 4000 Å and 
indicate the numerical value of the critical wavelength of the 
electromagnetic waves, lp, where these optical properties 
change suddenly. On the microscopic level, what is the physical 
significance of the dielectric constant smaller than 1 or even 
negative?
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Solution:

 (1) The wave propagating in a medium characterized by vj

will have the form: E E i t
z

v
x




= -
Ê

ËÁ
ˆ

¯̃
0 exp w

j
, where vj

-1
 can be 

replaced by N c/ : E E
k
c

z i t
nz
cx

 

= - -Ê
ËÁ

ˆ
¯̃0 exp expw w .

  The attenuation a of the wave amplitude corresponds to k
c
w

and, in the phase term, the quantity nz represents is the optical 
path (in the general case where n > 1):

  N = er  or e1
2 2= -n k and e2 = 2nk.

 (2) The evolution of e1 (w) is negative in the interval 0 << w < wp.
	 	 e2 = 0 because g = 0 so we find n i= = ±e e1 1 .
  The dielectric constant is real but negative, which induces a 

purely imaginary optical index. The wave attenuation is not 
related to the value of k (or e2 or g) different from zero (usual 
situation when n > 0) but to the fact that n is purely imaginary. 

The wave takes the form E E
z

c
i tx = -

Ê

Ë
Á
Á

ˆ

¯
˜
˜

0
1exp exp

w e
w .

  This type of wave is called evanescent wave.
  At normal incidence, the reflection coefficient of amplitude |r| 

corresponds to the ratio of two complex conjugates: 
1

1

1

1

-

+

i

i

e

e
and its modulus is equal to one. There is total reflection.

 (3) When w is such that w >> wp, e1 tends to 1 and e2 tends to zero 

as 
gw

w
p
2

3 . n thus goes to 1 and k pª ª
e gw

w
2

2

32 2
. The transmitted 

wave propagates normally with weak attenuation: a
g w

w
ª p

c

2

22
; 

the amplitude of the coefficient of reflection is essentially 
zero. For more details see the solution to Pb. 5.

 (4) For Na, hwp = 5.94 eV and lp=2.088 Å.
  The position of the plasmon energy and plasmon wavelength 

is shown in Fig. 31. It is situated in the UV range and it is 
the limit between the total reflection region and the total 
transmission region. The total reflectance in the visible region 
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explains the mirror effect for freshly cut alkali metals and also 
for Ag and Ag. For other metals, electronic transition in this 
visible region explains their colors.

8000 4000 1240 620 l (Å)

1.5 3 10 20 hn (eV)

UV

lp

R

1.5 3 10 20 hn (eV)
0

1

wp

Figure 31 Evolution of the reflectivity of sodium as a function of 
the wavelength, l (and photon energy hn) of the incident 
electromagnetic waves at normal incidence.

 In the spectral domain considered here, the incident wave 
frequency is so elevated that the electrons cannot follow the rapid 
changes in field. The dipoles formed by each electron and one 
fixed ion is oriented opposite the electric field due to the delay of 
these electrons. (This situation is opposite to that encountered in 
electrostatic of dielectrics.) We always have D E P

  

= +e0  where P Np
 

=  
but P



(and P


) are ≠Ø E . The dielectric susceptibility c is negative.
 When w < wp, the oscillation amplitude of electrons is so large 
that P



 dominates E


 so that c < –1.
 When w > wp, the electrons do not always follow the inversions of 
the electric field E



 and their elongation remains in phase opposition 
but with a much weaker amplitude. Thus –1 < c < 0.

E

E

p

wp

p1

e1

–q
+q

–q
+q

w

1

Figure 32
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 These two situations are shown in Fig. 32.
 A similar explanation applies to the situation of ions in the IR (see 
Chapter III, Pb. 1) between wT and wL (or wr) outside the resonance 
of ions in the lattice. Here (UV), we identify always the local and 
applied fields and the behavior described here can be extended to 
atomic electrons in the X-ray region. (See following exercise.)
 In the photon energy of interest here, 5 eV< hn < 30 eV, the 
present approach applies also to Mg (with two free e–/atom) and 
to Al (three free e–/atom) and even to Si (four free e–/atom), but on 
substituting (h wp)2 by [(h wp)2 + ET

2], where ET is the mean transition 
energy of electrons between the valence and the conduction band. 
This approach does not work for metals such as Au or Cu because of 
electronic transitions influencing the evolution of e2(w) (see Chapter 
V for details).

Technical point: e e1 2+ i or e e1 2- i ?

 In the literature, one often finds two forms for e w( ) . We write 
e1 – ie2 if an electric field of form E0e+iwt is used, as in the present 
exercise. We write e1 + ie2 if an electric field of form E0e–iwt is used.
 In both cases, e2 must be positive because it describes the 
dissipation of energy associated with the damping term, g, which is 
always positive. The same remark applies to the energy loss function 

which will always be positive and equal to e
e e

2

1
2

2
2( )+

, but can also be 

written ( )Im± Ê
ËÁ

ˆ
¯̃

1
e

, depending on the convention implicitly adopted 

for E0. These remarks also concern n + ik (or n – ik) where k is 
necessarily positive (and leads to an attenuation).

Exercise 30: Refractive index for X-rays and total reflection at 
grazing incidence

The complex dielectric constant of a free electron gas is of the form 
e w w w t r p= - -1 2 2/( / )i , where w ep

2 = Ne m2
0/  in which N represents 

the density of free electrons (see Ex. 29).
 (a) Find the expression for the index of refraction n for X-rays 

(with energy hn) that propagate in a solid with average atomic 
number Z and atomic density Nat. Use n = 1 – d and find d.
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 (b) Assume that the energy of these photons, hn, is such that all 
electrons of the atoms vibrate freely in such a way that w >> 1/t, 
wp. Find the value of the critical angle ac (measured relative to 
the surface of the material) for which total reflection of X-rays 
occurs.

 (c) Application to sodium: Z = 11; N(at) = 2.5 × 1022 at/cm3 where 
X-photons have hn = 10 keV. What are the numerical values of 
d and ac. ( , , , )h m e e0

Solution:

 (a) n r= ªe e

1  because e2 is negligible (1/t << w)

  e
w

w1

2

21= -
Ê

Ë
Á

ˆ

¯
˜

p , where w
e ep

2
2

0

2

0
= =Ne

m
N at Ze

m
( )

  or w >> wp; 

	 	 n pª ª -
Ê

Ë
Á

ˆ

¯
˜ = -e

w

w
d1

2

21
2

1

  The optical index of all materials for X-rays is smaller but 
very close to unity, which here justifies the assimilation of the 
optical trajectory to the geometric trajectory in the Bragg's 
law (see Chapter I).

 (b) sin i = cosa = nsin r.

  cosa d
a

c
c= - = -

Ê

Ë
Á

ˆ

¯
˜1 1

2

2
, where a d

w
wc

p= =2 .

 (c) hwp =19.7 eV, d = 1 - n = 2 ¥ 10-6; ac = 2 ¥ 10–3 rad.
  Contrary to Ex. 32 where only one electron per atom was taken 

into account for the evaluation of the plasma frequency in the 
UV range, the use, here, of 11 free electrons per atom of Na is 
justified by the fact that the energy (or frequency) of X-rays, 
10 keV, is far larger than the binding energy of all the atomic 
electrons of Na including the 1s electrons where EB is ∼1.072 
keV (see also Chapter V, Ex. 27). Thus all the 11 electrons are 
considered to vibrate nearly freely.

Comment: Focusing of X-rays

This exercise explains the impossibility of realizing X-ray lenses 
based on the laws of refraction of Snell–Descartes because n ≈ 1. This 
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physical impossibility is regrettable given the promising medical 
applications such efficient focusing of X-rays would represent.
 For physics experiments this difficulty is overcome from the use 
of mirrors (plane and elliptical) that function at grazing incidence 
in the total reflection domain. In addition to focusing with the aid 
of curved crystals (using the Bragg’s law), other recent possibilities 
include using multi-layer mirrors (W/C/W/C . . . ), already described 
in Pb. 10 of Chapter I and Fresnel lenses. These possibilities are often 
limited to the soft-X-ray regime.

Exercise 31: Metal reflectivity in the IR: the Hagen–Rubens 
relation

The complex dielectric constant of a free electron gas is of the form
 e w w w t e er p= - - = -1 2 2

1 2/( / )i i , where w ep o
2 2= Ne m/  in which N 

represents the density of free electrons of the metal and is of ∼5 × 
1022 e/cm3.
 (a) Show that in the IR ( , / ),pw w t e e>> >>1 2 1 .
  Find the simplified expression (as a function of e2 only) for the 

refection coefficient of amplitude r at normal incidence.
 (b) Find the relation between e2 and the static electrical 

conductivity σ0. Deduce that in the IR, the reflection coefficient 
of metals R can be put in the form (Hagen–Rubens relation): 

R = 1 – A(w/s0)1/2 or equivalently, R = -
-

1
1
2al . Find A 

explicitly. Find the numerical value a for the case of sodium 
where σ0 = 2.1 × 105 W–1cm–1.

Solution:

 (a) Far below the plasma frequency, in the IR, w = 1012 rad/s;  
t	–1 ≈ 1014 s–1; wp ≈ 1016 rad/s (for h wp eV6 ).

  Thus e w wt eª - ª -i ip/2
2.

  At normal incidence, r n n= - +( )/( )1 1 , where n i= ªe er 2 .

 (b) R =
+ -
+ +

ª -
1 2
1 2

1 2 22 2

2 2 2

e e
e e e

, with e t e w
s
e w2

2
0

0

0
ª =Ne m/ . This 

result can be obtained by writing wp explicitly and comparing 
to s = Ne2t/m or, more generally, by 

s = s1 – is2 =  
iwe0 (e1 – ie2)s1 (see Pb. 5). We thus find R A= -1 0

1 2( / ) /w s ,  
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where A = 2(2e0)1/2 = 8 × 10–6. This result may be written in the 
form R = 1 – al–1/2 , where a = 8 × 10–5 in the case of sodium.

Remark: This exercise and the preceding one treat the optical 
properties of metals in the two extreme limits: (a) X-rays: n = 1 – d 
(quasi-total transparence) and (b) IR: R ≈ 1 (quasi-total reflection). 
For more details see R.W. Christy, Am. J. Phys, 40, 1972, 1403.

Wavelength

Photon energy

Soft X-rays

1 eV 10 eV 100 eV 10 keV

SiL CK OK SiK CuK

CuKa

1 mm 100 nm 10 nm 1 nm 0.1 nm = 1Å

Extreme ultraviolet

1 keV

VUV

UV

IR

Hard X-rays

2a0

Figure 33

Problems

Problem 1: Cohesive energy of free electron metals

In the jellium model of free electron metals, the discrete nature of 
the ionic lattice is replaced with a smeared out uniform positive 
background exactly equal to that of the valence electron gas. Each 
element is completely specified by just the electron density of free 
electrons, n = N/V, where N is the number of conduction electrons in 
the crystal and V is its volume. Usually the electron density is given in 
terms of the so-called Wigner–Seitz radius, rs, corresponding to the 
spherical volume available to one valence electron. In the literature, 
the mean binding energy of such a valence electron is given by

 E = (2.21/rs
2) – (0.916/rs) – 0.1156 + 0.0313 ln rs (1)

 In Eq. 1, rs is expressed, as usual, in Bohr atomic units, rB = 0.53 
Å, and E in Rydberg (1 Ry = 13.6 eV) and this expression apply only 
between 2 < rs < 7.
 (1) Express rs in Å and kF as a function of the valence electron 

density, n. Express Eq. 1 in eV for the energies and in angstorm 
for rs. Show the evolution of E (in eV) when rs changes from 2 
to 7 in Bohr radius unit.

 (2) Evaluate numerically the rs value and the cohesive energy 
for the elements mentioned in the table using the indicated 
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atomic density, N, and taking into account the number of 
valence electrons, z. Evaluate also directly their Fermi energy, 
EF, from their free electron density, n. Show the results in the 
form of a table and remark.

Symbol Na Mg Al Cs Ba Li

N (×1022 at. cm–3) 2.652 4.3 6.02 0.905 1.6 4.7

 (3) Could you explain the first term of Eq. 1 eventually from a 
comparison of its numerical value to the corresponding Fermi 
energy?

Solution:

 (1) 4p	rs
3/3 = Nz/V = n; rs = (3/4p n)1/3 ; kF = (3p2n)1/3; 

kFxrs = (9p/4)1/3 ∼ 1.92
  E (eV) = [8.44/rs (Å)]2 – [6.6/rs (Å)] – 1.293 + [0.426 ln rs(Å)]
  rs = 2 corresponds to rs (Å)= 1.06 Å; rs= 7 corresponds to 

rs (Å)= 3.71 Å
 (2) See Fig. 34.

Mg

E (eV)

Al

Eq.

Li
Ba

Na

rs(Å)

Cs

0

1 2 3 4

-1

-2

-3

Figure 34

 (3) The first term of Eq. 1 represents the mean kinetic energy of 
the conduction electrons. It is positive and it is a repulsive 
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term. For free electron metals in 3D, it corresponds to 3EF/5. 
The sum of the three other terms, the contributions from 
electron exchange and correlation, is attractive and thus 
negative. Therefore the equilibrium-bound state of minimum 
total energy results from a balance between the kinetic energy 
of the valence electrons, which tries to push the atoms apart, 
and the exchange–correlation energy, which tries to pull 
them together. The minimum in this binding energy curve 
for jellium occurs at rs/rB = 4.2 with a binding energy 2.2 eV/
electron. This is quite close to the cohesive energy, Ecoh, of real 
sp metals which fall at around 1–2 eV/atom and quite good 
agreement considering the simplicity of Eq. 1. The exceptions 
are Al where rs/rB ∼2 and more Be where rs/rB <2 gives a 
positive value for Ecoh. The electron exchange and correlation 
effects are the glue that hold metals together and arises from 
the formation of the so-called exchange-correlation hole. 
This is a region of charge depletion around each electron due 
to the fact that electrons of like spin keep apart because of 
the anti-symmetry condition and the motion of electrons of 
unlike spin is correlated. The main consequence of this region 
of charge depletion around each electron is that each electron 
feels an attractive potential from the surrounding positive 
jellium background. The nature of such a binding explains the 
plasticity of metals such as Al or Ag when they are in a single 
crystal form free of dislocations and impurities.

Comments

The three last terms of Eq. 1 result from a parametrization of 
complicated quantum-mechanical many-body effects deduced from 
the use of the density functional theory (DFT) for the electronic 
structure problem. Briefly electron exchange arises because a many-
body wave function must by antisymmetric under exchange of any 
two electrons since electrons are fermions. This antisymmetry of 
the wave function, which is simply a general expression of the Pauli 
exclusion-principle, reduces the Coulomb energy of the electronic 
system by increasing the spatial separation between electrons of 
like spin. Likewise electron correlation further reduces the Coulomb 
energy between electrons of unlike spin because the motion of 
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each individual electron is correlated with the motion of all others, 
helping also to keep electrons of unlike spin spatially separated. The 
sum of these two quantum mechanical effects is incredibly difficult 
to describe. The interested readers are referred to the excellent 
article from which this problem is inspired, Ref. (30): A. Michaelides., 
& M. Scheffler, 2012, in An Introduction to the Theory of Crystalline 
Elemental Solids and their Surfaces.

Problem 2: Dipole layer and work function at surfaces of free 
electron metals

In the jellium model of free electron metals the discrete nature of the 
ionic lattice is replaced with a uniform positive background exactly 
equal to that of the valence electron gas (see previous exercise). At 
the surface of metals this positive uniform background is assumed to 
terminate abruptly along a plane at z = 0, filling the half-space z < 0 
with the form: n+(z) = n; z < 0 and n+ = 0; z ≥ 0, where n is the mean 
density of the positive charges in the ionic lattice.
 For the electron density, n–(z), the result of sophisticated 
calculations (out of the present purpose) is displayed in the left side 
of Fig. 35, valid for Fermi energies less than ∼10 eV (or for Wigner–
Seitz radius, rs, between 2 and 6). This figure shows that (i) the 
electron density spills into the vacuum and (ii) this density within 
the boundary oscillates (Friedel oscillations) with an amplitude 
that decreases asymptotically. For the sake of the simplicity, here, 
this electron density, n–(z), is supposed to decrease linearly across a 
transition region of thickness D ∼ p/kF, where kF is the Fermi wave 
vector (see Fig. 30).

1.0

0.5

0.0
–1.0 –0.5 0.0 0.5 1.0

D
d

+

d
–

Positive
background

n n+ –
; (in n unit)

rs = 2

rs = 5

n n+ –
; (in n unit)

Unit: = 2 /p klF F Unit: = 2 /p kFlF

–1 –0.25 0 0.25 1 z

+

Figure 35 (Left) Calculated electron density distribution at the jellium 
surface (from N. D. Lang and W. Kohn, Phys. Rev. B 1,1970, 4555 
and 3, 1971, 12158). (Right) Simplified model.
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 (1) Evaluate numerically (in Å) the thickness of the transition 
region, D, for EF = 3.2 eV (Na) and 7.1 eV (Mg).

 (2) Deduce the evolution of the electrostatic potential function, 
V(z), across the interface by solving the Laplace–Poisson 
equation. For this, take into account the continuity of V(z) at  
z = 0, the V(z) value at z = +∞, V(+∞ ) = 0, and the zero electric 
field value at the two boundaries of the dipolar layer. Express 
DV = V(–∞) and evaluate it numerically for Na and Mg.

 (3) For the evaluation of the maximum total energy of free elec-
trons into the metal with respect to the vacuum level one must 
add two contributions to the electrostatic potential energy, 
eVes, with Ves = V(–∞) as evaluated above. The first contribu-
tion is the exchange/correlation energy, eVex, as derived from 
the sum of the three last terms of Eq. 1 in the statement of the 
previous exercise. The 2d contribution is the kinetic energy of 
the conduction electron.

  From a simple diagram of energies, represent the position of 
the various energies in a metal and deduce the corresponding 
work function value, f, that is to say the energy needed to 
excite an inner electron from the Fermi level (at 0 K) to become 
an outer electron with a zero kinetic energy into the vacuum.

  Numerical application: Evaluate f for Na and Mg with eVex = 
–4.14 eV for Na and –5.83 eV for Mg.

 (4) The two semi-infinite metals are set parallel and in front of 
each other with a distance between them in the vacuum gap 
of L = 1 mm. The two are electrically connected to the ground 
without bias: Is there an electric field in the gap? If yes, give its 
direction and strength. (ħ2/2m, e, e0)

Solution:

 (1) kF(Na) = 0.92 Å–1; kF(Mg) = 1.37 Å–1; D(Na) ∼ 3.41 Å;
  D(Mg) ∼ 2.3 Å
 (2) The electrostatic problem is solved by integrating the 1d 

Laplace–Poisson equation: d2V/dz2 = –r/e0,	 applied to the 
dipolar distribution of electrical charges shown in Fig. 36.
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  The density of charge varies as r = (n|e|/2) [1+(2z/D)] for 
–D/2 < z < 0 and as r = (n|e|/2) [(–1+2z/D)] for 0 < z < D/2.

D

2kF– /2p kF

n z( )

n/2

Figure 36

  For 0 < z < D/2, the first integration leads to the electric field 
expression with a change of sign:

  dV/dz = –(n|e|/2e0)[−z + (z2/D) + C1]
  C1 = D/4 for obtaining a zero field at z = D/2.
  A 2d integration leads to
  V(z) = –(n|e|/2e0)[(–z2/2) + (z3/3D) + (Dz/4)] when the origin 

of the potential is taken at z = 0. When the origin of V(z) is 
taken at z = D/2, a constant C2 = –(D2/24) has to be added into 
the square brackets.

  The same procedure applied between –D/2 < z < 0 leads to
  V(z) = –(n|e|/2e0)[(z2/2) + (z3/3D) + (Dz/4) – (D2/24)]
	 	 DV = V(–∞) = 2V(0) = –(n|e|/2e0) × 2C2 = (n|e|D2/24e0)
	 	 The full evolution of V(z) is shown in Fig. 37. V(–∞) = 2.33 v. 

for Na and 3.4 v. for Mg.
 (3) The two potential energies are negative, e = –1.6 × 10–19 C, the 

kinetic energy EF is positive. Then the energy needed to excite 
an electron from the Fermi energy to the vacuum level is (see 
right side figure):

	 	 f = −(eVes + eVex) – EF
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  For Na: f = 2.33 + 4.14 − 3.2 ∼ 3.3 eV. 
  For Mg: f = 3.4 + 5.83 − 7.1 ∼ 2.1 eV.
 (4) When two metals are set in contact, there are conduction 

electron transfers from M2 to M1 (open arrow), inducing the 
formation of a dipolar layer at the metal interfaces leading 
thus to the alignment of the Fermi levels and to the shift of 
the respective vacuum levels, VL. An electron at VL1 would 
be attracted toward VL2, whatever would be the connection: 
direct between the two metals via various intermediate 
connections. In a plane capacitor arrangement, an electric 
field is established from M2 to M1. Its strength would be  
(f1 − f2)/|e|. In the present situation with the obtained 
numerical values, the electric field is 1.2 kV/m and it is 
directed from Mg toward Na.

2C2

C2

0

0 z D/ +0.5–0.5

V z( ) in unit (n|e| /2 )e0

0

Vacuum level Es

EF

EP

EF

eVex

eVes

f

Figure 37 (Left) Calculated evolution of the electrostatic potential across 
the dipolar layer. (Right) Diagram of the conduction electron 
energies. Note: The origin of the kinetic energies of electrons 
into the metal, ES , is at the bottom of the conduction band.

M1 M2

EF

VL1
VL2

f1 f2

– +
– +
– +

e –

Figure 38 Voltage contact between two metals.
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Comments

 (1) Work function and surface barrier: Despite the obvious 
simplifications, the present problem provides a rather good 
value for the thickness of the transition layer D = one half 
of the Fermi wavelength, lF. Thus this thickness decreases 
with the increase of the free electron density or with rs. It is a 
consequence of the overspill of free electrons into the vacuum. 
Here the main feature of the potentials sketched in the figure 
of answer (2) is as follows: Ves arises because the spread of 
electrons beyond the edge of the positive background renders 
the electrostatic potential in the vacuum, Ves(∞), higher than 
that in the metal interior, Ves(–∞). Although the electrostatic 
potential, Ves is a relatively small component of the barrier 
with respect to Vex, it is of the utmost importance since it is 
closely related to the work function, f. Thus an electron trying 
to leave the metal encounters an electrostatic surface dipole 
layer, D, with a electrostatic potential energy difference of 
height: a fact of prime importance in the emission of electrons 
into the vacuum.

 Moreover the absolute value of f obtained here fall correctly in 
the 2–4 eV range but the experimental value of f(Mg) is larger than 
that of f(Na) (see Table 2 and Da Silva et al. Surf. Sci. 600, 2006, 703). 
One reason of the present discrepancy is the oversimplified model 
used in the statement of the present exercise: a linear decrease 
instead of the more precise description of the calculated electron 
density distribution at the jellium surface.
 From the theoretical aspect there is a large dependence of the 
work function on the crystal structure and surface orientation (see 
Ex. 15) and also upon adsorption as a consequence of the change of 
the dipole distribution. Ashcroft and Mermin’s classic book (1) has a 
long discussion on the work function in Chapter 18.
 From the experimental aspect there is also the role of the 
surface contamination or oxidation. A spectacular example is given 
for Al where the work function changes from ∼4 eV for samples 
evaporated in situ to ∼2 eV for sample elaborated ex situ. This change 
is attributed to the spontaneous formation of a native layer when the 
exposure to air exceeds 50 L (1 Langmuir = exposure of 10−6 torr 
during 1 s). Another famous case is the adsorption of alkali metals 
which drastically lower the work function [e.g., from 5.7 eV down to 
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2.5 eV upon the adsorption of K on W(110)]. Also the experimental 
results obtained from different (thermo-ionic; photoelectric; contact 
potential difference) methods give slightly different results.

Table 2 Compilation of work function values (top) and Fermi energy 
values (bottom) of various elements (from Cazaux, J. Electron. 
Spectrosc. Rel. Phen. 187, 2013, 23)

Metal eV Metal eV Metal eV Metal eV Metal eV

Ag:

4.52–
4.74

Al:

4.06–
4.26

Au:

5.1–
5.47

2.52–
2.7

Be:

4.98

5.48 11.2 9.0 Ba: 3.65 14.14

C: 4.7

Ca:

2.87 5.0

Cr:

4.5

Cs:

2.14

Graphite: 22.0 4.68  Co: 10.0 7.8 1.58

4.53–
5.10

4.67–
4.81 4.32

In:

4.09

Li:

2.93

Cu: 7.0 Fe: 8.9 Ga: 10.35 8.6 4.72

Mg:

3.66

Mo:

4.36–
4.95

Na:

2.75

Os:

5.93

Pb:

4.25

7.13 6.5 3.24 11.4 9.37

5.22–
5.6

Pt:

5.12–
5.93 2.3

Sn:

4.42

Sr:

~2.6

Pd: 6.2 10.6 Rb : 1.85 10.0 3.95

Ta:

4.00–
4.80

Ti:

4.33

V:

4.3

W:

4.32–
5.22

Zn:

3.6–
4.9

8.4 6.0 6.4 10.1 9.39

 (2)	 Friedel oscillations: The shape of the electron density 
distribution at a jellium surface (Fig. 35) results from 
tedious numerical calculations but an approximate analytical 
expression is (Pb. 2b, below):

  n z
k k z k z k z

k z
( ) =

Ê

ËÁ
ˆ

¯̃
◊ -

( )-

( )
Ï
Ì
Ô

ÓÔ

¸
˝F F F F

F
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2 33
1 3

2 2 2

2p
cos( )ÔÔ

Ǫ̂
 u

 Via the reduced variable kFz the advantage of this expression is 
to show that the amplitude of the oscillations and the abruptness of 
the transition region increase with the free electron density, or with 
the kF value, of the free electron metal of interest. The key result is 
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that any interface between a metal and the vacuum would induce 
oscillations of the electron density at around the interface. This is 
also the case around an atomic vacancy which may be approximated 
to a spherical cavity. The asymptotic form of the electron density is 
similar to that of a plane interface except dependence in r–3 instead 
dependence in z–2. The corresponding oscillations are named 
‘Friedel’ oscillations (J. Friedel, Philos. Mag. 43, 1952, 153; Adv. 
Phys. 3, 1953, 446 Nuovo Cimento 7, 1958, 287. These oscillations 
induce atomic relaxations around the vacancies. Some atoms may be 
attracted toward the center of the vacancy, Au, or pushed away, Al, 
as a function of the position of the maximum electric field acting on 
them and associated to these oscillations via Gauss’s Equation. An 
atomic impurity in proximity of such a vacancy may also be attracted 
toward it more than the atoms of the host metal (Cu in Al). The 
result is an accumulation of impurities into Guinier–Preston zones 
increasing considerably the hardness of the corresponding Al alloys 
with its obvious applications in metallurgy and among others in the 
aircraft industry [21].
 This remark illustrates how academic calculations may lead to 
considerable practical applications.

Problem 2b: Electronic density and Energy of metal surfaces: 
Breger–Zukovitski model

Consider an infinite metallic sheet in the xOy plane with thickness L 
along the Oz axis.
 (a) Apply periodic boundary conditions (PBC) of period L along 

x and y and fixed boundary conditions along Oz between the 
two surfaces of the film. Find the wavefunction F(x,y,z) of the 
free electrons contained in the film.

 (b) Compare the different components of the wave vector k 
obtained using PBC in 3D to that imposed here using fixed 
boundary conditions along the z-axis. Show that the latter 
results in the exclusion of states at kz = 0, corresponding to 
electrons at the Fermi surface. Find the energy E0 needed to 
obtain a surface of unit area.

  Numerical application: Evaluate E0 using kF = 1 Å or
  EF = 3.8 eV.
 (c) Starting from F(x,y,z) and summing over all possible wave 

vectors, determine the evolution of the electronic density 
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n(z) in the neighborhood of the surface area and sketch the 
corresponding curve.

  Numerically find the minimal distance z0 corresponding to 
n(z) = n0, which corresponds to the electronic density of the 

bulk material. h

2

2
3 8

m

Ê

ËÁ
ˆ

¯̃
= ◊.  eV Å2

Solution:

 (a) Recall that fixed boundary conditions for a cube with side 
L result in a free electron wave function of the form (see 
Ex. 7):

  F( , , ) sin sin sin
/

x y z
L

k x k y k zx y z= Ê
ËÁ

ˆ
¯̃

◊ ◊8
3

1 2

, where 

k n
L

k n
L

k n
Lx x y y z z= = =p p p, , , and kx,y,z > 0; nx, ny, and nz are 

positive integers.

  When the cyclic Born-von Karman boundary conditions are 
used we find:

  F( , , ) /
( )x y z

L
ei k x k y k zx y z= + +1

3 2 ,

  where k n
L

k n
L

k n
Lx x y y z z= = =2 2 2p p p, ,  and nx, ny, nz,= Z.

  Applying these results to the present problem, the 
wave function will have a sinkzz form along Oz and

[ ( , , ) ( , , ) ] ( )F Fx y x y L ei k x k yx y0 0= = + along Ox and Oy. The final 

result is thus F( , , ) sin exp ( )
/

x y z
L

k z i k x k yz x y= Ê
ËÁ

ˆ
¯̃

◊ +2
3

1 2

.

 (b) The use of periodic conditions leads to divide the wave 
vector space into parallelepiped cells with dimensions 
(2p/L) ¥ (2p/L) ¥ (2p/L) (see Fig. 39a). The use of fixed 
conditions along Oz, however, leads to cells with dimensions 
(2p/L) ¥ (2p/L) ¥ (p/L)which are limited in the half space kz > 0 
and in which the values of kz = 0 are excluded (see Fig. 39b).

  The increase in energy of the electron gas is the surface 
energy 2 2E Ls

0  of the two new surfaces. To evaluate this, we 
may observe that it is as if the electrons contained initially in 
the equatorial plane have attained their Fermi energy.
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KZ
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K KF F+ d
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Figure 39

  The initial kinetic energy is, on average, E E
= F

2
for an electron 

gas in 2D and thus with a constant density of states (see Exs. 

11 and 14). The number dn is equal to 2
2

2

2◊
p
p

k

L
F

( / )
. Their final 

energy is EF and the change is thus DE
k L E

= ◊F F
2 2

2 2p
.

  This difference corresponds to the formation of interfaces 
(from the fixed boundary conditions) with area L2. We thus 

have E
E

L

k E
0 2

2

2 8
= =D F F

p
.

  Note that the increase of kF and of EF related to a decrease in 
the thickness Lz of the sheet has been previously evaluated in 
Ex. 7. Here we neglect this increase (EF remains unchanged) 
and we evaluate only the increase in energy of all N electrons 
resulting from the conditions at kz = 0. This last result only 
depends on the fixed boundary conditions and is independent 
of LZ. It can therefore only be applied to macroscopic 
thicknesses.

  Numerical application: k EF
1

F Å   eV= =-1 3 8; . ; 
   E0 = 0.15 eV·Å–2.
  The estimated value is of the same order of magnitude as that 

accessible in experiments (∼1–2 J·m2) but the present problem 
has not introduced the anisotropy of the surface density as 
a function of the orientation of the relevant crystallographic 
faces. Accounting for this does not result in significant 
additional difficulties. First, it is sufficient to include the 



397Problems

surface electron density ns of each face and evaluate the initial 
energy of an electron in the kz = 0 plane:

  E
E d

m
n= = Ê

ËÁ
ˆ
¯̃
Ê

ËÁ
ˆ

¯̃
F

s
( ) ( )2
2

1
2 2

2
2
h p .

  Next, the evaluation of the electron fraction ns, has to start 
from EF(2d) and extends to EF(3d). Exercise 15 illustrates this 
procedure.

 (c) In direct space, the electronic density n(z) can be obtained 
by summing the product FFx over all possible wave vectors 
taking into account the two electrons ( )≠Ø per state. We 
obtain

  n z
L

k z dk dk dk
Lx

k k k k
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F F
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  In cylindrical coordinates, this becomes (see Fig. 40):
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  Performing the calculations, we obtain
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 When kFz is very large, the density n(z) tends toward kF
2 23/ p , 

which is just the electronic density n0 in an infinite crystal. 
Substituting 2kFz = x, we note that the evolution of n(z) obeys a 

relation of the form: n z n
x

x

x

x
( ) sin sin= - +Ê

ËÁ
ˆ
¯̃0 3 21 3 3 , which is sketched 

in Fig. 40.

 Starting from zero for z = 0, the electronic density attains the 
value n0 for the first time when

 tg x x( ) = at x0 4 5ª . and z
k0

4 5
2

2 25= =. .
F

 Å

 Note that if we impose that the electron probability cancels 
at the surfaces, the resulting compression of the gas is very small 
because the thickness of the partially depleted region is of the 
order of the lattice parameter. In fact, if one defines its position as 
starting from the plane at which the volumetric density of positive 
charges (associated with the presence of ions) goes abruptly from 
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n0|e| to zero, the electronic density is not strictly zero at the surface. 
Regardless of this arbitrary choice concerning the position of the 
surface, these considerations result in the presence of a dipolar layer 
at the surface of a metal, see Fig. 39b and Fig. 35(left). The present 
model of Breger–Zukovitski is based on very different arguments 
from that of Kohn (Pb. 2) and it is surprising that the two lead to 
similar oscillations.
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Figure 40

Remarks: As developed in Pb. 2, the continuation of this problem 
would consist of finding the evolution of the potential V(z) by 

integrating the Poisson equation in 1D: d V z

dz

z2

2
( ) ( )= - r

e
, where 

r(z) includes the ion charges and the oscillations of the electronic 
density n(z). Such a process would determine the potential barrier 
that keeps the electrons enclosed in the sheet.

Problem 3: X-ray photoelectron spectroscopy, X-ray absorption 
spectroscopy, extended X-ray absorption fine structure, Auger 
electron and X-ray photon emissions

When N isolated atoms condense to form a solid metal, electrons 
from each atomic outer shell (valence electrons) are distributed into 
an energy band, whose top is known as the Fermi energy, EF. The 
inner-shell electrons (1s, 2s, 2p, ...) of the atoms are little affected 
by this condensation. Each binding energy EL(1s), EL(2s), keeps 
its discreteness and significantly its initial atomic value, and it is 
convenient to choose their origin at the Fermi level.
 (1) X-ray photoelectron spectroscopy (XPS)
 (i) A solid is irradiated with monochromatic X-ray photons 

(energy hn). Taking into account the work function 
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potential f (energy ef), find the inequality that the binding 
energy E an electron must satisfy (a) to absorb a photon 
and (b) to be ejected outside the solid. What is its kinetic 
energy Ec in the latter case?

 (ii) Numerical application: Measured with respect to the 
Fermi energy, EF, the binding energies, EL, of atomic 
electrons of magnesium (Z = 12) and aluminum (Z = 
13) are, respectively, Mg(1s) = 1305 eV; Al(1s) = 1560 
eV; Mg(2s) = 90 eV; Al(2s) = 118 eV; Mg(2p) = 51 eV;  
Al(2p) = 73 eV.

  An Al/Mg alloy is successively irradiated with Al Ka radiation 
and next with Mg Ka radiation (see Chapter I, Course 
Summary, Part B, Section 2 for the symbols). Sketch the 
spectrum of ejected X-ray photoelectrons as a function of their 
kinetic energy into vacuum. Take ef = 3 eV and disregard the 
photoelectrons issued from the conduction band.

  In fact, such photoelectrons are not all emitted into the vacuum 
because they undergo inelastic collisions (plasmon excitations) 
during their travel toward the surface. Thus the flux of the 
generated photoelectrons experiences an attenuation often 
simply described with an exponential expression of form  

I = I0e–z/l, where l( ) .
/

Å c= 1 8
3 4E

Ep
 (Ec and Ep are plasmon 

energy in eV). Specify the numerical value of l for the Mg(1s) 
and Mg(2s) photoelectrons excited by Al Ka radiation (take  
Ep = 12.5 eV). Why does this technique allow the chemical 
analysis of the first atomic layers of a surface?

 (2) X-ray absorption spectroscopy (XAS)
  The same solid is now irradiated with continuous X-ray 

radiation: 50 eV < hn < 2.5 keV, having a constant intensity 
over its spectral domain. The spectrum of transmitted X-rays 
through the sample, in a thin film form, is measured in order 
to infer the evolution with hn of the absorption coefficient. 
Knowing that the main mechanism of X-ray absorption is due to 
the photoemission (photoelectrons either leaving the sample 
or not), find the position of threshold absorption relative to 
the Al/Mg alloy levels. Sketch the absorption spectrum m(hn) 
knowing that beyond a threshold, the absorption decreases as 
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DE–3 (DE: difference between the energy of the photon, hn, and 
the minimum energy required to excite an atomic electron).

 (3) Extended X-ray absorption fine structure (EXAFS) 
  Experimentally after each threshold, small oscillations of the 

absorption coefficient are observed being superimposed on 
the spectrum studied in (2). These oscillations are interpreted 
as interference of photoelectron waves associated with 
the ejected photoelectron of an atom being reflected by 
neighboring atoms back to their initial site.

 (a) What is the kinetic energy of the photoelectrons of initial 
binding energy EL and resulting from the radiation hn? 
What is their associated wave vector k? Knowing that the 
nearest neighbors are located at a distance r0, find the 
relationship between k (next hn) and r0 for which there 
is interference between outgoing photoelectrons and 
those reflected back to their initial position. Specify the 
energetic position of the first three oscillations beyond 
the threshold 1s(K) of aluminum, choosing r0 = 3 Å.

 (b) To establish the variation (beyond the threshold) of 
the absorption coefficient m(E) around its mean value 
in m0, a more detailed theoretical analysis leads to the 
relationship:

  
m m

m
d

( )
sin( )

/
E N f e
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  where rj represents the distance between the emitting atom 
and one of its nearest ‘j’ neighbors. State the meaning of the 
various terms appearing on the right hand side, particularly, 
fj, the exponential and the sine term?

 (4) Auger electron and X-ray photon emissions
  Following the ejection of corresponding photoelectrons, the 

atoms irradiated with X-rays present electron vacancies in 
their core electronic levels. An electronic vacancy is filled 
by an electron from an outer electron level and the released 
energy causes either the emission of an X-ray photon or the 
ejection of a third electron: the Auger emission process.

 (a) Consider the initial ionization of the 1s Mg level. Find 
the energy of the subsequent X-ray radiation and the 
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kinetic energy of the emitted Auger electrons. What is 
the order of magnitude of the escape depth of the Auger 
electron? Comment on their existence in a spectrum of 
photoelectrons (see Ex. 1).

 (b) Replace the X-ray irradiation by irradiation with electrons 
of a few keV energy. The sample is a Al/Mg alloy. Find 
the X-ray photon energy and the kinetic energy of Auger 
electrons thus created. Comment on the identification of 
the components of a solid. ( / . ).h

2 2 3 8m = ◊ eV Å2

Solution:

 (1) X-ray photoelectron spectroscopy
 (a) a b f: ; :hv E hv E e> ≥ +L L
  From energy conservation: hv E e E= + +L ef .
 (b) hv E s E p(AIK ) ( ) ( )a = -L L1 2 , taking into account the 

selection rule l¢ = l ± 1; hv(Al Ka) ª	1487 eV;
  hv(Mg Ka) ª 1254 eV.
  The spectrum of emitted photoelectrons reflects the 

spectrum of their initial binding energies with a shift of hn 
– e f, provided that the energy of the radiation is sufficient 
(see Fig. 41).

  With Mg (Ka) radiation, the position of the photoelectron 
lines are Mg(2p) = 1200 eV; Al(2s) = 1178 eV;

  Mg(2s) = 1161 eV; Al(2s) = 1133 eV.
  With Al(Ka) radiation, these lines will have an additional 

kinetic energy of 233 eV. In addition, the Mg (1s) line will 
appear at 179 eV.

 (c) l[Mg1s] ª 7Å; l[Mg2s] ª 33 Å 

1s 2s 2p
EL

ef EC
 

Al Mg AlMg
hn

hnEF

Figure 41
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Comment: Nobel Prize in physics in 1981

  The beauty of X-ray photoelectron spectroscopy lies in its 
simplicity. The spectrum of the emitted photoelectrons 
directly reflects the binding energy of the electrons prior 
to excitation. These binding energies have been tabulated 
(see Review of Modern Physics, 39, 1967, 78). Thus the 
measurement of the photoelectrons kinetic energies per-
mits to identify the elements composing the surface of the 
irradiated sample; see differences between Mg (Z = 12) 
and Al (Z = 13) in the problem. In fact, the binding energies 
and therefore the kinetic energies of photoelectrons also 
slightly depend (second-order effects of a few eV only) on 
the chemical environment of the excited atom. The cor-
responding chemical shift can be used to determine the 
atomic number of atoms of this environment. The choice 
of the Fermi level as origin for the measurement of the 
binding energies is driven by the alignment of the Fermi 
level when two metals are set in contact (here that of the 
sample and that of the electron spectrometer). Finally the 
photoelectrons have a very low escape depth [l = a few 
atomic monolayers; see (c) above] and thus the result-
ing information is related to the chemistry of the surface. 
Popularized by K. Siegbahn (Nobel Prize in physics, 1981) 
and known as ESCA (electron spectroscopy for chemi-
cal analysis), this technique is widely used for analyzing 
the surfaces of semiconductors, polymers, catalysts, etc. 
Figure 41 shows a sketch of the instrument operated for 
surface characterization with XPS where incident X-rays 
are used and photoelectrons issued from the core elec-
tronic levels are analyzed instead of the UV–soft X-ray 
irradiation and the detection of photoelectrons from the 
valence band being concerned in the exploration of the 
surface electron states of Pb. 4.

 (2) X-ray absorption spectroscopy
  Absorption of a photon occurs when a photoelectron is excited 

to an allowed state (and therefore above the level of Fermi in 
metals). The thresholds for absorption are therefore exactly 
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located at the values of hn corresponding to the binding 
energy (statement of Pb. 1b). The characteristics of an X-ray 
absorption spectrum is given in Fig. 42.

 (3) Extended X-ray absorption fine structure (EXAFS) 
oscillations

 (a) E hv E k m hv EC L L= - = -; ( )/2 h

  2r0 = nl = n2p/k (where n is an integer) or 2kr0 = 2pn 
  2 20m hv E r nh( ) /- ◊ =L  so that hv – EL = (h2/2m) (n2/4r2

0)
	 	 DE = hv – EL = 4.2 eV (n = 1); 16.7 eV (n = 2);
  37.4 eV (n = 3).

Mg

50 100 1000 1500 2000
( )ev

( )K
Al
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2s
( )L1
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( )L2.3

Mg
( )K
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Al

m( )E

hv

Figure 42

 (b) Nj is the number of nearest neighbor atoms and fj is 
the atomic form factor (see Chapter I, Ex. 22) of the 
photoelectrons scattered from these atoms (for q = 
p). The exponential describes the attenuation of the 
photoelectron wave (already mentioned in 1°C). The sine 
term 2krj is related to the interference evaluated above in 
(3a) to which a phase shift term, d, is added and is the sum 
phase shifts to the emission and to the reflection. (The 
denominator is due to the spherical nature of the incident 
and the scattered waves.) An exponential term associated 
with the thermal agitation of atoms (the Debye–Waller 
factor) should also be added.
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Comments: EXAFS oscillations

  Oscillations (EXAFS or Kronig) have been observed 
for a long time but their extensive use has only been 
implemented since the development of spectrally white 
and intense X-ray sources such as those at synchrotrons. 
Unlike slow electron diffraction, this spectroscopic 
technique applies to disperse systems, amorphous solids, 
or liquids, and can locally evaluate the distance between 
first neighbors of an atom (characterized chemically by the 
position of its absorption threshold) and the number Nj of 
nearest neighbors. From the experimental acquisition of 
these oscillations up to 300 eV or 400 eV (but it is difficult 
to see the 1st) beyond the threshold one can determine rj 
with precision of ±0.05 Å by a Fourier transform.

  One can make this technique sensitive to the surface (S. 
EXAFS) by analyzing not the X-rays transmitted but the 
intensity of the photoelectrons or the Auger electrons 
as a function of hn. These intensities also reflect the 
photoabsorption mechanism but the information can only 
comes from the first atomic layers (see Woodruff, Surf. 
Interf. Analysis 11, 1988, 25).

 (4) Auger electron and X-ray photon emissions
 (a) The emission process of a photoelectron leaves an 

electronic vacancy on the initial orbital of this 
photoelectron. This vacancy is quite spontaneously, 
∼10–15 s, filled with an outer shell electron via one of the 
two complementary processes: X-ray emission or Auger 
emission. The two processes always coexist but the 
probability aijk of Auger emission is greater than that for 
X-ray emission wij when EL ≤ 5–10 keV.

  For Mg (1s): wKL = 3% and aKLL ≈ 97%. Figure 43 illustrates 
the competition between these two processes.

   In the case of magnesium, both types of radiation are Mg 
(Ka) = EK – EL2,3 = 1254 eV and Mg (Ka) = EK – EBC ≈ 1300 
eV.

  Auger electrons are designated by the symbols relating 
to the three electronic levels involved in the process: 
vacancy level, electron filling this vacancy, and ejected 
electron. Multiple combinations are possible (different 
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combinations of KLj Lk and KLjM where j and k = 1 or 2, 3) 
because transitions leading to an Auger electron emission 
are not affected by selection rules, unlike X-emission 
which must obey l l¢ = ± 1.

L1

L2, 3

Ka

L2, 3

L1

L2, 3

K
Auger emission

sijk

Ionisation (X or inc. e)

2s
2p

BC

1sK
wij K L2, 3L1

KL2, 3 M

K
X-emission

Kb

Figure 43

  It will be for example (see Fig. 43):
  Mg (KL1L2,3) ª EL(K) – EL (L1) – Ex (L2,3) – ef and
  Mg (KL2,3M) or (KL2,3V),
  where V signifies valence such that 
  Mg (KL2,3V) = EL (K) – EL (L2,3) – EL

x(V)–ef,
	 	 Mg  eV( ),KL L1 2 3 1160ª , and Mg  eV( ),KL V2 3 1245ª . 

(In fact, their energy is less than ≈ 20 eV because the 
ejected electron, e.g., L2,3, has a binding energy closer 
to Al (2p) than Mg (2p) due to the influence of the hole 
created in the lower electronic shell which alters the 2p 
orbital, explaining the symbol x indicated in the above 
expressions.) 

  Most of the Auger electrons analyzed outside the sample 
have energies of the order of keV or less, thus their elastic 
escape depth is of a few atomic surface layers (see 1c). 
They appear also as lines in the spectra of photoelectrons 
(X-ray-induced Auger electrons). Auger electrons may be 
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distinguished from photoelectrons because their kinetic 
energy is independent of the incident photon energy, 
hn. Thus when hn is changed, their position will not be 
affected.

 (b) If one replaces the beam of X-rays by an electron beam, 
the energy spectrum of X-rays emitted by the magnesium 
will not be affected because, as with the process of Auger 
electron emission, atomic decay is independent of the 
nature and the energy of incoming particles that created 
the initial electronic vacancy. The spectra of emitted 
X-rays from an AI–Mg alloy, is essentially composed of 
the Al(Ka) and Mg (Ka) radiations. The spectrum of the 
Auger electrons emitted from a AI–Mg alloy is composed 
of the series Al (KLL) between 1320 eV and 1400 eV, the 
Mg (KLL) series between 1100 eV and 1190 eV, the series 
Al (LVV) ≈ 50–70 eV and the series Mg (LVV) = 30–35 eV.

 In all cases (XPS, X-ray emission, Auger emission), the 
identification of elements composing an alloy is obtained by 
comparing the position of the characteristic lines emitted by this 
alloy to those (tabulated) for all the elements of the classification. 
The estimate the concentration of these elements is obtained by the 
measurement of the corresponding intensities relative to those of 
pure elemental standards.

Comment: X-ray and Auger emission

The Auger effect was discovered in 1925 (P. Auger, J. Phys. Radium 
6, 1925, 205). As in X-ray emission or photoelectron spectroscopy, 
the energy position of Auger lines allows the determination of the 
chemical elements that have been excited either by a beam of X-rays, 
or an incident electron beam. As with XPS, since the 1960s, the 
Auger electron spectroscopy, AES, is one of the preferred methods 
for surface analysis of, especially metallurgical (corrosion) and 
semiconductors, because of the depth of analysis, of the order of 
nanometer, is given by the expression of l in 1°C, where the kinetic 
energy is found in the range 50 eV < Ec < 2.5 keV.
 The advantage of AES over XPS lies in the possibility of having a 
higher lateral resolution using a very fine electron probe (<0.1 mm). 
Its disadvantage is the difficulty in interpreting the chemical shift, in 
which 3 electronic levels are in competition instead of one.
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 Microanalysis of solids with X-ray emission spectroscopy 
(electron probe microanalysis) was pioneered by R. Castaing in the 
1950s (Advances in Electronics and Electron Physics, 13, 1960, 317), 
who developed an electron microprobe to analyze the concentration 
of metallurgical alloys and geological objects from their emitted 
X-ray spectra. The lateral resolution and depth analysis is of about 
∼1 mm because, unlike Auger electron, X-rays generated into a target 
suffer less attenuation in their path toward the surface being limited 
by the penetration depth of the incident electrons in microprobe, 
typically one micron for E0 ≈ 20–30 keV.
 Finally the absorption of an incident X-ray photon, hn, may be 
followed by the emission of another X-ray photon, hn	¢ (hn	¢ < hn) 
according to the de-excitation process shown in the right of Fig. 43. 
The corresponding analytical technique is X-ray fluorescence 
spectroscopy (XRF), which also allows the identification of the 
elements constituting a solid. This method has a high sensitivity 
(ppm) and it may be operated in the ambient atmosphere (instead 
of in the vacuum required for the other techniques) and on liquids 
but it suffers from poor lateral resolution, related to the difficulty to 
focus incident X-rays (see Ex. 30).

Problem 4: Refraction of electrons at metal/vacuum interface 
and angle-resolved photoemission spectroscopy (ARPES)

An often-used way to look on photoemission is the so-called three-
step model:
 (i) A photon of energy hn is absorbed in the solid by an electron 

either bounded (atomic electron) or free (conduction 
electron). The electron is excited to an unoccupied final state 
and it is considered here as free with an energy ES (measured 
with respect to the bottom of the conduction band).

 (ii) The excited electron is brought to the surface with a wave 
vector k of components k∥(in) parallel to the surface, and 
k⊥(in) perpendicular to the surface.

 (iii) The photo (excited) electron escapes into the vacuum after 
a refraction effect at the sample/vacuum interface. Its inner 
incident angle is b and its emission angle into vacuum is a 
(both angles with respect to the normal). In vacuum, the 
energy of the photoelectron, Ek, is measured with respect to 
the vacuum level, VL, and the components of its wave vector 
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are k∥ (out) parallel to the surface, and k⊥(out) perpendicular 
to the surface (see Fig. 44).

 (1) From the typical values of the work function values of 
metals (Table 2 in the previous exercise), give an order of 
magnitude for the minimum energy, hn, and wave vector, 
2p/l, of the incident photon needed for such an electron 
emission process into vacuum. Compare 2p/l with the 
typical value of wave vector of an inner electron at Fermi 
level kF and remark.

 (2)  When the photoelectron crosses the sample/vacuum 
interface, the parallel component of k is preserved: k∥(out) 
= k∥(in) = k∥ . From this fact, express the refraction effect in 
the form of Snell’s law relating ES and b to Ek and a. Show 
the change of a as a function of b, 0 ≤ b ≤ 90° with a graph 
for the electrons at the bottom of the conduction band and 
at the Fermi level issued from Be (EF ∼ 14 eV; f ∼ 5 eV) 
when irradiated with a helium radiation (He Ia ∼ 21.2 eV) 
and next with a synchrotron radiation at hn = 100 eV.

 (3) An electron spectrometer is set in front of the sample and 
its electrical connection to the sample leads to the Fermi 
level alignment of the two (Fig. 44). This spectrometer 
accepts just a small solid angle and analyses the electrons 
emitted in that solid angle. Then it is possible to explore 
the angular distribution of the emitted photoelectrons 
from a simple sample tilt changing a from 0° to 90°.

vacuum

Spectrometer

k(in)

metal k||(out)

k(out)

a

b

VL

EF

fspec

0

0VL

0
Metal

Spectrometer

EF

e–

Ek

fk||(in)

Es E

Figure 44 Geometry of the refraction effect (left). Energy diagram of the 
photoemission process (right). Note the different origins for Es 
and Ek and also the alignment of the Fermi levels.
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	 (a) Show the expected spectrum obtained from 
measurements at a normal emission angle, a = 0, for 
Be measurements.

	 (b) The sample is tilted from 0° to 90°. Show how an 
exploration of the Fermi sphere is possible from an 
azimuth rotation combined to the tilts. Indicate the 
angular limits of such an exploration in the k-space 
for Be and hn = 21.2 eV. What are the corresponding 
limits for constant energy surfaces such as E = EF/2 
and E = EF/4. From the results obtained at a nearly 
grazing incidence, a ∼ 90°, deduce that the spectra-
obtained non-normal emission angles correspond to 
non-colinear wave vectors, k.

	 (c) The surface barrier influences the emitted intensities 
through the transmission probability, T(a), of 
the photoelectrons crossing the sample/vacuum 
interface. In elementary textbooks of quantum 
mechanics, this transmission probability is given by

  T
E E

E
a

a
( ) =

+È
Î

˘
˚

= +
-4

1
1

1 2

1 2 2 2
G

G
with G

cos
s k

k

/

/
 (1)

  Represent in polar coordinates this transmission 
probability for electrons issued from the Fermi level 
and from the bottom of the conduction band.

 (4) From the conservation of the parallel component of k, 
establish the expressions correlating k∥(in) and ES inside 
the solid (prior to electron excitation) to the experimental 
values a and Ek. Evaluate numerically the maximum value 
of k∥(in) being reached for Be and hn = 21.2 eV. Valid only 
for a parabolic dispersion of the final states, establish also 
the expressions correlating k⊥(in) and ES inside the solid 
(prior to electron excitation) to the experimental values a 
and Ek combined to the tilt. (h, e, c )

Solution:

 (1) hn has to be larger than f ( basic principle of the photoelectric 
effect). When hn ∼ 5 eV, 2p/l is ∼	2.5 10–3 Å–1. When EF ∼ 5 eV, 
kF ∼ 1.1 Å–1. The momentum of the photon is small compared 
to the electron momentum and can therefore be neglected.



410 Free Electrons Theory: Simple Metals

 (2) The condition k∥(out) = k∥(in) = k∥ leads to
  ħk(out) sina = ħk(in) sinb and to Ek sin2a = ES sin2b because
  ES = (h2/2m)k2(in) and Ek = (h2/2m) k2(out).
  √Ek sina = √ES sinb (2) 
	 	 Eq. 1 looks like the Snell’s law of classical optics,
  where ES = Ek + EF + f (3)
  The reference of the kinetic energies ES is the bottom of the 

conduction band in the sample while it is the vacuum for the 
kinetic energies Ek of electrons in the vacuum level (see Fig. 
37).
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Figure 45 Correlation between a and b for Be irradiated with a UV lamp 
(a) and with a radiation  hn = 100 eV (b). The diagonal line 
corresponds to a = b, no refraction effect. (c) Refraction effects 
(full arrows) and internal reflection for inner angles larger the 
critical angle bl where sinbl = √Ek/√ES.
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  For electrons excited from the Fermi level ES = EF + hn = 35.2 
eV; Ek = hn − f = 16.2 eV with hn = 21.2 eV; ES = 114 eV and 
Ek = 95 eV with hn = 100 eV. For electrons excited from the 
bottom of the conduction band ES = hn = 21.2 eV; Ek = hn − f 
− EF = 2.2 eV with hn = 21.2 eV; ES = 100 eV and Ek = 81 eV with 
hn = 100 eV. As shown in Fig. 45, the refraction effects are very 
large in the present example of a UV radiation on Be. From 
the use of a synchrotron radiation, when the photon energy is 
increased up to hn ~ 100 eV, these effects decrease and lead to 
larger values for the critical angle bl for external emission.

 (3a)	 The photoemission process is illustrated in Fig. 46 for a = 
0°. The density of states for the conduction electrons in Be is 
parabolic: g(ES) is proportional to √ES . The reference energy 
is the bottom of the conduction band and their energy gain is 
hn into the solid with a change in the reference level for the 
bulk conduction electrons when they escape into vacuum. 
At the solid/vacuum interface, a part of these conduction 
electrons are reflected back to the solid and this effect leads to 
a slight distortion of their measured spectral distribution, full 
line, with respect to that expected from a total transmission 
probability (dashed line).

f

hv
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Sample Vacuum Ek (eV)

0 5 10 15 20

E

0

Figure 46 Photoemission process in Be irradiated with photons of energy 
hn = 21.2 eV.
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  There are other sources of distortion: the difference in the 
attenuation of electrons during their transport toward the 
surface; the change in the effective solid angle of collection 
with respect to the fixed instrumental angle, DΩ (for details 
on this point see Cazaux, J. Electron. Spectrosc. Rel. Phen. 187, 
2013, 23). One key result is that the value of EF may be easily 
deduced from experiments and that of f is derived easily from 
the knowledge of hn.

 (3b) From tilts, 0° < a < 90° and rotations, the exploration of the 
Fermi surface is limited to the part of the sphere defined by 
the solid angle of the semi-apex angle equal the critical angle 
for external emission bl as seen in Fig. 47; bl = 42°7 for k = kF.

  For a surface of constant energy EF/2 or k = kF/√2, bl = 34°3. 
For a surface of constant energy, EF/4 or k = kF/2, bl = 28°7. 
Then the spectral distribution of photoelectrons at grazing 
emergence is composed of electrons having non-collinear 
wave vectors. This fact may be interpolated for other angles 
except a = 0°. Thus the need is to operate at a normal emission 
angle, as in 3a, for obtaining the correct density of occupied 
states of non-free electron materials.

Vacuum

Solid

b1

kF

kF/2

Figure 47 Limited exploration of the Fermi surface. The critical angle for 
external emission, bl, decreases with the energy of the other 
constant energy surfaces, making the obtained density of states 
composed of electrons having non-collinear wave vectors.

 (3c) As it was expected from Fig. 45, the influence of the refraction 
effects on the transmission probability is shown in Fig. 48 
with an increase in a and a decrease in ES.
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 (4) In vacuum, the parallel component of the wave vector is given 
by k∥ = sina(2m/h2)1/2 √Ek. k∥ being preserved, one obtains

  k∥ = sina (2m/h2)1/2 √Ek = sinb (2m/h2)1/2 (Ek + EF + f)1/2 (4)
  This equation is the key equation for converting the measured 

parameters, Ek and a, into the electron momentum and 
energy inside the solid prior to the electron excitation. As 
established above, EF may be evaluated from the difference 
between the maximum and the minimum kinetic energies; Ek 
can be measured at a normal emission angle, a=0; and f may 
be derived from the knowledge of hn.

hv = 21.2 eV

1

Bottom CB

Fermi level

0

0

a

–1 1

Figure 48 Transmission probability, T(a), for electrons issued from the 
Fermi level and from the bottom of the conduction band of Be 
for hn = 21.2 eV polar co-ordinates.

	 	 From Fig. 45, the maximum value of k∥ is kF sinbl .
  For Be kF = 1.92 Å–1 and k∥(max) = 1.3 Å–1

  k⊥(in) = (2m/h2)1/2 cosb √ES or (from Eqs. 1 and 2):
  k⊥(in) = (2m/h2)1/2(ES – Ek sin2a)1/2 or 
	 	 k⊥(in) = (2m/h2)1/2(EF + f + Ek cos2a)1/2.

Comments: ARPES and on surface states

ARPES: Angle-resolved photoemission spectroscopy, also called 
ARUPS with U for UV, is the technique for the experimental deter-
mination of bulk and surface electron band structures of crystals 
(as investigated in detail in Chapter V). By measuring the kinetic en-
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ergy and angular distribution of the electrons photoemitted from a 
sample illuminated with sufficiently high-energy radiation, one can 
gain information on both the energy and momentum of the electrons 
propagating inside a material or at its surface. Equation 4 based on 
the conservation of the parallel component of momentum is the key 
equation for such a determination. For surface states, the normal 
component is null and the method is perfect for the experimental 
investigation of these states. For bulk states, the determination of 
the normal component of bulk states is more complicated than the 
present evaluation. First the periodicity of the crystal structure has 
to be taken into account. This periodicity implies that the transitions 
are allowed only by considering the extended zone scheme and em-
ploying a reciprocal lattice vector G or by limiting the k-values con-
tained in the first Brillouin zone in a reduced energy band scheme (see 
Fig. 40 inspired from Damascelli, Physica Scripta 109, 2004, 61). This 
last choice implies vertical transition between the occupied and the 
unoccupied states involved in the photoemission process (Fig. 49).

(a) (b) (c)Ekin Ekin

(N Ekin)

EB

Ef

Ev
EF
Ei
E0 p

a
ki 0 p

a
ki + G

hn

G

f V0

p/
hn

Figure 49 Photoemission process (a) electron transition in the solid 
vertical transition in the reduced band scheme (solid 
arrow) or oblique transition in the extended band scheme 
(dashed arrow); (b) free-electron final state in vacuum; (c) 
corresponding photoelectron spectrum.

 Safely ignored in the case of a 2D sample and of surface states, 
the problem with k⊥ may be circumvented by postulating a free 
electron–like behavior for the final state branches. To distinguish 
between surface states and bulk states, it is convenient to take a 
spectrum with two different photon energies but for the same k∥, 
bulk-related peaks will in general show a dispersion in the spectrum 
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while surface state peaks stay at a fixed binding energy. For this 
strategy, the use of a synchrotron radiation as a light source (see 
Chapter I, Course Summary, Fig. 2) is obviously better than that of a 
gas-discharge lamp because of its tunability.
 Only suggested in the present exercise, the use of ARPES permits 
to measure the density of states at a normal emission angle as well 
as to measure electronic band dispersions and to map the Fermi 
surfaces of bulk and surface states.
 It is trivial but worth mentioning that photoelectron spectroscopy 
can only be used to study the occupied electronic states of the sample 
up to the Fermi level. The unoccupied states can be measured by 
a technique called inverse photoemission or bremsstrahlung 
isochromat spectroscopy (BIS), which is based on shooting electrons 
at a surface and detecting the emitted photons.
 Surface States: Surface states are electronic states at the surface of 
materials. They result from the sharp transition from solid material 
that ends with a surface and extended only at the atom layers closest 
to the surface. When solving the Schrödinger equation one obtains 
two types of solutions. One type corresponds to bulk states which 
terminate in an exponentially decaying tail reaching into the vacuum 
illustrated in Fig. 35 of Pb. 2. The other type corresponds to surface 
states characterized by an exponential decay both into the vacuum 
and into the bulk crystal making the wave functions localized close 
to the crystal surface.
 Historically the surface states are in turn classified into two 
types: The Shockley states and the Tamm states, depending 
upon the approximation being used for solving the Schrödinger 
equation at around the surface (see Chapter V for details on these 
approximations), which are the nearly free electron approximation, 
or Shockley states, and the tight-binding approximation, or Tamm 
states.
 The first type, Shockley states, can be obtained for clean and 
ideal surfaces of both metals and some narrow-gap semiconductors. 
Indeed the hexagonal close-packed surfaces of Be, Mg, Al, Cu, Ag, 
and Au all possess occupied Shockley states. The Tamm states 
are characteristic of more tightly bound systems such as those in 
which the valence electrons are d states. Tamm states are suitable 
to describe transition metals and also wide-gap semiconductors. 
In fact, there is no real physical distinction between the two terms, 
only the mathematical approach in describing the surface states is 
different.
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 Another classification distinguishes the intrinsic surface states 
from the extrinsic ones. The intrinsic surface states originate from 
clean and well-ordered surfaces, including reconstructed surfaces, 
where the 2D translational symmetry gives rise to the band structure 
in the k space of the surface. Extrinsic surface states originate from 
surfaces with adsorbates or defects and from interfaces between 
two materials.
 Thus, besides their interest from the fundamental aspect, the 
investigation of the properties of surface states is of a key importance 
for practical applications of the physical and chemical properties of 
surface.
 Fair examples concern the interfaces between two materials 
such as a semiconductor–oxide or semiconductor–metal in the 
semiconductor technology where the presence of large density of 
surface states at these interfaces modifies the nature of the electrical 
contact, rectifying (Schottky) or non-rectifying (ohmic), via the 
pinning of the Fermi levels.
 Surface states are routinely observed in experiment, notably 
with angle-resolved photoemission spectroscopy (ARPES) or also 
with scanning tunneling microscopy (STM). ARPES is the subject of 
very abundant literature among which one may select arbitrarily. 
A. Damascelli et al. Reviews of Modern Physics 75, 2003, 473–541; 
P. Hofmann, Surface Physics: An Introduction, 2013; eBook in pdf 
format, ISBN 978-87-996090-0-0, F. Reinert and S. Hüfner, New J. 
Phys. 7, 2005, 97; E.W. Plummer and W. Eberhardt, Adv. Chem. Phys. 
49, 1982, 533.

Problem 5: Scanning Tunneling Microscope (STM)

Consider two parallel metallic plates of the same composition and 
separated from each other by a vacuum of thickness s. The metal 
constituting the two plates is characterized by its Fermi energy EF 
and its work function f. A potential difference is applied between the 
two plates so that the electric field is uniform with one held at zero 
potential and the other at potential V > 0.
 (1) Sketch the position of the Fermi levels as well as the variation 

of the vacuum level when one moves away from one plate to 
the other along the z-axis (where eV < EF).

 (2) Evaluate the number of electrons n (per unit volume), located 
in one of the plates, having enough energy and the satisfactory 
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direction to be able to occupy the available states in the other 
plate. Make the following simplifying assumptions: T = 0 K; 
eV << EF. One must therefore evaluate the electronic density 
contained in a fraction of the spherical shell limited by a solid 
angle DW and comprised between the two spheres of radii kF1 
and kF2. Choose the arbitrary value DW = 1/6 sterad.

 (3) In fact, in quantum mechanics, the probability P(E) that such 
electrons will traverse the potential barrier situated in the 
interval 0 ≤ z ≤ s is given by the Wentzel–Kramers–Brillouin 
(WKB) approximation:

  P where( ) , ( )E e a k z dza
s

= =- Ú2
0

  in which k z( ) represents the modulus of the (imaginary) 
wave vector of the electron at a point z situated in the barrier.

  Consider that the electrons that pass from electrode 1 to 
electrode 2 have a component kz such that kz ≈ kF and show 
that P(E) takes the form P(E) = e–2k0s. Find k0.

 (4) Deduce the expression for the current density jz between 
the two electrodes and show that it may take the form: 
jz = AVe–2k0s. Find A.

 (5) Numerical application: f = 0.5 eV; EF = 5 eV; V = 0.05 V; s = 5 Å 
What are the numerical values taken by 2k0 (in Å–1), A (in 
W–1m–2) and j (in A/cm2)?

 (6) In fact one of the electrodes consists of a very sharp tip (ending 
in a single atom) without this form and significantly changes 
the results above. Knowing that it is possible to detect relative 
variations of current of the order of 10%, find the variation of 
s, Ds, that can be deduced (the depth resolution of a scanning 
tunnel microscope) for s = 5 Å.

 (7) Evaluate the lateral resolution L of the microscope knowing 
that the majority of current flows in the interior of the solid 
angle DW (≈πL2/s2). ( , , )e mh

Solution:

 (1) See Fig. 50. If electrode 2 is held at a positive potential V with 
respect to electrode 1, the Fermi level EF2 will be shifted below 
eV compared to EF1, because of the electron energy diagram.
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 (2) The electrons flowing from 1 to 2 (associated with a current 
>0 in the opposite direction) must not only have an energy 
between EF1 – eV and EF1 but also the correct direction kz.

  At 0 K, we therefore consider that they are contained in the 
hatched volume v shown in Fig. 51.

  The number of electrons contained in v is

  n v v k k= ≠Ø =2 8 1
6

43 2( ) / ,p p dwhere F F  and

  dk k k k eV EF F F F F= -1 2 12ª / , taking into account

  h2
2

2
12k m E eVF F/ = - . From this we find n

m

h
k eV= 2

3 2 F

0(vide)
0(vide)

EF2

0
0

s z

u z( ) 21

f1

e F– eV
EF1

 

kF1

1/6

kF2

kz

 Figure 50 Figure 51

 (3) The n particles above have kinetic energy EF in the electrodes. 
In the trapezoidal potential barrier of height EF + f and 
EF + f – eV (measured from the bottom of the conduction 
band), they have a pure imaginary k wave vector such that:

  h h

2 2 2 2

2 2
k
m

k
m

u z z eEz= - = - = - +F ( ) ( )f f

  from which k
m

eEz= -2 1 2

h

[ ] /f . The proposed integration 

leads to the expression for a:

  a
m

eE
eV= - -4

3
2 3 2 3 2

h

[( ) ( ) ]/ /f f , where E.s = V.

  Since eV << f, we find P = exp(–k0s), where k
m

0
2

=
f

h

.

 (4) The current density in the electrodes corresponds to
j n P e v n P e vz z= = F  from which we find j AV e k s= -. 2 0 , 

where A
me

h
E= 8

3

2

3
p

F .

  In the context of these approximations (eV << f), the relation 
j = f(v) is linear (in V). This is the ohmic regime.
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 (5) 2 0 72 5 4 10 7 5 1014 1 2 7 2k A m j0
1 Å A/cm= = ¥ = ¥- - -. ; . ; .W . Note 

that j corresponds to 7.5 nA/Å2.

 (6) - = - =2 1
20

0
k s j AV s

k
j

j
Log Log ; D D , we find Ds = 0.14 Å.

 (7) tg L s L sq q p= ª ∞ = =/ ; ; / .13 1 15DW Å.
  In a scanning tunneling microscope, the resolution in depth is 

better than the lateral resolution.

Comment: The tunnel effect

The first questions of the exercise are relative to a simple tunnel effect. 
They could foreshadow further studies on the solid state physics 
of metal–insulator–metal junctions (MIM) or tunnel diodes (see 
[16], p. 185: L. Esaki, Nobel Prize in physics 1973). The calculation 
developed here is valid only under the hypothesis that eV << f, the 
ohmic region (see J.G. Simmons, Journal of Applied Physics 34, 1963, 
1793), which establishes more rigorously the law j = AV exp(–2k0s) 
but with A e k s= ( / )( / )2

0
24h p .

 At T ≠ 0, the electron density will be given by 
n g E f E P E g E f E dEa 1 1 2 2( ) ( ) ( ) ( ) ( )Ú , where g1(E) and g2(E) 

represent the density of states of electrodes 1 and 2; f1(E) and f2(E) 
represent the (F.D.) probability of occupation of these states (f2 = 1 – 
F.D., because in 2 we are concerned with empty electron states).
 WKB approximation: This approximation is used to integrate 
differential equations of the type y y¢¢( ) ( ) ( )z f z z+ = 0   (1)

We write t = y
y

¢ or y y¢ = t and y y y¢¢ ¢ + ¢= t t .

Expression (1) becomes t f z¢ ++ =t2 0( )   (2)
 The approximation of order 1 consists of writing

 t¢ = 0. t2 + f (z) = 0 and leads to t i f z= ± =( ) y
y

¢  or d
i f z dz

y
y

= ± ( )  

from which y( ) exp ( )z i f z dz= ± Ú .

 The approximation of order 2 consists of writing t u¢ ¢= ± , 
where u i f z¢ = ( ). The expression (2) becomes ± + - =u t u¢ 2 2 0  or 

t u u u
u

u
= ± ± ª ±Ê

ËÁ
ˆ
¯̃

2
21

2
¢ ¢ and Iny = ± +Ú Úudz

u
u

dz
¢

2
.

 In total,y( ) expz
u

udz= ± Ú1
.
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 Here we limit the approximation to the first order with the 
Schrödinger equation (1):

 f z
m

E u z kz( ) ( ( )) .= - = <2 02
2

h

 Therefore y( ) expz k dzz

s
= ± Ú0

 and the probability of transfer-

ring an electron via tunneling across a non-planar barrier will be 

P E k dz ax
z

s
( ) exp exp= = - = -Úyy 2

0
.

Comment: Scanning tunneling microscopy; Nobel Prize in physics 
in 1986

The last part of the problem concerns the scanning tunneling 
microscope, invented by G. Binnig and H. Rohrer (Helvetica Phys. Acta 
55, 1982, 726) and for which they were awarded the Nobel Prize 
in physics in 1986. Figure 52 shows a version of this microscope as 
marketed in the 1990s. Image of the surfaces of graphite and Pt(111) 
are shown in Fig. 53a and 53b, respectively (see also Fig. 13c and 
13d in Chapter II, Ex. 11 on atom manipulation).

Tip

Sample

x
y

Shock absorber

1cmTip

Piezoelectric
actuators

Figure 52 STM microscope in the 1990s.

 For viewing surfaces at the atomic scale, one may simply (!) 
move a very fine tip (terminated by an atom) in the vicinity of the 
surface of the object (xOy). During the scan of the tip (provided 
by piezoelectric actuators), the tunnel current is monitored and is 
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usually displayed in image form. In the invention of Binning and 
Rohrer, one does not know what to admire most: the simplicity of 
the idea, the optimization of its implementation, or the delicacy of 
its execution. Indeed, if the resolution in z is 0.1 Å, it is necessary 
that the amplitude of mechanical vibrations be smaller than this 
resolution. Scanning tunneling microscopy (STM) is a challenging 
technique, as it requires excellent vibration control combined with 
sharp tips and sophisticated electronics.

a b

 

Figure 53 STM image of graphite in the 1990s (a) and of Pt(111) in the 
2010s (b).

 In reality there are two modes of operation. One uses a constant 
current procedure (such that s = constant) and determines the 
displacement in z of the tip, by measuring the feedback current. 
Variations in height (topography) are therefore detectable to ±0.1 
Å, whereas the lateral resolution is of the order of 1 Å. The other 
mode is the constant height mode where the probe is not moved in 
the z-axis during the raster scan. Instead the value of the tunneling 
current is recorded and the image is usually referred to as a constant-
height image.
 The numerical results of the problem are perfectly realistic: I ≈ nA; 
V = 100 mV, which allows the visualization of surface atoms (Si 7 × 7). 
However, the tunnel microscope measures only the local density of 
states (see the above expression) and while we can do spectroscopy 
of these, they can also lead to difficulties in the interpretation of the 
images. Therefore, on the surface of graphite represented in Fig. 53a, 
only one atom of the two per unit cell is discernible (compare the 
image with the graphite studied in Chapter I, Ex. 17).
 Based upon STM, many other microscopy techniques (general 
labeling: scanning probe microscopy) have been developed. Among 
them there is photon scanning microscopy (PSTM), which uses an 
optical tip to tunnel photons; spin-polarized scanning tunneling 
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microscopy (SPSTM), which uses a ferromagnetic tip to tunnel 
spin-polarized electrons into a magnetic sample; and atomic 
force microscopy (AFM), in which the force caused by interaction 
between the tip and the sample is measured. AFM and STM are the 
most commonly used for roughness measurements but, as indicated 
previously in Chapter II, Ex. 11, the same moving tip principle permits 
atomic scale manipulations such as atomic deposition of metals (Au, 
Ag, W, etc.) with any desired (pre-programmed) pattern, which can 
be used as contacts in nanodevices or as nanodevices themselves 
(see Chapter I, Pb. 4, and Chapter II, Pb. 11).

Problem 6: DC electrical conductivity: influence of a magnetic 
field

In a “normal” metal (such as copper) the charge carriers responsible 
for the electric current are “free” electrons with electric charge q, of 
mass m and n for their number per unit volume.
 (1) A piece of copper, is set in a constant magnetic induction B



, 
that is uniform in the z-direction such that: B B Bz



= ∫( , , )0 0  
or B Bez
 

∫ , where ez


∫ 1.

 (a) Using the SI system show that if the electrons were free 
and in the absence of any electric field, their instantaneous 
velocity v



would be given by
  v v t v v t v Ctex y z= - = =^ ^sin , cos , ,w w     where 

v v x y^ ∫  projection of  on O| |

  provided that w has the special value, w = wc, known as the 
cyclotron frequency. Express wc as a function of q, m, and 
B. Calculate numerically |wc| for electrons when B = 1 T.

 (b) B


 is superimposed on a uniform constant electric field, 
E E E Ex y z



= ( , , ), of components Ex, Ey, Ez relative to the 
axes Oxyz.

 (i) Find the fundamental equation of motion for an 
electron with average drift velocity u



 in fields E


 and 
B


, which is subject to a damping force of form -mu


/t, 
where t is the time of flight.

 (ii) In the steady state regime, find the vector relation 
between the current density j



, the electric field E


 
and the unit vector, ez



 thus establishing a generalized 
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form of Ohm’s law j E
 

= s . Write the expression using 
the dimensionless number( )w tc .

 (iii) Project this relationship on the axes (x, y, and z) to 
solve the equations obtained from the components of 

j


. Show that 
j

j

j

Ex

y

z

xx xy xz

yx yy yz
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È

Î

Í
Í
Í
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, (1)

  where the components suv of the matrix represent 
“conductivity tensor” and are functions σ and of 
( )w tc , which are known values with u and v = x or y 
or z.

 (iv) The tensor relation above means that the current 
density j



 is not generally parallel to the electric field 
E


 in the presence of a magnetic field B


. However, 
for a metal with relatively high values   of B, the 
corresponding anisotropy is very low so that j E

 

= s . 
To clarify the degree of this approximation for copper, 
evaluate the three diagonal terms suv and show that 
they are almost equal (how close?) and the non-zero 
non-diagonal terms suv (u π v) are comparatively very 
small (how much?) using a numerical calculation, 
with B = 1 T and t = 2.4 × 10–14 s.

 (2) The phenomena related to the above anisotropy are especially 
important for semiconductors and depend on the geometry of 
the system studied.

  Hall Geometry (Fig. 54): A uniform DC current flows through 
a rectangular bar of almost infinite length. This geometry 
implies a uniform current density j of the form j j jx



= ∫( , , )0 0  
along the axis Ox.

 (a) Using the equations in (1) show that
 (i) There is a permanent regime with a transverse 

electric field, Ey in the conductor, called the Hall field, 
that is proportional to Ex.

 (ii) The resistance of a piece of bar of length l, is 
unchanged from its value in the absence of magnetic 
field (no “magnetoresistance”).
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 (b) Usually the Hall electric field is written in the form E = RH 
jxB, where RH is the “Hall constant”. Find the expression of 
RH. Show that measurements of RH and the conductivity 
σ allow the determination of the mobility m of the charge 
carriers; m being their velocity per unit electric field.

 (c) Using a figure analogous to that in Fig. 54, show the 
direction of E y



 for a “normal” metal such as copper, and 
give a physical interpretation of this electric field. (Hint: In 
the steady state the transverse component of the resulting 
force on the free electrons is zero.)

Z
B

J
Y(1)

(2) l
X

Figure 54

 (d) The bar in Fig. 54, assumed to be made of copper and to be 
immobile, is subject to the Laplace “magnetic” force. Find 
the expression of this force per unit volume, and show 
its direction in a figure similar to that in Fig. 54. Since 
the transverse component of the resulting force on the 
conduction electrons is zero [see Question (c) above], there 
is a force exerted on the rest of the immobile conductor. 
State the direction and modulus of this electric force per 
unit volume exerted by the Hall field Ey, on the Cu+ ions in 
an electrically neutral bar. What can conclusions can be 
made?

 (e) For B = 1 T and |jx|= 1 Å/mm2, calculate the order of 
magnitude of the numerical value of |Ey|

 • in a metal (n ≈ 1022 cm–3), expressing |Ey| in mV/cm
 • in a semiconductor (n ≈ 1016 cm–3, expressing |Ey| in 

V/cm
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 A measurement of the Hall effect in metallic sodium leads to  
|Ey| = 25 mV/cm for j = 1000 A/cm2 and B = 1 T. Calculate the number 
of conduction electrons per cm3 involved in this observation, 
and compare it to the number of atoms in 1 cm3 of sodium, or 
n(Na) = 2.53 × 1022 cm–3. (q, m)

Solution:

 (1) (a) Electrons having a velocity v


are subject to the Lorentz 
force:

  F qv B m
dv
dt

  



L = =^
  In Cartesian coordinates the equations of motion become: 

dv
dt

v

dv

dt
v

dv
dt

x
y

y
x

z

=

= -

=

w

w

c

c

( )

( )

( )

1

2

0 3

  where wc = qB
m

 have been used (wc < 0 because q =–qe < 0). 

  Combining (1) and (2), we obtain d v

dt
vx

x

2

2
2= -wc , which 

has a solution of form v A tx = +sin( )w jc  leading to 
v A ty = +cos( )w jc .

  The initial conditions vx(t = 0) = A sin j  and vy(t = 0) = 
A cos j allow the evaluation of A:

  A v t v t vx y= = + = = ^[ ( ) ( )] /2 2 1 20 0  and it results in 

v v t v v t vx y z= + = + =^ ^sin( ), cos( ),w j w j        cste

  Substitute w w w= - ◊ = ¥c c rad0 175 1012. /s.

 (b) (i) mdu dt qE qu B mu
    

/ ^ / .= + - t

 (ii) The steady state du
dt



=
Ê

ËÁ
ˆ

¯̃
0 results in the relation 

u
q
m

E
q B
m

u ez
   

= +t t ( ^ ) , where u E u ez
   

= +m w tc ( ^ ) . 

From which we find j Nqu Nq E j ez
    

= = +m w t( )( ^ ).c
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  The projection on the axis gives

  j Nq E j j Nq E j j Nq Ex x y y y x z z= + = - =m w t m w t mc c     ; ;j Nq E j j Nq E j j Nq Ex x y y y x z z= + = - =m w t m w t mc c     ; ; , 

where m t= q m/ .
 (iii) After rearranging terms we find

  
j

j

j

E

E

E

x

y

z

x

y

z

=
+

-

+

s
w t

w t
w t

w t
1

1 0
1 0

0 0 1
2 2

2 2c

c

c

c

  where s t= Nq m2 / (obtained from B = 0).
 (iv) We note that only σzz is strictly equal to the DC 

conductivity in the absence of B. As wct is equal to 4 × 
10-3, the two other diagonal terms, σxx and σyy , are only 
16 × 10–6 less than σ. The relative value of the non-
diagonal terms σxy and σyx are only 4/1000 of σ.

 (2) (a) In the Hall geometry, jy = 0 so that

 (i) s s
s
s

w tyx x yy y y
yx

yy
x xE E E E E+ = fi = - =0 c .

 (ii) Using the value of Ey in the current density along 

x we have j E Ex x y=
+

+s
w t

w t
1 2

c
2 c( )and thus we 

obtain j Ex x= s , which shows the DC resistivity 
of the bar is not changed by the presence of the 
magnetic field.

 (b) Starting from the two relations above (E Ey x= w tc and 
j Ex x= s ) and using the explicit values for wc and σ, we 

find E
nq

j By x= 1 and RH = 1
nq

.

  Taking s m m= =nq
RH

, the measurement of the Hall con-

stant and of the conductivity permits effectively the de-
termination of the mobility of charge carriers m s= ◊RH ,  
provided that there is only one carrier type. (For two 
carrier types, see Chapter V, Exs. 18 and 19).

  If the DC current is due to electrons, Ey is negative when 
Ex is positive ( )wc < 0 . We find this result by considering 
the steady state regime when the transverse force: 
F qu B qE y
   

= +^ is zero, or E B uy
  

= ^ .
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 (c) The Hall field for Cu is shown in the figure below. If 
jx > 0, Ey < 0 then the current is created by a displacement 
of electrons (





j nqu= when ux < 0 because q q= - e ).

Z

B

J

X

YEH

Figure 55

  If jx < 0 and Ey > 0, then the current is created by positive 
charges ( j n q u

 

= + + when ux > 0).
  As a result, the direction of the Hall electric field (sign 

of the Hall voltage) can be used to determine the nature 
of majority carriers (holes or electrons).

 (d) A unitary volume traversed by a uniform current 
density j



 is subject to the Laplace force F j B
  

= ( ^ ).
  For j j ex x

 

=  , where jx > 0 and B B ez
 

= ◊ for B > 0, we 

have F F e y
 

= ◊ , where F j B= - . .
  We can find this force (both modulus and direction) 

by considering that it is created by a Hall electric field 
acting on the ions: F nq E nq u B j Be i y i

     

= = - =^ ^ .
 (e) Numerical application: Since the Hall constant is 

inversely proportional to the volumetric density of 
charge carriers, the electric field is much weaker in a 
metal than in a semiconductor:

  Ey = 6.25 mV/cm (n = 1022cm–3),
  Ey = 6.25 V/cm (n = 1016cm–3)
  The Hall electric field in metallic sodium will be 

2.5 mV/cm for a current density of j = 1 A/mm2, and the 
corresponding electronic concentration is therefore 
n = 2.5 × 1022 cm–3.

  For other complements on magneto-resistance in 
semiconductors and on giant magneto-resistance, see 
Ex. 19.
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Problem 7: Drude model applied to the reflectance of alkali 
metals in the ultraviolet and to characteristic electron energy 
losses

We consider an alkali metal to be a set of N fixed ions (per unit 
volume) and N free electrons (one free electron per atom) of mass m 
and immersed in a vacuum (e0).
 (1) This electron gas is submitted to an alternating electric field of 

frequency w with form E E ei t= 0
w . Find the equation of motion 

for each electron knowing that there also exists a damping 

force that is proportional to their velocity v and of form - m
v

t



,  

t is the relaxation time. Find the steady state solution.
 (2) Express the conduction current density corresponding to 

the motion of N electrons per unit volume N? Taking into 
account the displacement current density (which is that of the 
vacuum), find the expression for the total current density.

 (3) Show that alkali metals can be characterized electrically 
either by the complex relative dielectric constant 
e w e w e wr( ) ( ) ( )= -1 2i  or by a complex electrical conductivity 
s w s w s w( ) ( ) ( ).= +1 2i  Simplify the expressions obtained 

using w e2
2

0
p Ne m= / .

 (4) Numerical application for potassium: Specify the value of the 
plasma frequency wp as well as the corresponding energy (in 
eV). mass density (K) = 870 kg/m3, atomic mass = 39.1, and t 
= 2.64 × 10–14 s.

 (5) Sketch the evolution of e1(w) and e2(w) specifying values when 
w = 0 and w = ∞ . Give the value of w at which e1 = 0.

 (6) When initially mono-energetic electrons (E° ≈ 20–50 keV) are 
transmitted through a thin metal film, they excite the collective 
plasma oscillations of the free electrons in the film via the 
longitudinal electric field they induce. Thus their energy loss 
is proportional to e e e2 1

2
2
2/( )+ . Indicate the characteristics of 

this energy loss by specifying the position of its maximum DE 
and its full width at half maximum DE(1/2).

  What are the numerical values of DE, DE(1/2), and EF for 
potassium? (To simplify the calculations take into account 
that w tp >> 1).
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 (7) The electric field is now a transverse field of an electromagnetic 
plane sine wave linearly polarized in x and propagating from 
the origin O in the positive z-direction.

  Determine the equation of the electromagnetic wave 
propagation in the plasma. Solve it using E T its complex 
amplitude in z = 0 (where m m= 0 ). Show graphically the 
dispersion relation w = f k( ) for w > wp assuming that 
the relaxation time is infinite. Find the expression for the 
phase velocity of the wave as a function of w and wp. What is 
the nature of the wave when w ≤ wp?

 (8) Continuing in the hypothesis that t = • , find the expression 
for the magnetic excitation associated with the previous 
electric field as function of er and next of wp and w. What is the 
wave impedance Zp in the plasma?

 (9) In fact the metal only occupies the half-space of positive z 
and the wave calculated above is only the part of the incident 
monochromatic linearly polarized electromagnetic wave that 
propagates in a vacuum ( , , )e m0 0 0z <  and is partially reflected 
at the z = 0 plane.

  After recalling the expressions of incident waves (E Hi iand  :  
complex amplitudes) and the reflected waves ( , )E Hr r ,  
determine, from boundary conditions on the z = 0 plane, 
the expression for the amplitude of the reflection coefficient 
r E Ei= r/  as a function of Z0 and Zp and next as a function of 
er and e0.

 (10) Show the variation of the ratio R between the reflected and 
incident intensity ( )R r r x= ◊  as a function of w after having 
first calculated the ratio w/wp for which R = 1/m. Carry out a 
numerical calculation using m = 16.

  Indicate the frequency domain where a total reflection is 
obtained and the frequency domain where the wave can be 
fully transmitted.

  Determine for potassium the numerical value of the wavelength 
l0 of the incident electromagnetic wave in a vacuum that 
marks the boundary between these two regions.

 (11) Show that the results obtained in (9) and (10) could be 
deduced immediately from the expression for the coefficient of 

optical reflection (in magnitude) at normal incidence: r N
N

= -
+

1
1





, 
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where the plasma may be described by a complex optical 
index N n ik= - that is a function of e1 and e2. ( , , , )e m h e0

Solution:

 (1) m
dv
dt

eE
m

v



 

= - -
t

;

  If E E e v v ei t i t
   

= fi =0 0
w w  or after substitution 

v
eE

m i





0
0

1
= -

+Ê
ËÁ

ˆ
¯̃t

w
.

 (2) J Nev
Ne
m

E

i

 



C = - = ◊
+Ê

ËÁ
ˆ
¯̃

2

1
t

w

  The density of total current is J
D
t

Ne

m i
i E







c + ∂
∂

=
+Ê

ËÁ
ˆ
¯̃

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

2

1 0
t

w
we .

 (3) One can electrically characterize the plasma by identifying the 
total current with the displacement current of the form:

  
∂

∂
=

( )e e
we e0

0








r
r

E
t

i E  in which e
w

w w
t

r
p= -

-
1

2

2 i
,

  where w
ep

2
2

0
= Ne

m
.

  Separating the real and imaginary parts we obtain

  e
w

w
t

e
w

wt w
t

1

2

2
2

2

2

2
2

1 1 1
= -

+
=

+Ê
ËÁ

ˆ
¯̃

p p, .

  One can also electrically characterize the medium by 
identifying the total current to J E







T = s , where s s s= +1 2i

  with s we e e
w

t w
t

1 0 2 0

2

2
2

1
= =

+Ê
ËÁ

ˆ
¯̃

p  and 
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  s we e we
w

w
t

2 0 1 0
2

2

1 1= = -
+

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

p
2

.

  The choice of one or the other of the two (equivalent) 
quantities is based on practical considerations:

 • s w( )  in the experiments of electrical conductivity as a 
function of frequency (see Ex. 21).

 • e wr( )  in optical experiments (see below).
 Note: (a) We can also obtain the same evolution of e w( )  by 

finding the stationary solution of the equation 
of motion of electrons based on their elongation 
x (and not as a function of their velocity v). The 
polarization per unit volume is then expressed as
P Np Nex
 

= = - . Assimilating the local field acting 
on an electron to the applied field, the result has to 
be included in the expression D E E Pr





  

= = +e e e0 0 . 
Such an approach was followed in the study of the 
movement of ions (see Chapter III, Pb. 1).

  (b) • e2 (like σ1) describes the dissipative nature of the 
medium (damping , Joule effect) and e2 is always 
positive (see technical note of Ex. 29).

   • σ2 (like e1) describes the inductive nature of the 
medium: it can be >0 or <0.

 (4) For potassium N = 1.34 × 1028 e/m3 , where wp = 6.5 × 1015 
rad/sec and hwp  eV= 4 3. .

  When wp Æ 0, e1 Æ –∞, e2 Æ ∞. When w Æ ∞, e1 Æ 1, 
e2 Æ 0.

  In addition, e1 = 0 when w w
t

w= -Ê
ËÁ

ˆ
¯̃

ªp p
2

2

1 21 /

because 

h/ .t = 0 25 eV and hwp  eVª 4 3. .
 (5) The corresponding curves are shown in Fig. 56.
 (6) Writing the complex dielectric constant as a function of the 

energy losses, we find:

  Im ( / ) /[( ) / ]1 2 2 2 2 2 2
e

w t w w w w t
r

p p
Ê
ËÁ

ˆ
¯̃

= - +
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  It is maximal when w approaches wp, a result that can be 

deduced from Im( / ) /( )1 2 1
2

2
2

e e e e= + , which is maximum 
when e1 ≈ 0 or w = wp.

0 2 4 6 8 10

–3

–2

–1

0

1

2

3

e1

e2 K

wp

w (eV)

Figure 56

  This maximum is equal to wpt and the full width at half-
maximum (2Dw) can be obtained from

  

( )

[( ) ]

w w
w
t

w w w
w w

t

w tp
p

p p
p

p
+

+ + +
+È

Î
Í

˘

˚
˙

=
D

D
D

2

2 2 2
2 2

  which gives Dw
t

= ± 1
2

.

  We note that the most probable energy loss corresponds to 

DE = hwp and its full width at half-maximum is at DE
1
2

Ê
ËÁ

ˆ
¯̃

= h
t

.  
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The energy loss function is shown in Fig. 57 for potassium.

0 2 4 6 8 10
0

1

w (eV)

wP

Loss function ( unit)p

K

Figure 57 Energy loss function of free electrons.

  Obtained by transmission of 28 keV incident electrons 
through an Al foil, an experimental spectrum is shown in 
Fig. 58 (from J. Cazaux, Thesis, Paris 1970). One may observe 
that incident electrons may experience successive plasmon 
losses (each equals to DE(0°)	∼	15 eV for Al) when the film is 
relatively thick. The parabolic dependence as a function of the 
scattering angle, q, obeys

  [DE(q°) − DE(0°)]/2E°~ aq2 
	 	 Note also that there are elastically transmitted electrons 

(0 loss line) and the corresponding lines have the energetic 
width of the electron beams emitted by the source of incident 
electrons (see Ex. 28a).

  Numerical application:
  D DE E E= = =4 3 1 2 0 25 2 1. , ( / ) . , . eV  eV eVF (for potassium)
 (7) Starting from Maxwell’s equations:

  
curlH i E

curlE i H



 







 



=

= -

Ê

Ë
Á
Á

we e

wm

0

0

r , we obtain — + =2 2
0 0 0E Er







w e m e .
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3

75 60 45 30 15 0en eV

E

E
V

Figure 58 Experimental energy loss dispersion Al film, ~1000 Å thick; 
E° ~28 keV.

  For the transverse excitation of a wave linearly polarized along 
x and propagating along z:

  E E i t kzx = -T exp ( )w  , where  k
c

= ª
-

w e m e
w w

( )
( )/

/

0 0
1 2

2 2 1 2

r
p

because t = ∞ gives e2 = 0.
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  The graphical evolution of the dispersion relation is shown in 
Fig. 59 in the interval w wn £ £ •.

0 k
0

2

4

6

8

10

12

 w = ck
wP

w (eV)

Figure 59

  The phase velocity of the wave is

  v
c

p
r p

= =

-
Ê

Ë
Á

ˆ

¯
˜

1

1
0 0

1 2 2

2

1 2( ) / /e e m w

w

.

  It is greater than the speed of light when w ≥ wp.
  In the interval 0 £ £w wp, the wave vector is purely imaginary, k 

= i|k|, and the corresponding wave E E k z i tx = -T   exp exp w
is an evanescent wave that does not penetrate into the plasma 
(see further on Ex. 29).

 (8) By substitution into one of the two Maxwell equations (see 
preceding question), we obtain

  E H Zx y p/ ( / ) /( / )/ /= = = -m e e p w w0 0
1 2 2 2 1 2120 1r p  (in Ω).

  This wave impedance is purely imaginary when w < wp. 
It is real and greater than the vacuum wave impedance
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Z0 0 0
1 2 120= =( / ) ( )/m e p   W , when w > wp

  H E i t kzy
r=

Ê
ËÁ

ˆ
¯̃

-
e e
m

w0

0

1 2




/

exp ( )T

 (9) In the vacuum, the incident wave is of the form:

  E E i t k z H
E
Zx i y

i= - =exp ( )w 0
0

   expi (wt – k0z), where

  k0 = w(e0m0)1/2

  The reflected wave is

  E E i t k z H
E
Z

i t k zx r y
r= + = - +exp ( ) exp ( )w w0
0

0         

  The continuity of the tangential components of the electric 
and magnetic field result in the following two relations (in z = 
0):

  E E Ei r t+ =  and H H Hi r t+ =

  Then one obtains: 1

0Z
E E

E
Z

( )i r
t

p
+ =  and

   r
E
E

Z Z

Z Z
= =

-
+

=
-
+

r

i

p

p

r

r

0

0

1 2

1 2
1
1

( )
( )

/

/





e
e

 (10) R r r x= ◊ = 1  for er purely imaginary, that is to say for w ≤ wp.

  R =
-
+

È

Î
Í
Í

˘

˚
˙
˙

1
1

1 2

1 2

2
( )
( )

/

/





e
e

r

r
for w ≥ wp

  When R
m

r
m

= =1 1,   and e
w

wr
p= -

+
= -

Ê

Ë
Á

ˆ

¯
˜

( )
( )

/

/

/
m

m

1 2

1 2

2

2

1 2
1
1

1

  from which w
wp

= +( ) ;
/

/
m

m

1 2

1 4
1

2
 for m = 16: w

wp
= 1 25. ,  which 

leads to an abrupt fall when w exceeds wp.
  The evolution of R is shown in Fig. 60.
  The plasma frequency corresponds to the limit between 

the region of total reflection and total transparency to 
electromagnetic waves. In the alkali metals, the electron 
density N is such that the corresponding wavelength is 
typically in the UV. This explains the transparency of these 
metals in the far UV and the total reflection to visible light, 
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resulting in metallic aspects of these metals, when they are 

not oxidized. Here l p
w0
2 2900= =c

p
 Å.

0 wp w

IR UV

Total reflection Total transparence

1

R

Figure 60

 (11) The results in (9) and (10) could be deduced immediately 
from the optical reflection coefficient at normal incidence: 

R
N
N

= -
+

1
1





because the complex index N  of a medium can be 

considered as the ratio between the phase velocity of the wave 
in the vacuum and phase velocity of the wave in the medium 
of interest (see also Ex. 29).

  

N
c

v
= =

p
r( ) /e 1 2 or r =

-
+

1
1

1 2

1 2
( )
( )

/

/





e
e

r

r
and e e1

2 2
2 2= - =n k nk, . 

Comments

 (a) On e w( ) and on the Kramers–Kronig relations:
  Very generally, the complex dielectric constant of a given 

body, regardless of the nature of this body (solid or liquid, 
metal or insulator, elemental or a compound), is such that its 
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real part and imaginary part are not independent but obey 
the dispersion relation known as the Kramers and Kronig 
relations:

  e w
p

w e w w
w w1

2
2 20

1 2( ) ( )
- =

-

•

Ú ′ ′ ′
′

d
and e w w

p
e w w
w w2
1

2 20

2( ) ( ) .= -
-

•

Ú ′ ′
′

d

  Their derivation is based only causality and linearity, 
here between D



 and E


, that is to say that D (or P) is the 
consequence of E and D E







= e e0  (or P E






= c ). They allow the 
calculation of the dispersion, e1(w), at any frequency w from 
the evolution of the absorption e2 for the entire spectrum of 
frequencies (theoretically zero to infinity) and reciprocally. 
We can deduce, in particular, that a medium which would be 
non-absorbent everywhere would also not be dispersive: If e2 
= 0 (0 ≤ w ≤ ∞) Æ e1 = 1 (0 ≤ w ≤ ∞), this medium can only 
be a vacuum. Any other medium, characterized by a dielectric 
function, will have a response that will depend on the 
frequency, and its optical index will therefore depend on the 
wavelength of the electromagnetic waves. The decomposition 
of the white light by transparent materials in the visible thus 
finds its justification (see also Chapter V, Ex. 26) in the name 
“dispersion” relations.

  These relations have a direct impact on both real and imaginary 
complex electrical conductivity (see Pb. 3) but also on those 
with a complex index N n ik= - .

  Also, note an evidence: The usual name “dielectric constant” is 
incorrect, e changes with frequency and other strains, so that 
“dielectric function” would be better.

 (b) On reflectivity and dielectric constant:
  To obtain the experimental evolution of e w( )  in the UV for 

a given sample, one measures the reflection coefficient 
(typically at normal incidence) in the widest possible spectral 
interval. Using certain extrapolations, one can then estimate 
numerically the phase shift of the reflected wave q starting 

from q w w
p

w w
w w

( ) ( )= -
-

•

Ú LogR d′ ′
′2 20

, an expression resulting 

from the Kramers–Kronig relations. One can then deduce 
the values of e1 and e2 in the spectral range considered. 
This method, which allows the identification of the electron 
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interband transitions in semiconductors (see Chapter V, Pb. 6) 
has been extensively developed since the use of intense and 
continuous electromagnetic polarized beams issued from 
synchrotron radiation sources. It later led to the construction 
all around the world of synchrotrons for the sole purpose of 
using such UV and X-sources for carrying out experiments in 
atomic, molecular physics, and condensed matter such as in 
crystallography (see Chapter I, Section 2).

 (c) On plasmons:
  If we consider an electron gas of density N surrounded by a 

lattice of immobile ions (to ensure the electrical neutrality 
of the system), and if we move a block of these electrons by 
a distance x, they will return to equilibrium via oscillations 
that must satisfy the local electromagnetic equations, in 
particular

  — ¥ = + ∂
∂

=H j
D
t

i E



we w( ) .

 As there is no magnetic excitation in this problem, we can deduce 
that the free frequency of oscillations corresponds to the zero(s) 
of the dielectric constant, e w( ) = 0. If they concern free electrons 
whose behavior can be described by e w w w( ) ( / )= -1 2 2

p , where 

the resonant frequency corresponds to w w e= =p ( / ) /Ne m2
0

1 2, the 
plasma frequency.
 To obtain experimentally these zero(s), one can use 
electromagnetic waves that induce a transverse excitation with the 
response function given by e w( ) , with dissipative part Im e  or e2 (w). 
One can also use incident charged particles (electrons, for example) 
that induce longitudinal excitations. The response function is then 
represented by 1/ ( )e w , with dissipative part given by Im e-1, which 
is maximal when e1 = 0.
 For the alkali and simple metals of the Al, Mg, and Be type, the 
evolution of e w( ) is well described by the Drude model as it is used 
in the present problem. In particular, the value of w for which e1 = 0 
(and therefore for which energy loss is maximum) corresponds to 
w ep = ( / ) /Ne m2

0
1 2 .

 For other metals with more complicated band structure (Ag, Au, 
W, etc.) as well as for semiconductors and insulators, the evolution 
of e2(w) [and therefore that of e1(w) obtained from the Kramers 
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and Kronig relations, see above] does not follow this model and 
the resonant frequency to which e1 (w) = 0 does not necessarily 
match (Ne2/me0)1/2. Thus the corresponding loss function does not 
present a sharp “plasmon” peak and it would be better to speak of 
“collective” excitation region for the 3–40 eV interval even if the 
word “plasmon” is kept here. The case of graphite (Chapter V, Pb. 9) 
and some of the semiconductors and insulators (Chapter V, Ex. 25) 
are developed in Chapter V. It should be noted that the resonance 
condition e1 = 0, is also that of polaritons in a different spectral 
domain (Chapter III, Pb. 1).
 From the experimental point of view e1 (w) and e2 (w) may 
also be deduced from the spectrum of energy losses induced 
by monochromatic incident electrons. The electron energy loss 
spectrum allows, after eliminating losses due to multiple processes 
with the excitation of surface plasmons, to obtain Im[ ]e-1 in the 
interval between 3 eV and 40 eV. The Kramers and Kronig relations, 
also apply to e-1 so it is easy to deduce Re[ ]e-1 from the imaginary 
part of the inverse dielectric constant, i.e., the energy loss function, 
to obtain e1(w) and e2(w) in the same energetic interval.
 The two methods (reflectivity and energy loss) generally give 
comparable results. If the energy loss technique is potentially less 
accurate, because of the energy width of the incident electronic 
beams (see Ex. 28a), it is advantageous in that it allows the study of 
plasmon dispersion: w w ap p( ) ( )q q



= + + ◊◊◊0 2  by simple measurement 
of the position of the energy losses as a function of diffusion angle q, 
as seen in Fig. 58.

 Further information can be found in the following:
 ∑ on optical methods in Optical properties and band structure 

of semi-conductors, DL Greenaway, and G. Harbeke. Pergamon 
(1970);

 ∑ on energy losses, in Springer Tracts in Modern Physics 38 
(1965) p. 84. H. Reather, and 54 (1970) p. 78 Daniels J et al.

 ∑ see also solutions and comments of Chapter V, Ex. 25 and 
Pb. 5; for technical note on e1 + ie2 or e1 – ie2, see Ex. 29.

Problem 8: Dispersion of surface plasmons

Consider two media separated by the xOy plane: (1) z > 0 is the 
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vacuum(er = 1) and (2) z < 0 is characterized by a complex relative 
dielectric constant er  and m = m0 everywhere.
 (a) Starting from the propagation equation in the sine regime (w), 

find the expression for the modulus of the wave vector of an 
electromagnetic wave in medium (1), k



( )1 , and in medium 
(2), k



( )2 , as a function of e and w.
 (b) The electric field and the wave vector are, in both medium, 

fully contained in the plane xOz.
  What are the two relations imposed by the boundary 

conditions on the xOy plane on E


0  and H


between, kz(1), k 
(1), kz(2) and between kx (1) and k (2)?

 (c) Deduce expressions of k kx z
2 2 1, ( ) , and kz

2 2( ) as a function of 
w, e~r, and c (speed of the light in the vacuum), having 
established that kx(1) = kx(2).

 (d) The medium (2) consists of a plasma of free electrons. Its 

relative dielectric constant is of the form e
w
wr

p
2

= -1
2

(see 

previous problem) and is therefore likely to vary between 
–∞ and 1. Study the variations of the different components of 
k i


( ) in this interval. Deduce that a wave is likely to propagate 
to the plasma–vacuum interface with a dispersion relation of 
the form

  w
w w2

2
2 2 4 4

2 1 2

2 4
= + - +

Ê

Ë
Á

ˆ

¯
˜

p pc ck kx x

/

  Comment on this result.
  Find the expression of the wave when er = –2.
 (e) Plot the dispersion curve of the surface wave by specifying the 

asymptotic values kx Æ 0 and kx Æ ∞.

Numerical application: What is the electrostatic limit (c = ∞) of the 
plasmon energy hws  propagating at the aluminum/vacuum interface 
with hwp Al  eV( ) ª 15 ?
 What is the electrostatic energy hws of the plasmon propagating 

at the aluminum/magnesium interface hwp Mg  eV( ) .ª 10 5 ?
 To answer this last question, it is necessary to first find the 
expression for the energy of a plasmon propagating at the interface 
between two plasmas, starting from the results obtained above.



442 Free Electrons Theory: Simple Metals

Solution:

 (a) Starting from Maxwell’s equations: curlH
E

t
r



 





=
∂

∂
( )e e0

  (see Pb. 5) and curlE
B
t



 



= ∂
∂

, one obtains the wave equation 

— - ∂
∂

=2
0 0

2

2 0E
E

tr







e m e which yields a wave of form 

E E i k r t
   

= ◊ -0 exp ( )w when - + =k r
2 2

0 0 0w e m e .
  If the wave vector k



 is contained in the plane xOz, we deduce 
that:

 (i) in vacuum (1): ( ): ( ) ( ) ( )e w e mr x zk k k= + = = =1 1 1 12 2 2 2
0 0 

w2

2c

 (ii) in a medium (2) : k k kx z r r
2 2 2 2

0 0

2

22 2 2( ) ( ) ( )+ = = =w e m e w e 

c

 (b) The magnetic excitations have only a component in y and are 
related to the corresponding electric field by

  k E H
  

( ) ( ) ( )1 1 1¥ = wm                                      kk E H
  

( ) ( ) ( )2 2 2¥ = wm

  (classic results that can be easily deduced from the Maxwell–
Faraday equation taking into account the form of 



E )
  The boundary conditions in the plane z = 0 imply:

 (i) The continuity of the tangential component of the 
electric field at the origin: [Ex(1)]0 = [Ex(2)]0 or 

E
k
k

E
k
k

z z( ) ( )
( )

( ) ( )
( )

1 1
1

2 2
2

◊ = ◊  (see Fig. 61)

 (ii) The continuity of the tangential component of the 
magnetic excitation at the origin gives [Hy (1)]0 = [Hy (2)]0 
from which we find k(1)◊E(1) = k(2)◊E(2). 

  By dividing these two equalities term by term, we find 

k

k

k

k
z z( )
( )

( )
( )

1
1

2
22 2= .
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 (iii) Finally, the components Ex or Hy must be continuous at every 
point in the xOy plane for every x. Thus for instance, one 
obtains H i k x t H i k x ty x y x( )exp [ ( ) ] ( )exp [ ( ) ]1 1 2 2- = -w w  
or kx(1) = kx(2).

E(1)

K(1)
(1) e0 0m

X
0

K(2) E(2)

(2) ,e er0 0m

Z

Figure 61

 (c) Combining the above equalities with those established in (a), 
we deduce the following expressions:

  

∑ = = =
+

∑ =
+

∑ =

k k k

k

k

x x x
r

r

z
r

z

2 2 2
2

2

2
2

2

2

1 2
1

1 1
1

2

( ) ( )

( )

( )

w e
e

w
e

w

c

c







22

2 1c




e
e

r

r +
.

 (d) Neglecting the damping term, the evolution of the dielectric 
constant of a plasma of free electrons, shown in Fig. 56 (Pb. 7), 

obeys the relation e
w

wr
p= -1
2

2 from which the following table 

with the variations of the different components of k


can be 
constructed. From the table, three frequency domains can be 
distinguished:
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w 0
wp

3
wp

2
wp +•

er –•


–2


–1


0


1

k2
x 0

>0


2 2

2
w
c


+• –•

<0


0 

>0
w2

22c

kz
2(1) 0 

<0
- w2

2c


–• +• 

>0
- w2

2c

>0


0

kz
2(2) –• 

<0
- 4 2

2
w
c



<0
–• +• 

>0
0 

>0
w2

22c

 (i) 0
2

< <w
wp :  kx is real and kz(1) and kz(2) are purely 

imaginary; the wave is guided along the surface from 
which it propagates without attenuation (if t = e2 = 0) 
even though it is exponentially damped when it deviates 
in the xOy plane.

  The resulting wave has the form:

  
E E k z i k x t

E E k

z x

z

 

 

( ) ( )exp ( ) exp ( )

( ) ( )exp (

1 1 1

2 2 2

0

0

= - -

= -

w

)) exp ( )z i k x tx -w

  For the particular case when er = –2 (that is to say w
w

= p

3
),  

one obtains

  

z E E
z

c
i

x
c

t

z E E

≥ = - -
Ê

ËÁ
ˆ

¯̃

£ =

0 1 1 2

0 2 2

0

0

: ( ) ( )exp exp

: ( ) (

 

 

w w

))exp exp2 2w wz
c

i
x

c
t-

Ê

ËÁ
ˆ

¯̃

 (ii) 
w

w wp :
2

£ £ p  kz(1) and kz(2) are real, kx is purely 

imaginary; it is the inverse of the preceding situation, the 
waves propagate without attenuation along the Oz axis but 
are exponentially damped when they move transversally 
along the Oz axis.

  E E k x i k z t
x

xx z

 

( ) ( ) exp ( ) exp ( )1 1
0
0

0= ± ◊ -
+ <
- <

Ê
ËÁ

w
si
si
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	 (iii)	 w > wp: All the wave vector components are real. It is the 
transparent region of the plasma (see Pb. 7).

  The dispersion relation of the surface wave w
w

<
Ê

Ë
ÁÁ

ˆ

¯
˜̃

p

2
is 

obtained by substituting er into the expression 1
2

2-
w

w
p in 

the relation giving kx
2. We find the proposed expression 

w
w w2 2 2 4 4

4 1 2

2 4
= + - +

Ê

Ë
Á

ˆ

¯
˜

p
2

pk c k cx x

/

, in which the + sign that 

appears mathematically before the radical is omitted 
because it places w outside the interval studied (w > wp).

 (e) When kxc p<<
w

2
, the dispersion relation is identified with 

that of an electromagnetic wave in a vacuum: w = ckx (straight 
“light” line).

  When kxcÆ• (electrostatic approximation c Æ • or l Æ 0 ), 
w tends to wp/ 2 . The shape of the corresponding curve is 
shown in Fig. 62. 

KX

w

0

w
=

KC

wp

2÷

Figure 62

 (f) The plasmon energy that propagates at the interface between 
aluminum and the vacuum is h hw ws p eV= =/ .2 10 6 .
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  To obtain (without having to redo all the calculations) the 
plasmon energy that propagates at the interface between 
two metals, it is sufficient to replace the ratio of the relative 
dielectric constants of the plasma to the vacuum by the 
relative dielectric constants of one medium to another in the 
expression for kx:

  k
cx

2
2

2
2 1

2 1 1
=

+
w e e

e e
( )/ ( )

[ ( )/ ( )]
.

  The electrostatic limit corresponds to e(2)/e(1) = –1, which 

gives 
h h hw

w w
ws

p p
s      eV( , )

( ) ( )
; ( , )

/

1 2
1 2

2
1 2 13

2 2 1 2

=
+È

Î
Í
Í

˘

˚
˙
˙

=  for 

the plasmon at the Al/Mg interface.

Comments: Surface plasmons

One can excite surface plasmons by the following methods:
 (a) Optically, for instance, by placing a thin film of silver 

( . )hws eVª 3 6  very close and parallel to the hypotenuse of a 
prism with total reflection (see Fig. 63 and A. Otto, Zeitschrift 
für Physik 216, 1968, 398) who coined this method, frustrated 
total reflection (FTR).

Ag

Figure 63

 (b) Using electron beams by reflection on metals or by transmission 
through thin films. The energy losses of the incident electrons 
correspond to multiple integers of hws (surface plasmons) 
and hwp  (volume plasmons), and their intensity decreases 
as a function of the diffusion angle q, following a q–3 law for 
surface losses and q–2 for volumetric losses. Using angular 
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measurements, one can determine the experimental 
dispersion of these plasmons. The asymptotic value is very 
sensitive to topography and cleanliness of the interface. The 
experimental value of surface plasmons of aluminum goes 
from hws eV= 10 6.  to h hw w es p Al O2 3

= + =( ) ./1 6 51 2  to 7 eV 
when the surface is coated with a thin film of aluminum. For 
non-planar interfaces, the results will also be modified.

Problem 9: Metallic superconductors, London equations, and 
the Meissner effect

In the simplest approximation superconducting properties can be 
explained by considering that N conduction electrons propagate 
without friction (perfect conductor: t = ∞) under the action of an 
electric field. Although incorrect, this approach predicts some of the 
unusual properties of superconductors.
 (1) Write the equation of motion for one of these electrons (–e, 

m). Infer the relationship between ∂ ∂j t


/  and E


 (where j


 is 
the current density) for a perfect conducting medium.

 (2) Starting from Maxwell’s equations (established in vacuum 

m0 and neglecting the displacement current density ∂
∂
D
t

), 

show that the variation of B


 as a function of time obeys the 
relationship:

  — ∂
∂

Ê

ËÁ
ˆ

¯̃
- ∂

∂
=2

2
1 0B

t
B
t

 

l
                                                      ( : )—2 Laplacian   (1)

  Find l and evaluate it numerically for the case of lead (N = 
6.72 × 1028 e/m3).

 (3) A perfect conducting material occupies the half-space where 
x > 0 and is subject to an external magnetic field, Hext, uniform 
with a single component Hz that grows slowly over time 
from zero. When Hext reaches a critical value Hc, the material 
becomes normal.

  Starting from equation (1), determine the evolution of ∂ ∂B tz/  
as a function of x into the perfect conducting material.

  Deduce that at a point M inside the perfect conductor, where 
OM = xM >> l, the magnetic induction B (xM) remains zero if 
it was initially zero. Show the graph of B = f(H) of the first 
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magnetization. Show that if H subsequently decreases from 
H1 to –H1 (where |H1| > Hc ), the material is characterized by a 
hysteresis curve. Sketch this hysteresis curve B = f(H).

 (4) In fact, superconductors do not have a hysteretic magnetic 
behavior but reversibly following the first magnetization 
curve established above, known as the Meissner effect. To 
account for this phenomenon, London postulated that the 
superconducting medium is characterized by the relationship 
curl j B

 

= -( / )1 0
2m lL  (2)

  From Maxwell’s equations [same assumptions as in (2)] show 
that B follows a differential equation similar to (1), which was 
established previously for ∂ ∂B t/ . Deduce the evolution of Bz as 
a function of x.

 (5) Derive the London equation with respect to time and show 
that the result is compatible with that established in (1) for a 
perfectly conducting material. Deduce the expression of lL.

  In fact, superconductivity of lead is explained by associating 
electrons in pairs, known as Cooper pairs with mass mx. In 
this case give a more realistic expression for lL.

 (6) Verify that, when subject to an external magnetic field 
similar to that of the Question (3), the superconducting 
material describes the characteristic cycle of the Meissner 
effect [mentioned in (4)]. What is the value of the magnetic 
susceptibility c, that characterizes this behavior?

 (7) From the evolution of B [established in (4)], deduce the 
corresponding evolution of the vector density of current, 
j(x). Show that it exerts pressure on the surface of the 
superconductor. What is its direction?

  The critical magnetic induction of lead is Bc = 0.08 T at 0 K. 
What is the numerical value of the critical current density, jc? 
Give also the order of magnitude of the maximal pressure [to 
simplify, keep the numerical value of l found in (2)]. (m0, e, 
m) 

Solution:

 (1) m
v
t

eE j Nev
∂
∂

= - = -


  

; from which ∂
∂

= - ∂
∂

=j
t

Ne
v
t

Ne
m

E

 



2
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 (2) curl H j curl
B
t

j  ( ) ,m m m0 0 0



 





 



= ∂
∂

= ∂
∂∂

= =
t

Ne
m

E E
m

l
0

2

2
1 

  and curlE
B
t



 



= -
∂
∂

, from which

   curl curl
B
t

curlE
∂
∂

Ê

ËÁ
ˆ

¯̃
= = -



 



 1 1
2l ll2

∂
∂

Ê

ËÁ
ˆ

¯̃
B
t



, which leads to Eq. (1)

  div B


= 0 because l
m

=
Ê

Ë
Á

ˆ

¯
˜ =m

Ne2
0

1 2

205
/

 Å.

 (3) The only physical solution for ∂ ∂B tz/  is

  ∂
∂

=
∂

∂
-B x

t
B

t
ez z x( ) ( ) /0 l

  For a point M such that xM >> l, in the interior of a perfect 
conductor, the variations of Bz as a function of time are zero: if 
at the initial instant Bz(xM) is zero, it will remain zero. On the 
other hand, if B x Bz( )M = π1 0 , this value will not change and 
the flux will be trapped. The curve of the first magnetization 
and the deduced hysteresis are shown in the left side of  
Fig. 64.

B

HC

B H= m0

B

0
H1 H

–HCHC

H

B B

T T> C T T< C

Figure 64

 (4) curl j B curl H j


 

 

 



= =( / )1 0
2

0m l m mL 0   and  

  from which we find curl curlB curl j
B

 



 



= = -m
l0 2

L
.
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  This result leads to — - =2 21 0B BL

 

( / ) .l
  Here, the solution has the form Bz(x) = Bz(0)e–x/lL.
 (5) The magnetic induction B does not penetrate into the 

superconductor and is expelled. Deriving the London equation 
with respect to time we find

  curl
j
t

B
t

curl
∂
∂

= - ∂
∂

=
 

1 1

0 0
2m l m lL

2
L

E, which includes the equality 

established in (1) where l l mL s= = ( / ) /m N e2
0

1 2 .

  If we take into account Cooper pairs with mass m*, charge –2e 
and density Ns/2, we find

  l mL = ( / ) /m Nex 2 2
0

1 2

 (6) The left curve in Fig. 64 is now reversible, the flux is expelled 
as soon as the material becomes superconducting.

  B H M H
   

= + = +m m c0 0 1( ) ( )
  In the superconducting state B = 0 and c = -1; it is a perfect 

diamagnetic material.
 (7) curl B j

 

= m0  or B B xz z= -0 exp ( / )l  from which

  j
B
x

B
xy

x z z( ) exp ( / )= -
∂
∂

Ê
ËÁ

ˆ
¯̃

= -1

0

0

0m m l
l .

  The exponential damping of the current is correlated to that 
of B in the superconducting material.

  In the volume dv, situated near the surface of the supercon-
ductor, the force exerted on the Laplacian is dF jdv B

  

= ¥ .

 Per unit of orthogonal area at xx¢: F j x B x dx
 

0

•

Ú ¥( ) ( ) , and the 

critical current density Jc (that is to say, that created by the critical 
field at the surface of the superconductor) corresponds to jc = Bc/m0l. 
The corresponding pressure in the same direction as Ox is B0

2
02/ m .

Numerical application: J Pc cA/m Pa= ¥ = ¥3 1 10 2 55 1012 2 3. ; . .

Comment: Superconductors; Nobel Prize in physics in 1913 and 
1987

The purpose of this problem (and the two that follow) is to 
familiarize the reader with the remarkable physical properties 
of superconductors (see also Chapter V, Exs. 2b and 23). 
Superconductivity of Hg was discovered by H. Kamerlingh Onnes 
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(Nobel Prize in physics, 1913) after the liquefaction of Helium but 
these properties concern not only the disappearance of electrical 
resistance but very specific magnetic properties that are referred to 
the Meissner–Ochsenfeld effect (discovered by Walther Meissner and 
Robert Ochsenfeld in 1933 and followed by the phenomenological 
theory of superconductivity by Fritz and Heinz London in 1935) and 
critical field and current density.
 We know the enthusiasm sparked the discovery of high-
temperature superconductors, which have a critical temperature 
higher than liquid nitrogen (J. G. Bednorz and K. A. Müller, Nobel Prize 
in physics in 1987, following their article in Zeit Phys 64, 1986, 189 
on superconductivity of copper oxides of type Y, Ba Cu, O). However, 
it should be noted that if the effects specified in this exercise (at 
least in their generality) concern all superconductors, the themes 
developed in the next two problems relate only to superconductors 
based on metals and metal alloys. The microscopic mechanisms of 
high-temperature superconductivity seem related to 2D behavior of 
the charge carriers in the CuO planes (see Chapter V, Ex. 2a).

Problem 10: Density of Cooper pairs in a metallic 
superconductor

In a simple model, superconductivity is modeled as made up of two 
paired electrons obeying Bose–Einstein statistics.
 The superconductor therefore consists of two fluids, one formed 
by normal free electrons with density ne and the other formed by 
such pairs of density np.
 (1) In the normal state, but at very low temperatures (we neglect 

the dependence of the Fermi energy EF and assume T = 0 K), 
find the expression for the density of free electrons ne as a 
function of EF(N).

 (2) In the superconducting state, the Fermi energy is slightly 
lower EF(S) = EF(N)(1–d), where 0 < d << 1.

  What becomes of the expression n0 for ne? Deduce the 
expression for the density of pairs as a function of n0 and d.

 (3) In an independent evaluation (based on Bose statistics), we 

find that the density of pairs is n
mk T

p
B c= Ê

ËÁ
ˆ
¯̃

2 6 2

3 2

.
/

ph
 where m = 

mass of electrons and Tc = the critical temperature.
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  Numerically find ne and np for the case of lead where Tc
 = 7.2 K 

and EF(N) = 6 eV. Deduce the numerical value of d. (h, kB, m, e)

Solution:

 (1) E m nF = ( / )( ) /
h

2 2 2 32 3p  (see Course Summary) from which

  n
mE N

0 2 2

3 21
3

2
= Ê

ËÁ
ˆ
¯̃p

F( ) /

h

 (2) When EF(N) becomes EF(N)(1–d), we have ne = n0(1 – d)3/2 
ª n0[1–(3/2d)], from which (by conservation of electrical 

charge): n n n np e( ) ( / ) .= - = ◊1
2

3 40 0d

 (3) n n0
28 3 23 3 66 72 10 3 45 10 6 8 10= ¥ = ¥ = ¥ -. ; . ; . .e/m e/mp d

  If the superconductivity of the mixed copper oxides is not 
yet fully understood, the superconductivity of metal alloys 
is explained by the BCS theory (J. Bardeen, L. N. Cooper and 
J. R. Schrieffer, Nobel Prize in physics in 1972). This theory 
(Physical Review B 108, 1957, 162) is based on the attraction of 
pairs of electrons through a phonon: an electron in the crystal 
attracts ions of the network which, in turn, attract a second 
electron and a Cooper pair is formed. This new state has a 
lower energy than the normal state and is separated from it 
by a forbidden band gap (0.3–3 meV). In the present problem, 
this band gap is d * EF ≈ 0.04 meV, an order of magnitude lower 
than typical BCS superconductors (see Chapter V, Ex. 23).

Problem 11: Dispersion relation of electromagnetic waves in a 
two-fluid metallic superconductor

In a two-fluid superconductor, the total current density, J, is the sum 
of the normal current density, JN, and the superconductor current 
density Js: J J J

  

= +N s . J E
 

N = ◊s s0 0 0  describes the conductivity 
of a normal metal with ne normal electrons and js obeys the 
London equation (in which lL is determined starting from the ns, 
superconducting electrons per unit volume: m n e/ s

2
0m .

 (1) Starting from Maxwell’s equations and taking into account 
the displacement current, show that the dispersion relation 
of electromagnetic waves in such a superconductor is 
k i2

0 0
2

0 01= - - +m s w l w m( / )L
2 e .
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 (2) Compare the contribution of the normal current with that of 
the superconducting current and determine the frequency 
domain for which the super-current short-circuits the normal 
current. Express the result as a function of ne, ns, and t 
(relaxation time of normal electrons) after having compared 
lL to the skin depth d m s w= 2 0 0/ .

 In fact, the relationship is valid for photons with energy less 
than the forbidden band width Eg = kBTc. The critical temperature of 
lead is Tc ≈ 7 K. Find the order of magnitude of the frequency limits 
imposed by the latter and deduce that in any case the displacement 
current density term is negligible.
Recall that the London equation is curl j B

  

= - 0/ .m lL
2

Solution:

 (1) curl H j j
D
t

 ( ) ,n sm m m m0 0 0 0



= + + ∂
∂

  where jn = s0E such that curl j Bs

 

= -( / )1 lL
2  (London).

  Taking the curl of the two terms of the equality and taking into 
account that curl E B t

 

= -∂ ∂/ , we find

  -— = - ∂
∂

- 1 - ∂
∂

2
0 0 2 0 0

2

2B
B
t

B
B

t









m s
l

e m
L

  By inserting a solution of the form B B i t kr
  

= -0 exp ( )w , we 
find:

  + = - - +k B i B B
c

B2
0 0

2

2
1   

wm s
l

w

L
2 .

 (2) The right hand side of the equality links respectively the term 
related to the normal conductivity, the London equation, and 
the displacement current density.

 Taking into account that s0 = (nee2t)/m and also that lL = (m/
nse2m0)1/2, the normal conduction current will be short-circuited by 
the superconducting current when ( / )1 2

0 0l wm sL >> , or equivalently 
wt << ns/nn. 
 In other terms, the superconductor becomes normal when 
the London length lL is smaller than the normal skin depth: 

d ws m t= =2 20 0 0
2/ /u m n ee .

k T v k T hB c B cmeV c/s= = =0 583 14 1014. , / .  or l = 2.1 mm (where l is the 
wavelength of the electromagnetic wave). The displacement current 
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density is always negligible in this spectral region (this justifies the 

approximations made in Pb. 7) because w p
l

l
2

2

2

2
22 1

c
= <<( )

( )
/ .

OEM L

Questions

 Q.1: Why does freshly prepared sodium shine so brightly?
 Q.2: From atmospheric pressure, a sample of sodium is introduced 

into a ultrahigh vacuum chamber. Does this operation influence 
the average speed of conduction electrons? If yes, specify the sign 
and magnitude of the variation of the Fermi level knowing that the 
compressibility of the metal is of the order 1.6 × 10–10 m2/N.

 Q.3: Comparing the measured value of σ for a metal to the expression s0 
= ne2t/m, one obtains the mean time of flight t for free electrons of 
order 10–14 s at ambient temperature. When such a metal is subjected 
to an electric field of order 100 V/m, the drift velocity of these 
electrons is such that ve = cEt/m = 0.1 m/s and the distance traveled 
by an election between two collisions will be L ª = -ve mt 10 15  or 
10–5 Å or ∼10–5 atom size! Where is the error? What is the correct 
order of magnitude for L?

 Q.4: e1 – ie2 or e1 + ie2?
 Q.5: In a range of temperature around room temperature, we can write 

D Dr
r

a= T .  What is the order of magnitude and the sign of a, the 

temperature coefficient of resistivity r of metals?
 Q6: To focus X-rays why is not possible to build lenses based on the law 

of refraction of geometrical optics?
  Why do we identify the optical path to the geometric path in Bragg’s 

law?
 Q.7: Why do we say superconductors are perfect diamagnetic materials?
 Q.8: What is the order of magnitude of the resistivity of a metal such as 

copper at room temperature? Without recourse to superconductors, 
how can it be minimized during its elaboration and use?

 Q.9: Why do we also call the Kramers–Kronig relationships: dispersion 
relations?

 Q.10: EXAFS allows us to determine the distance between two neighboring 
atoms but the diffraction experiments (including slow electrons) 
allow access to the same information. What is the advantage of 
EXAFS?
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 Q.11: How is the quantum Hall effect useful for developing standards of 
resistances?

 Q.12: How many atoms are needed for an aggregate so that it acquires a 
metallic character?

 Q.13: What difficulties must be overcome when one is seeking a good 
electrical conductor and a poor heat conductor?

 Q.14: What minimum thickness must a metallic film have to use the 
value of the bulk resistivity of the solid metal when calculating the 
resistance?

 Q.15: What simple method can be used to evaluate the density of vacancies 
in a metal?

 Q.16: Which problems and exercises in this chapter require knowledge of 
crystallography?

 Q.17: What experimental methods should we implement to obtain, in a 
metal or a strongly doped semiconductor, the sign and density of 
carriers, as well as their mobility?

 Q.18: An atomic electron is ejected from its initial level by irradiation of 
electrons or X-rays. Is the emission of a photon the only possible 
process to restore equilibrium?

 Q.19: What is the best resolution which may be achieved in STM: the 
vertical one or the horizontal one?

 Q.20: What is the experimental method to obtain the valence band density 
of states? Same question for the dispersion curve of the surface 
states.

 Q.21: What is the physical origin of the work function in metals?

Answers at the end of the book





Course Summary

1.	Introduction

The free electron model can be successfully applied to certain 
metals. However, it does not account for the electrical properties of 
semimetals, semiconductors, and insulators because it neglects the 
potential energy of valence electrons in the periodic potential of the 
ions of crystal lattice.

2. Band Theory

The general solutions of the Schrödinger equation 


2
2

2m
V E— +

È

Î
Í
Í

˘

˚
˙
˙

=y y , where V takes into account the periodic nature 

of the lattice, are Bloch waves of form y( ) ( ) .r u r eik r
 

 

=  in which u(ŕ) 
like V takes into account the periodicity of the lattice. In 1D, u(x) = 
u(x + a) because V(x) = V(x + a).
 The wave vector 



k , therefore, always refers to a spatial orientation, 
and the components of k are, as for free electrons, quantized (cyclic 
boundary conditions kx = nx2π/Lx, ky = ny 2iπ/Ly, kz= nz 2π/Lz) and 
the integers nx, ny, and nz are good quantum numbers of electrons.

Chapter V

Band Theory: Other Metals, 
Semiconductors, and Insulators

Understanding Solid State Physics: Problems and Solutions
Jacques Cazaux
Copyright © 2016 Pan Stanford Publishing Pte. Ltd.
ISBN  978-981-4267-89-2 (Hardcover), 978-981-4267-90-8 (eBook)
www.panstanford.com
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 Beyond the general form indicated above, rigorous analytical 
solutions are impossible to obtain. Depending on the nature of 
the crystal, various simplifications can be introduced to obtain the 
dispersion relation E = f(k).
 For metals, simplifications result in the nearly free-electron 
approximation. For a periodic crystalline potential, the perturbation 
on the propagation of the valence electrons is a small correction. 
The resulting dispersion relation deviates from the parabolic free 
electron relation only when the wave vector k approaches the limits 
of the Brillouin zones where the Bragg conditions are nearly satisfied. 
When the Bragg conditions are satisfied strictly, the corresponding 
electronic waves cannot propagate: the amplitude of reflected waves 
is equal to that of incident waves and results in standing waves. This 
causes the appearance of a forbidden energy band of width that 
is proportional to (the Fourier component of) the corresponding 
potential energy.
 In contrast, for insulators and semiconductors, the tight-binding 
approximationis typically used. It starts from the initial electronic 
states of isolated atoms and considers the effect of condensing 
them into the solid state via a perturbation, which is responsible 
for the appearance of a chemical bond between atoms and their 
neighbors. Using wave functions satisfying the Bloch theorem, this 
approximation is also known as the linear combination of atomic 
orbitals (LCAO). It leads to a dispersion relation of the form: 

 E k E e
j

ik j( ) = - - Â -
0 a g r



 (1)

in which E0 represents the initial electron energy, α is the energy of 
the orbital, and γ is the overlap energy between neighboring atoms 
(which are separated by a distance ρj and are generally limited to the 
nearest neighbors j). α and γ are positive so that α determines the 
cohesion of the crystal even though the width of the energy band will 
be proportional to γ: the weaker the coupling between neighbors, 
the narrower the band.
 The determination of the detailed band structure is a complex 
task that is beyond the scope of this book. Assuming the validity of 
expressions similar to Equation (1), for example, the goal here is 
to study the influence of the crystal potential on the Fermi surface 
and the density of states in order to understand the electronic and 
optical properties of some important crystals.
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 Regardless of the calculation method, valence electron 
dispersion curves, E = f(k) can be represented in either the extended 
or reduced schemes. Figures 1a and 1b illustrate these two types 
of representations for electrons obeying the nearly free-electron 
theory. In particular note that depending on the amplitude of the 
discontinuities in contact to the Brillouin zones, there can be an 
overlapping or no overlapping between allowed energy bands.

(11)

E

(10)

2E¢

E¢

0

1 r B0

E

aV11

p /a

Free electron

p /a 0

(a) (b)

Nearly free electron

aV10

p 2/a

2° B0

p 2/a

Figure 1

3. Filling of Available States: The Fermi Surface

 • Each allowed band can only accept two valence electrons per 
basis.

 • If there is a single electron per basis (monovalent alkali metals, 
for instance), the filling leaves the first band half-empty: the 
occupied states and the Fermi level are often very close to 
those obtained in the theory of free electrons, which justifies 
a posteriori the success of this theory (see Fig. 2).

 • If there are two valence electrons in the initial lattice, we can 
have, in 2D, either a full first band or partially filled first band 
and a partially filled second band (depending on the amplitude 
of the discontinuities of the forbidden band; see Fig. 2 and 
Ex. 5a). Generalizing this reasoning and taking into account 
that a full band cannot conduct electricity, we can explain 
the existence of good (metals) and bad (semiconductors, 
insulators) electric conductors.
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4.	Density	of	states,	effective	mass,	electrons,	
and holes

 • The curvature of the band near the Brillouin zone results 
in an increase in the density of states at the corresponding 
energies:

 g E g k
k
E

g k
v

( ) ( ) ( ) .= =d
d g

 To take into account the effects of the periodic potential on the 
electron dynamics when electrons are subject to an external force F e



, 
we assign these electrons an effective mass m* such that

1 1
2

2

m

E
k kij

x
i j

= ∂
∂ ∂

Ê

Ë
Á

ˆ

¯
˜



.

 If m * < 0 (at the Brillouin zone edge, as shown in Fig. 3)¸ we 
consider the particles to be holes such that m* > 0, q = e, instead 
of considering the nonphysical picture of electrons with a negative 
mass and a negative charge (–e).
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5. Success of Band Theory

 • Describe the differences between metals, semimetals, 
semiconductors, and insulators (see Exs. 5 and 9) and the 
cohesion of transition metals (Ex. 8)

 • Predicts the correct sign of hole conduction in the Hall effect 
(Ex. 18) 

 • Accounts for the color of insulators and semiconductors 
(Exs. 25 and 28)



462 Band Theory

 • Predicts why Ni is ferromagnetic and not Cu (Ex. 7)
 • Accounts for the phase changes in alloys (see Ex. 6), etc.

6.	Semiconductors	(Generalities)

 • Semiconductors are materials (most often elements of 
column IV or binary alloys of the III–V columns) that have 
room temperature resistivities s –1 intermediate between 
metals and insulators (10–2 Ω-cm < ρ < 109 Ω-cm ) and have a 
forbidden energy band Eg (0.1 eV < Eg< 2 eV).

 • Their electric conductivity, s, increases quickly with 
temperature and with the addition of impurities nd: extrinsic 
semiconductors doped with n-type impurities such as As and 
Sb or p-type impurities such as Al, In, and B.

 • With two types of carriers: j v v
  

= +r r1 1 2 2. When one deals 
with electrons and holes of concentrations ne and nh per unit 
volume, one obtains s = e(neme + nhmh) from v

 

e eE= -m  and 
v Eh h

 

= m
 • If nd is negligible, the semiconductor is intrinsic ne = nh = ni.

Eg

+liebound e¯bound e–

conduction
band: CB

valence
band: VB

Si

free e–

ionization

Figure 4 

  In real space and in a band model, the breaking of an electronic 
bond results in the transfer of an electron from the valence 
band, VB, to the conduction band, CB, and thus the creation of 
an electron–hole pair. 

 • The additional electron from a pentavalent impurity will be 
in the conduction band if it escapes itself from the impurity 
atom: its energy level will be in the forbidden energy gap if it 
rests bound to the initial impurity but its bonding energy will 
be weak. 
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7.	Law	of	Mass	Action

  n g E f E E n g E f E E
E

e e h h hd d
g

= ◊ = ◊
•

-•
Ú Ú( ) ( ) , ( ) ( )

0

  where the density of states g(E) is referenced to unitary 
volume. 

 • 5kBT < EF < Eg – 5kBT: nondegenerated semiconductor. 

  n N
E E

k Te C
F g

B
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e B=

◊Ê
ËÁ
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  Law of mass action: n n N N
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k T
ne h C V

g

B
i= - =exp 2

  From which for an intrinsic semiconductor we find 

  n N N
E

k Ti C V
g

B
= ( ) -1 2

2
/ exp

  and s m m s= +( ) µ -n e
E

k Ti e h
g

B
: exp .

2
  For a doped semiconductor:
  If nd is small or T is high: ne ≈ nd

  If nd is large or T is low: n
E
k Te

i

B
µ -exp

2
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  The addition of n-type impurities results in a decrease in 
holes (known as compensation) and this increase in the 
electronic concentration results in an increase in the Fermi 
level (Ex. 10). 

 • If Eg – 5kBT < EF < Eg + 5kBT: the semiconductor is partially 
degenerated.

 • If EF > Eg + 5kBT: the semiconductor is degenerated  
(see Pb. 5).

8.	Different	Types	of	Semiconductors

Silicon remains the most widely used semiconducting material in 
electronic devices (see Pbs. 7 and 8); however, it has an indirect 
bandgap (e.g., the minimum of the conduction band (Ec) and the 
maximum of the valence band (Ev) are not located at the same place 
in the Brillouin zone).
 For some applications direct bandgap III–V compounds are more 
efficient. Some of their properties can be deduced simply from the 
band structure (see Ex. 21). In addition, alloys of type IIIxIII¢1–xV 
can be grown with controlled concentration x of an element of the 
III column (or the fifth column) with respect to the concentration 
(1 – x) of another element of the same column (III¢) in order to adjust 
the bandgap energy Eg (see Ex. 21). If the material is homogenous 
such as GaAs, one can realize Gunn diodes (see Ex. 30). One can also 
grow heterostructures such as quantum wells and superlattices with 
specific properties (see Pb. 9a). 
 Table 1 and Fig. 6 provide specific values for different semi- 
conductors. 

Table 1 Bandgap energy Eg (i = indirect; d = direct) and mobility of 
carriers for several semiconductors

Eg (eV) Mobility (cm2/V◊s)

Crystal 300 K Electrons Holes

Diamond
Si
Ge
InSb
InAs
InP
GaAs

5.4 (i)
1.14 (i)
0.67 (i)
0.18 (d)
0.35 (d)
1.35 (d)
1.43 (d)

1800
1300
4500
77000
33000
4600
8800

1200
500
3500
750
460
150
400
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Figure 6 Bandgap energies of different semiconductors as a function of 
lattice parameter.

9. Allotropes of Carbon: Graphene, C-nanotubes, 
and Buckyballs 

One may consider that the end of the last century was the silicon era 
because of the fantastic applications of semiconductors in, among 
many others, microelectronics. The beginning of the present century 
is the beginning of the era of spintronics based on graphene and 
others allotropes of carbon such as C-nanotubes and buckyballs. 
Graphene has quickly emerged as a promising electronic material 
and it could be a leading candidate to replace silicon in applications 
ranging from high-speed computer chips to biochemical sensors. 
Pb. 10 is an introduction to the 2D band structure of graphite with 
some of its optical properties. Pbs. 11 and 12 are a simple overview of 
the specific properties of graphene and of C-nanotubes also derived 
partly from the tight-binding approximation. 

Exercises

Exercise	1:	s-Electrons	bonded	in	a	row	of	identical	atoms:	1D

In the tight-binding approximation, the energy E of s-electrons obeys 
the relationship:



466 Band Theory

 E a e
m

i m= - - Â - ◊
g

k
 

r

in which α and γ are positive energies that can be calculated, k


 
is the wave vector of electrons, and r



m represents the vectors 
between the origin of each atom and its nearest neighbor.

 (a) Find dispersion relation E = f(k) for a row of equally spaced 
identical atoms equidistant by a.

 (b) Deduce the expression of the density of states g(E) and that 
of the effective mass m*: how this last expression simplified 
when ka << 1?

  The energy γ is related to the s-orbital overlap between 
nearest neighbors and its value decreases very quickly 
when the distance separating them increases. How does the 
bandgap change as atoms are made further apart from one 
another? What is the concomitant evolution of effective mass 
of electrons at the bottom of the band?

 (c) At 0 K, what is the value of Fermi energy when the element is 
monovalent?

 (d) α = 1 eV, γ = 0.5 eV: show the curves E = f(k) and g(E).
  With a = 3 Å, specify the numerical values of m* for electrons 

found at the bottom of the band. What about the mass of 
electrons located at the top of band?

 (e) The energy α represents the difference between an s-electron 
in an isolated atom and the average corresponding orbital 
energy in the crystal. Without calculation, find the order of 
magnitude of the cohesion energy (approximate expression 
and numerical value). ( , , )e m 

Solution:

 (a) rm = ± a from which E = – a – 2g cos ka
 (b) We can evaluate g(E) starting from the general expression:

  g E
V S

E
( )

( )
=

—ÚÚ2
2 3p

d E

k

 
 (see Chapter IV, Ex. 11)

  or more simply here by using the equality:

  g E E g k k g k k( ) ( ) ( )◊ = ◊ = ◊d d d4 2  where g k
Na( ) =
2p

  (see Chapter IV, Ex. 13) from which
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  g E g k
k
E

N
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N

E
( ) ( )

sin /= ◊ ◊ = =

- +È

Î
Í
Í

˘

˚
˙
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4 1 1

1
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2 1 2
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d p g pg a

g

  [compare to the result in Chapter IV, Ex. 11c (β)].
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E
a m
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cos : *=

∂
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+
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fi Æ



2

22
0

g a
kwhen .

  When the atoms are further away γ ≈ 0; the electron level is 
discrete and without dispersion. The width 4γ of the band 
increases when the atoms become closer together. The bottom 
of the band has more curvature as the effective mass decreases 
(the electrons become lighter). In an isolated atom m* = •, 
corresponding to the impossibility of electron propagation, 

which can be seen because vg = 0 when ∂
∂

=E
k

0.

  Note that for hydrogen g r
r

= +
Ê
ËÁ

ˆ
¯̃

-
2 1E

r
e r

H
B

B ,

  where EH = 13.6 eV and rB = 0.53 Å.

 (c) N g E E g k k
Na

k
E k

= = ◊ =
- -Ú Ú( )

a g p2 0
2 2F F

d d F  or k
aF = p

2
.

  This is a logical result since when the band is full - £ £Ê
ËÁ

ˆ
¯̃

p p
a

k
a

, 

it can accommodate two electrons per atom and the density 
g(k) (in 1D) is constant. 

  From this, EF = –α, which can alsobe obtained directly using

  

N g E E
N E

E

E E
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- +Ê
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 (d) m
a

mx = =

2

2 02
0 4

g
. . Given the symmetry of the curve E = 

f(k), the effective mass is the same in absolute terms at the 
top and at the bottom of the band. Note, however, that it has 
the opposite sign at the top of the band, which reflects the 
behavior of holes.

 (e) Taking into account the choice of origin (0 eV here corresponds 
to the energy of the s-electrons in the isolated atom), it is 
sufficient to calculate the reduced average energy of 1e– 

E
E
N

= T  in the half-filled band with E E g E E
E

T
F

d= ◊
- -Ú ( ) .

a g2
 For 

a free electron gas in 1D E
E

= F
3

, due to the high density of 

states at the bottom of the band.
  As we find here the same form of g(E) for k << π/a, we can 

adopt the same value: Ec eVª + Ê
ËÁ

ˆ
¯̃

ªa g
4
3

1 66.  (per e– our 

atom). See also the evaluation done in Ex. 4.

Exercise	2a:	Electrons	bounded	in	a	2D	lattice

In the tight-binding approximation, energy E of the s-electrons obeys 
the relationship

 E e
m

i m= - - Â - ◊
a g

k
 

r

in which α and γ have positive energies that can be calculated and 
r


m  represents vectors that connect the atom located at the origin at 
each of its m nearest neighbors.
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 (a) In the xOy plane, identical atoms are distributed in a square 
lattice with lattice parameter a (see Chapter III, Exs. 9 and 18, 
and Chapter IV, Ex. 14). After having explained the valence 
electron dispersion relation E = f(k) for such a lattice, specify 
the energy EΓ of electrons with zero wave vector, then with 
theenergies EX (and EM ) for which the end of the wave vector in 
X (then M) coincides, in reciprocal space, with the middle point 
situated between origin Γ and point 10 (then the point 11); 
α = 1 eV, γ = 0.5 eV. What are the numerical values of EΓ, EX, 
and EM?

 (b) Find the relationship E = f(k) relating to the directions G GX M
   

, , 
and XM

 

. Find the corresponding curves and compare them 
with the dispersion curves of free electrons in the same relative 
directions.For clarity shift the representation E¢= f(k) relative 
to the free electron model and then evaluate numerically the 
corresponding energies E¢X and E¢M taking a common origin EΓ 
with a = 3 Å.

 (c) Find the general equation of the constant energy curves and 
specify their form around the points Γ and M.

  Show the corresponding curves inside the first Brillouin 
as well as the line corresponding to E0 = –α. What are the 
characteristics of the Fermi line when the element under 
consideration is monovalent?

  Without calculating it explicitly but relying on the above 
results, sketch the curve of the density of states g(E) and 
indicate the width of the energy bandgap.

 (d) Find the tensor expression of the inverse effective mass tensor 
1

mx . What is the numerical value of mx near the Γ and M points, 

as well as around the point X when a = 3 Å.( , , ) e m

Solution:

 (a) In direct space, the atom at 0 has four neighbors: r


m =
±a

0
 

and rm =
±
0
a

. Then one obtains (the components of k


being kx 

and ky):
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 (b) The relations established in (a) reduce to
   E k ax= - + -( ) cosa g g2 2  along GX k y

 

( )= 0

   E
k

a= - -a g4
2

cos along GM k k
k

x y

 

= =
Ê
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ˆ

¯̃2
.

   E k ay= - + -a g g2 2 cos  along XM k ax

 

( / )= p  

while for free electrons we obtained (see Chapter IV, Ex.14):
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  or E¢x ª 1.2 eV and E¢M ª 5.4 eV, taking into account the 3 eV 
shift from the origin.
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 (c) E k a k ax y= - - + =a g2 (cos cos ) tanCons t

  Around point Γ: 

  cos ( ) , cos
( )

k a
k a

a
k a

x
x

y
y= -

◊
= -

◊
1

2
1

2

2 2D D

  Hence, E

a
k kx y

+ + = +a g
g

2
2

2 2D D : the lines of constant energy 

are circles.
  Around point M: 

   
cos cos( ) ( )
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k a k a
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k a k a
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x x
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y y
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= - ◊ =
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  The lines of constant energy are also circles.
  When E = –α, cos cosk a k ax y= -  

so that k k
a

k ky x x y= ± - £ £Ê
ËÁ

ˆ
¯̃



p p p
2 2

, .

  Inside the first Brillouin zone, the corresponding lines of 

constant energy delimit a square of length p 2
a

 with the point 

X and its equivalent X
a

X
a

X
a

, , , , , ,-Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

p p p0 0 02 3and  at 

the corners.
  The area of this square is equal to half of the first Brillouin 

zone, it contains –N/2 states that can accept N electrons, the 
perimeter of this square is the Fermi surface of the element 
considered when it is monovalent (see analogies with 
phonons: Chapter III, Ex. 9).

  We can compare this result with that obtained for free 
electrons occupying a square lattice (Chapter IV, Ex. 14).

  At the bottom of the band, the surfaces of constant energy 
are circles, and the dispersion relation is so closely related 
to that of a 2D free electron gas and the density of states is a 
constant.

  When we approach energy E = –α , the lines of constant 
energy turn into a square while the slope of the curve E = f(k) 
decreases.
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  Considering the expression g E
I

E
( ) µ

—Ú
d E

k

  , we note that these 

two evolutions both tend to increase g(E), as compared to 
the constant density of 2D free electrons. Finally and most 
importantly, the evolution of E = f(k) around point X marks 
the presence of a horizontal tangent plane in X and this point 
X is a point of inflection for curves of type GX XMÆ . The 
inflection is confirmed by the different sign attributed to 
effective masses depending on the direction of propagation, k. 
The evolution of E = f(k) around the critical point X leads to a 
logarithmic singularity in the density of states curve (for the 
detailed calculation see Y. Quéré [21], p. 306).

  Beyond E = –α, we expect a symmetric evolution, as previously, 
and to be convinced it is sufficient to show the constant energy 
curves around the point M in the adjacent Brillouin zones to 
the first (such as the lines XX3, which are symmetry axes for 
the constant energy curves.) 

  The characteristics of the curve g(E), with a total width of 8γ, 
are shown in Fig. 9.

g E( )

– – 4a g –a – + 4a g
E

Figure 9
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2 02
0 4

g a
m= . .
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  Around point M, coskxa = coskya = –1, effective mass is 
negative/it is a hole region. 

  It should be noted, generally, that the sign of the effective mass 
around the extrema of the curves E = f(k) is such that m* > 0 
for the minimum and m* < 0 for the maxima.

  Around the X point: m
a

*- =
-

È

Î
Í

˘

˚
˙

1
2

2

2 1 0

1 1
g


; we obtain a hole 

behavior when the force is along Ox and an electron behavior 
when it is along Oy.

Exercise 2b: Band structure of high-Tc superconductors: 
influence of 2D nearest neighbors (variation of Ex. 2a)

High-temperature superconductors contain quasi-planes of CuO2 
layers that are perpendicular to the c-axis of the crystal. The goal is to 
establish the structure of one of these n-bands, the most important, 
by considering a direct square lattice 2a, which consists of an atom 
of copper at (0, 0) and two atoms of oxygen in (½, 0) and (0, ½), as 
shown in the Fig. 10.
 To achieve this goal, we consider the reciprocal space of a 2D 
lattice and use the tight-binding approximation, including the action 
of the second neighbors.
 The initial expression if of the form: 

E k E e e
m

i

j

im j( )
k k

= - -Â Â- -
0 1 2g g

   

r r

where the sums over m concerns the first neighboring oxygen atoms 
with distance r



m , and the sums over j is for second neighboring 
oxygen atoms with distance r



j . The energy γ1 is positive, while γ2 
restricted to the orbital anti-bonding between oxygen atoms (second 
neighbors) is negative.

a

2a

Cu

Cu

O1

Figure 10
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 (1) Find the general form taken by the dispersion relation 
E = f(k).

 (2) Auxiliary calculations give |γ2|/γ1 = 0.45 and we wish to 
evaluate the corresponding energies for various vectors k.

  For convenience use the interval –p/a < kx, ky < +p/a even 
though the first Brillouin zone is limited to –p/2a, +p/2a.

  Find the energies taken at the Γ point: kx = 0, ky = 0; point X: 
kx = π /a, ky = 0; at the intermediate point A: kx = π/2a, ky = 0; at 
point M: kx = π/a, ky = π/a, as well as the points corresponding 
to GM
 

/2  and to XM
 

/2 .
  Show the dispersion curves in the [10] direction, that is at GX

 

,
in the [11] direction along GM

 

 as well as in the XM
 

 direction. 
Compare them with those obtained when only first neighbors 
are taken into account

 (3) The Fermi energy is such that EF = E0. Plot this position energy 
on the dispersion curves. Next show the corresponding line in 
the 2D reciprocal space.

  To ensure the continuity of this Fermi line, this space must 
be centered at point M by placing the points of type Γ at the 
corners of a square. Compare this with the lines of constant 
energy deduced when only first neighbors are considered.

 (4) The addition of foreign atoms in the crystalline planes adjacent 
to the CuO2 reference planes reduces the Fermi energy EF via 
p-doping. Referring to the curves established in 2, find the 
decrease, ΔEF, which should lead to a significant increase of 
the density of states at the Fermi level g(EF) and therefore to a 
significant increase in the conductivity s (see the expression 
given in the Chapter IV, Ex.19).

 (5) At right angles to the plane layers, the dispersion relation 
is of the form E k k cz z( ) = -g c  (where γc << γ1). Why is this 
relationship consistent with 2D behavior of charge carriers?

Solution:

 (1) Taking the origin at an oxygen atom, there are four first 
neighbor Cu atoms at (±a, 0) and (0, ±a). In addition the four 
second O neighbors are characterized by vectors r



j  such that 
r


j a a( , )± ± .

  E k E k a k a k a k ax y x y( ) (cos cos ) cos cos= - + + ◊0 1 22 4g g
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 (2) E E E

E X E E

E M E

( ) .

( ) .

( )

G = - + ª -

= - = -

= + +

0 1 2 0 1

0 2 0 1

0 1

4 4 2 2

4 1 8

4 4

g g g

g g

g g 22 0 15 8ª +E . g

  E E E M E E XM E( ) ; ( / ) ; ( / )D G= - = = +0 1 0 0 12 2 2 2g g
   

  These last three energies are not influenced by the second 
neighbors. The corresponding curves are shown in solid lines 
in Fig. 11, with dashed lines corresponding to γ2 = 0.

  It should be noted that there is a significant distortion 
resulting from the action of the second neighbors. 
Technically, it should be noted that the choice of interval  
 – p/a < ks , ky < p/a allows the exploration of the angular 
domain covered by cos(kx,ya) between –1 and +1.

E

M[11] r[0, 0] X[10] M[11]zDS

EFE0

g1

A

Figure 11

 (3) See Fig. 12, in which the dashed curves show the square 
constant energy surfaces resulting from the action of only 
nearest neighbors (see previous exercise).

  The action of the second neighbors has the effect of removing 
the intersection of EF with E = f(k) at the X point (see previous 
exercise) to reposition it between X and M, at point A in Fig. 11 
and shown again in Fig. 12, taking symmetries into account. 
The topology of the Fermi surface is therefore deeply modified 
by the action of the second neighbors.
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M

G

X

X

M

A M
A

M

G

G G

Figure 12

	 (4)	 We	observe	that	the	band	between	Γ	and	M	is	almost	flat,	which	
causes	the	existence	of	an	area	with	a	high	density	of	states	

since	 — ªkE
 

0  and g(E)	 is	 such	 that g E
I E Cste

E
( ) ( )µ =

—Ú d

k
,	 

hence	a	large	value	of	Γ(see Chapter IV,	Ex.	19).
	 	 For	 the	 Fermi	 level	 to	 reach	 this	 region	 of	 high	 density	 of	

states,	it	must	decrease	of	about	2γ1.
 (5) ∂2E/∂k2z	=	0;	 the	effective	mass	of	particles	measured	along	

the c-axis	is	infinite	and	these	particles	are	therefore	bound	to	
the	plans	of	CuO2.

Comment: High-Tc superconductors

The	 discovery	 of	 high-temperature	 superconductors	 stimulated	
considerably	the	imagination	and	research	of	solid	state	physicists	
(see	 Chapter	 IV,	 Pb.	 7).	 The	 zoology	 of	 the	materials	 of	 this	 type	
increases	every	day:	 see	 the	 review	paper	of	T.	Tohyama	 Japanese 
Journal of Applied Physics 51, 2012,	 010004.	 Other	 high-Tc 
superconductors	 such	 as	 iron-based	 superconductors	 have	 been	
recently	discovered	(Bianconi	et	al. Nature Physics,	9,	2013,	536).
	 This	exercise	is	inspired	by	the	work	of	Yu	and	Freeman	(J Electron 
Spectros. Rel. Phenom. 66,	1994,	281	and	Refs.	27	and	38,	therein).	
According	to	these	authors,	the	detailed	mechanisms	are	not	related	
to	 the	existence	of	 the	observed	singular	point	X	 in	 the	density	of	
states	curve	when	first	neighbors	are	only	taken	into	account—see	
preceding	 exercise—but	must	 be	 correlated	 to	 the	 actions	 of	 the	
second	neighbor	that	induce	distortions	of	the	surface	of	Fermi	and	
the	dispersion	curves	that	have	just	been	studied.	Figure	13a	shows	
the	unit	 cell	 of	 another	high-Tc	material:	HgBa2CuO4,	which	has	 a	
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critical temperature Tc = 95 K. Figure 13(b) completes their analysis, 
according to which the addition of 0.38 hole per unit cell is sufficient 
to lower the Fermi level (from 0.4 eV) at the height of the maximum 
of g(E), as suggested in the Question (4). Except for the notations 
used, the results obtained here are in perfect agreement with those 
of this reference article.
 For the parallels between the study of the dispersion of electrons 
and that of phonons, we refer the reader to Chapter III, Exs. 3–5, 
which highlight the significant influence of the second neighbor on 
the shape of the curves ω = f(k). 

Hg
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O(2)

Cu
O(1)

q = 0.38

EF EF
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en
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p
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n
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–0.6 –0.4 0.0 0.2 0.4–0.2

(a) (b)

Figure 13

Exercise	3a:	Tight	binding	in	a	simple	cubic	lattice	(3D)

 In the tight-binding approximation, the dispersion relation of the 
s-valence electrons is given by:

 E E e
m

m= - - Â -
0 a g

k
 

r

where E0, α, and γ have positive energies, k


 is the wave vector, and 
r


 is the vector connecting the position of the initial atom to its m 
nearest neighbors.
 (1) We consider identical atoms distributed in a simple cubic 

lattice with parameter a.
  Find the dispersion relation of s-electrons. Specify the form 

it takes along the following directions: [100] or GX , [110] or 
GM , and [111]or GW  and express the energy at the X, M, and 
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W points on the first Brillouin zone as well as at the origin Γ in 
the zone center (see Fig. 14).

  Compare the evolutions along GX  and then GM  with the 
corresponding evolution of a 2D square lattice (Ex. 2a).

  Show the dispersion curves along G G GX M W, ,  as well as 
XW .

 (2) Find the expression of the effective mass, mx, for particles 
located in the vicinity of Γ. Indicate the characteristics of the 
constant energy curves in this region (ka << 1) as well as the 
energy curve E¢ = E0 = – a – 2g  obtained in the plane ΓXM (kz = 
0). Relying on the symmetry of the object,describe the constant 
energy surface E¢ = E0 – a – 2g. Also show that corresponding 
to E¢¢ = E0 – a by considering the shape of the constant energy 
lines for different values of kz and also possibly the curves 
obtained in 2D (see Ex. 2a).

  Which of these two surfaces is the Fermi surface of a 
monovalent element?

  Without detailed calculations, find the shape of the curve for 
the density of states g(E).

 (3) If we consider p-states, the atomic wave functions no longer 
have a spherical symmetry and the dispersion relation given 
by the tight-binding approximation becomes

  E = E1 – a –2g1 cos kxa –2g ¢1 (cos kya + cos kza)
  in which E1, a1, and γ ¢1 are positive while γ1 is negative such 

that |γ1| > γ ¢1. 
  For kz = 0, show the shape of the s- and p-bands first in the kx 

direction and then in the ky direction when E1 – a1 > E0 – a + 
2g. Also show the constant energy curves of the p-band in the 
kz = 0 plane.

W

M
X

G

Figure 14
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Solution:

 (1) Each atom has six nearest neighbors: r = (+a,0,0); (0,+a,0); 
and (0,0, +a)

  E = E0 – a –2g (cos kxa + cos kya + cos kza)
  At the Γ point: kx = ky = kz = 0; E(G) = E0 – a – 6g
  Along [100], GX k k k k E E kax y z

 

; , ; cos= = = = - - -0 4 20 a g g 

  
GX k k k k E E kax y z

 

; , ; cos= = = = - - -0 4 20 a g g

  and E(X) = E0 – a – 2g.

  Along [110], GM k k k kx y z

 

: / ;= = =2 0
  E E ka= - - -0 2 4 2a g g cos( / )  and EM = E0 – a + 2g
  Note that up to a translation in energy, the same results are 

obtained for a 2D square lattice with E(G) = E0 – a – 6g
  Along [111], GW k k k kx y z

 

: / ;= = = 3
  E E ka= - -0 6 3a g cos( / ) and E(W) = E0 – a + 6g
  Figure 15 shows three of the four evolutions. For the fourth 

( )GM
 

, see curve 2b obtained in Ex. 2a. 

 (2) Near the zone center, G: cos ( ) , .k a
k a

E E a kx
xª - = - - +1
2

6
2

0
2 2a g g

cos ( ) , .k a
k a

E E a kx
xª - = - - +1
2

6
2

0
2 2a g g   

  The constant energy surfaces are spherical (isotropic) and 

are occupied with electrons of mass m
a

x = 

2

22g
.

[111] [000] [100] [111]

p/ 3a÷ p/aW G X W

+6g

–6g

E

E0 – a

Figure 15
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  In the plane kz = 0, the lines of constant energy 
E¢ = E0 – a – 2g correspond to coskxa + coskya = 0, which leads 
to straight lines of the equation kv = ± kx ± π/a. This forms a 
square with vertices X1, X2, X3, and X4 in the plane (see Ex. 2a).

ky

ky

kz

kx

x
kx

kz

k x ay = /2

M

w

(a) (b)

Figure 16

  This reasoning also applies successively to the kx = 0 and then 
the ky = 0 planes. 

  The constant energy surface E¢ = E0 – a – 2g is therefore the 

cube at corners at the points X1 to X6 such that ±Ê
ËÁ

ˆ
¯̃

p
a

, ,0 0 , 

0 0, ,±Ê
ËÁ

ˆ
¯̃

p
a

, and 0 0, ,±Ê
ËÁ

ˆ
¯̃

p
a

.

  Contrary to a 2D lattice, it will not be the Fermi surface of a 

monovalent element because its volume p 2
3

a

Ê

ËÁ
ˆ

¯̃
is smaller 

than and not equal to 1
2

2 3Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

p
a

.

  The lines of constant energy E¢¢ = E0 – a  correspond to 
cos kxa + cos kya = – cos kza.

  For k
az = ± p

2
, we find again that the lines k k

ax y= ± ± p delimit 

a square (bold line in Fig. 16a).
  For values of |kz| increasing between π/2a and π/a, we find 

decreasing values in –coskza and the lines of constant energy 
become circular without strictly achieving perfect circularity 
(at kz = π/a, the pseudo-radius is |k| ≈ π/2a).
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  Inversely, the values of kz such that 0 < |kz| < π/2a correspond 
to increasing constant energy lines (beyond the square in the 
2D lattice: see Fig. 8b, Ex. 2a). These are pseudo arcs with 
circumferences centered on M. Taking symmetry into account 
we find the characteristics of Fig. 16a, which correspond to 
the Fermi surface of a monovalent element. To see this, one 
can repeat the resulting structure (translations of 2π/a along 
successively kx, ky, and kz) and next take a point X as the 
origin to find that the volume of the unoccupied hole states 
reproduces exactly the volume of occupied states (see Fig. 
16b).

  In principle, we can evaluate g(E) starting from d

k

S

E—ÚÚ  
, 

where —kE
 

 is along kx such as 2γsinkxa, etc.

3.5

E0 – a
–6g +6g

(2)

(1)
3.0

2.5

2.0

1.5

0.5

1.0

2 * ( )g g E

Figure 17

  Despite the possibility of integration using a single variable, 
the final result is numerical. Thus, we may only note: (i) the 
symmetrical shape relative to energy E0 – α ; (ii) the beginning 
evolves as E , like free 3D electrons that have a mass m*, 
which reaches a plateau when the constant energy surface 
E¢ comes into contact with the Brillouin zone (at the point 
X). This plateau corresponds to compensation between the 
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decrease of the useful dS and the decrease of —kE . Figure 17 
shows this evolution compared to free electrons of the same 
mass m*, curve (2). Also note the differences with the curve 
g(E) correspondingly obtained in 2D (Fig. 9, Ex. 2a).

 (3) See Figs. 18a and 18b. Note that the curve E(kx) of p-electrons 
has a downward concavity while curves E(ky,kz) have an 
upward concavity. The different constant energy curves 
contained in the space E = f(kxky) have a saddle-shaped surface 
and the effective mass of the p-electrons in the kx direction is 
negative.

  When the s- and p-bands overlap, the proposed relationships 
no longer hold and one must use hybrid orbitals that lead to a 
dispersion relation via the resolution of the secular equation 
(see Pb. 10 for the example of graphite and the classic works 
[1] [11] [25] for more details). It should be especially noted 
that to determine the allowed and forbidden bands one must 
start from a system with multiple atomic levels, that is, a 
system consisting of different atoms or if they are identical, 
with several orbitals or atoms with nonequivalent positions. 
The study of graphite concerns the latter two properties.

E

Min kx

Max
ky

Min

Max

E1 1 1 1– – 2 – 4a g g¢
r

p/a k ky z Γ kx p/a
s

–4| |g 1

+
4
|

|
g 1

(a) (b)

Figure 18

Exercise	3b:	Tight	bindings	in	the	bcc	and	fcc	lattices	(variation	
of	Ex.	3a)

We consider identical atoms located at points of a lattice that are 
body-centered cubic (bcc: i) and face-centered cubic (fcc: ii).
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 (a) Construct the first Brillouin zone for each of these lattices.
 (b) For each case determine the dispersion relation for s-electrons, 

having the general form: 

  E e
m

m= - - Â - ◊
a g

k
 

r

  where α and γ are the positive energies that can be calculated 
and r



m represents the vectors that connect an atom located 
at the origin to each of its nearest neighbors. 

 (c) Find the expressions for E at the points located at the 
intersection of the first Brillouin zone with the directions 
[100], [110], and [111] and thus the value E(Γ) to the center 
of this zone. 

 Deduce the total width of the corresponding band, ΔE, and find 
the expression for the effective mass mx in the vicinity of Γ as well as 
the shape of constant energy surfaces around this point.

Solution:

 (a) See solution and Fig. 10 in Chapter I, Ex. 14.
  (b & c) are a generalization of the previous exercises.

 (i) Bcc: Eight nearest neighbors at r = ± ± ±Ê
ËÁ

ˆ
¯̃

1
2

1
2

1
2

, , ; unit: a.

  E
k a k a k ax y z= - - ◊a g8

2 2 2
cos cos cos

  At Γ: kx = ky = kz = 0. E(G) = – a – 8g

  At N(100), k
a

k k E Hx y z= = = = - +2 0 0 8p a g; , , ( ) .

  At P(100), k k k
a

E Px y z= = = = -p a. ( ) .

  ΔE (band) = 16γ.
  In the neighborhood of Γ, E = – a – 8g + 4gk2a2

  The constant energy surfaces are spherical and occupied 

by electrons of mass m
a

x = 

2

28g
.

 (ii) Fcc: Twelve nearest neighbors: 

r = ± ±Ê
ËÁ

ˆ
¯̃

± ±Ê
ËÁ

ˆ
¯̃

± ±Ê
ËÁ

ˆ
¯̃

1
2

1
2

0 1
2

0 1
2

0 1
2

1
2

, , ; , , ; , , .and
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 E
k a k a k a k a k a k ax y x z y z= - - ◊ + ◊ + ◊

Ê
ËÁ

ˆ
a g4

2 2 2 2 2 2
cos cos cos cos cos cos

¯̃̄

  At Γ: E(G) = – a – 12g

  At X(100): k
a

k k E Xx y z= = = = - +2 0 4p a g, , ( ) .

  At K(110): k k
a

k E kx y z= = = = - + -Ê
ËÁ

ˆ
¯̃

3
2

0 4 2 1
2

p a g, , ( ) .

  At L(110): k k k
a

E Lx y z= = = = -p a, ( ) .

  ΔE (band) = 16γ.
  In the vicinity of Γ, E = – a – 12g + 4g k2a2

 The constant energy surfaces are spherical and occupied by 

electrons with effective mass m
a

x = 

2

28g
.

 In all cases, if the effective mass is isotropic and the constant 
energy surfaces are spherical around the Γ point, this no longer 
holds when developing the cosine term up to the second order (in 
k4), which highlights the effects of the crystal symmetry. 
 A detailed study of the density of states would show that the g(E) 
curve is symmetric for the bcc lattice with a logarithmic singularity 
at the median energy Em= –α, whereas it is asymmetric for the 
fcc lattice with a logarithmic singularity at the maximal energy 
EM = –α + 4γ.

Exercise	4:	Dimerization	of	a	linear	chain

Consider a linear chain of equally spaced atoms and of length Na. 
Each atom contributes an electron to the band that will be studied; 
this electron is localized in the orbital f when the atom considered is 
alone. Describe this chain using the tight-binding method. 
 (1) It is assumed that the only elements of the single electron 

Hamiltonian matrix H0 are 

  
< ≥

< + ≥ - >

 

 

H

H

0

0

0

1 0g g( )

  where  ≥  represents the quantum state for which the wave 
function of the electron is f



( ),x  ( ).< = 



¢ ¢d
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  1.1: Observing that the chain is periodic (with period a), write 
the wave functions yk(x) which represent the stationary states 
of wave vector wave k. 

  1.2: Deduce the dispersion law E(k) and show it graphically.
  1.3: Determine the Fermi level (assuming that every atom 

contributes one electron).
  1.4: Determine the contribution of this band to the cohesive 

energy.
 (2) The atoms in even rows are held fixed, and the atoms in odd 

row undergo a slight movement u (Fig. 19).

2a

yf f + 1

u
y + 1y – 1

Figure 19

 It is thus appropriate to choose a basis with two atoms (wave 
functions f



 and y


) with a¢ = 2a. The elements of the matrix of the 
new Hamiltonian H are thus (where α > 0):

< > = < > =

< > = - +

< > = < > = - -- +

f f y y

f y g a

y f y f g a

   

 

   

H H

H u

H H u

0

1 1

2.1: Writing the wave functions in the form:

y f yk

ik a
e A B> = > + >Â





 

¢
( )

 (a) Determine the new law of dispersion x (k).
 (b) Calculate the width of the energy bandgap. 
 (c) What can you deduce from the cohesive energy? Calculate its 

change knowing that when z is small:

  [ ( )sin ] //
1 1 1 1

2
4 1

2
2 2 1 2

0

2 2- - ª + -
È

Î
Í
Í

˘

˚
˙
˙Ú z x x z

z
d ln

p

2.2: The atoms in the chain are in fact connected by “spring” constants 
with force β. 
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 (a) Find the elastic energy of the chain as a function of u. 
 (b) Find the total energy (electronic and elastic) of the chain when 

it undergoes a distortion u.
 (c) Establish the equilibrium expression of the distortion based 

on the other parameters (α, β, and g).

Solution:

 (1)

 1.1 y fk

ik a
x e x( ) ( )= Â







 1.2 H k e H E k

Ee e H

E e

ik a

ik a ik a

ik a

0 0

0

> = > = >

< - Æ = < >

=

Â
Â

Â





 









  

′

′

′

′

′

<< > = - -0 2 20H ka E ka′ g gcos ; cos .

  The similarities between this exercise and the beginning 
of Ex. 1 should be noted. We establish here the dispersion 
relation that was suggested in the statement of Ex. 1. Up to 
the quantity –α, the dispersion relation and the representative 
curve in Fig. 1 are the same.

 1.3 EF = 0 (see solution of Ex. 1 with α = 0).

 1.4 DE E
k
Na

N
a

c
d= ¥ ◊ = -Ú2 2

2
4

0

2

p
g

p

p

/
,

/
where DEc = -4g p/  per 

atom.
 (2) 

  2.1 (a) k e A Bik a> = > + >¢ ¢

¢
¢ ¢Â 



 

( )f y

  < <f y0 0et  which leads to

  
- + - + - + =

- + - + - =

-x g a g a

g a g a x
k

ika

ika
k

A B u u e

A u u e B

[( ) ( ) ]

[( ) ( ) ]

¢

¢

0

0

  from which x ak k kE u ka2 2 2 2 2= + =D D, where sin( / ).′
  The dispersion curve, shown in Fig. 20b, is now limited to the 

interval –π/2a, +π/2a. Compared to the curve in 1 (Fig. 20a), there 
is an opening of a bandgap with amplitude 4α|u| at k = π/2a.
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 (b) E ug = 4a . The lower band, which corresponds to 
xk E= - +( ) ,/2 2 1 2D is going to be completely filled. The upper 
band [ ( ) ]/xk E= +2 2 1 2D , will be completely empty (at 0 K).

E

k

0 EF

–p/a p/a0 –p/2a 0

(a) (b)

p/2a

E

k

EG

Figure 20

 (c) Compared with 1, the appearance of the bandgap will increase 
the cohesive energy because the electron energy (particularly 
in the vicinity of k = π/2a) will decrease.

  

DE k
k
Na

k ka u ka

a

c
d

where

= ¥ ◊

= - +

Ú2 2
2

4 4

0

2

2 2 2 2 2

x
p

x g a

p
( )

/

( ) ( cos sin

/

))

sin

/

/

1 2

2 2

2
2

1 2

2 1 1= - - -
Ê

ËÁ
ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙

g a
g

u
ka

  Using the proposed relationship when z u= a
g

 is small, we find 

DE
u

uC log= - +
Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙

4 1 1
2

4 1
2

2
g

p
a
g a g

{
/

}

  In this expression, the term ( / )( / )[ ]1 2 2a gu  represents  
the increase of the cohesive energy caused by dimerization.

  2.2 (a) E N u( )élast = Ê
ËÁ

ˆ
¯̃

1
2

2b

 (b) DE(distortion) = - -
È

Î
Í
Í

˘

˚
˙
˙

1
2

2 4 1
2

2
2 2

b a
pg a g

u
u

u
log

/

 (c) In [...], we can neglect the 1/2 because αu/γ is small.
  ΔE takes the form: DE(dist.) = Au2 + Bu2log Cu.
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  In equilibrium ∂
∂

=DE
u

( )dist. 0  or u
a e

e= -4 4 2g bpg a/

 When α tends to zero, u tends to zero, and the dimerization 
disappears. 
 This exercise (kindly suggested by Prof. Gerl; Nancy University) 
illustrates how electrons can stabilize the dimerization resulting in 
a bandgap. For further information on dimerization, see Chapter III, 
Exs. 3 and 5; on Peierls instabilities in 1D conductors, see Chapter 
IV, Ex. 13; on their correlation with the Kohn anomaly, see Chapter 
III, Ex. 6; and on charge density waves, see Chapter I, Pb. 8, and for 
example, C. Noguera; J. Phys. C 19, 1986, 2161.

Exercise 5a: Conductors and insulators

 (a) In a linear chain of identical atoms equidistant by a, show 
that the solid considered is electrically insulating at 0 K if it 
has an even atomic valence electron number and if one takes 
into account the potential energy created by the ions of the 
network.

 (b) In the context, the theory of nearly free electrons at 0 K 
considers a 2D square lattice (with basis a) composed of 
identical divalent atoms. Explore the nature of its electrical 
conductivity by representing the dispersion curves of electrons 
in the GX

 

 and the GM
 

 directions ([10] and [11] respectively).
  In the latter case, draw the Fermi surface and the first Brillouin 

zone.
 (c) Numerical application: In the square lattice above, the width 

of the bandgap between the valence band, VB, and the 
conduction band, CB, Ec – Ev is 4 eV in X in the [10] direction 

and 2 eV in M in the [11] direction. In addition: 
2 2

22
5

m a
◊ =p eV. 

Is it a conductor?

Solution:

 (a) The dispersion curves E = f(k) show the discontinuities 
(forbidden bands) for k = n(π/a). Each allowed energy band 
spans over 2π/a and contains 2N electrons (N is the number 
of atoms in the row) because in the k-space the unit cells have 
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a length of 2π/L = 2π/Na, and it can accept two electrons each 
( )≠Ø .

  In 1D if there is an even number (2, 4, or 6) of valence 
electrons, the bands (1, 2, or 3) will be completely filled. 
Electrons occupying these full bands cannot carry electrical 
current and thus the body will be electrically insulating 
(see Course Summary). This rule has exceptions, in particular, 
the transition metals oxides or ITO: InTiO2.

 (b) The first Brillouin zone contains N cells 
( / )

( / )
/2

2

2

2
2 2p

p
a

Na
L a N

È

Î
Í
Í

= = = ]number of lattice atoms  and can 

receive 2N electrons. This filling must be carried out from the 
lowest energy levels taking into account the dispersion rela-
tion of electrons. The latter introduces energy discontinui-
ties when the wave vector approaches the limits of the first 
Brillouin zone. Figure 21a shows the characteristics of the 
dispersion of nearly free electrons following the two princi-
ple directions [10] and [11]. The forbidden energy bands at 
point X (i.e., Xv and Xc ) and at point M (MV and MC) have re-
spective widths of 2V10 and 2V11 in the theory of almost free 
electrons.

  Two types of figures can be obtained:
 (1) The top of the first allowed band at point M (or MV) has 

a smaller energy than the bottom of the second at the 
point X (or XC): the first Brillouin zone accepts 2N valence 
electrons and is completely full; the concerned solid will 
thus be insulating.

 (2) The energy E(MV) is greater than the energy E(XC) (see 
Fig. 21a): electrons occupy the lowest energy levels in the 
second band along the [10] direction before reaching the 
top of the first band in the [11] direction. The number of 
electrons contained in the second band will be the number 
of states left vacant in the first band: the two overlapping 
bands are incompletely filled and the body is conductive. 
The Fermi surface is shown in Fig. 21b.
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  It should be noted that in the nearly free electron theory 
inequality (2) is written:

   

2 2

2 11

2 2

2 102
2

2m a
V

m a
V

p p- > +  or 
2 2

2 10 112m a
V V◊ > +p .

  These results can be generalized to a 3D solid and can 
explain the fact that divalent elements such as Mg, Be, 
and Pb. have a metallic character while Si, Ge, Se, and Te 
are semiconductors. In the latter, the strong attraction 
between electrons and the lattice (covalent bonds), as in 
the case of the alkali halides, results in large or very large 
bandgaps and the overlap of the conduction and valence 
bands. 

 (c) E(Mv) = 9 eV, E(Xc) = 7 eV: it is thus a conductor.

Exercise	5b:	Nearly	free	electrons	in	a	rectangular	lattice

We consider a rectangular lattice with parameters a= 3 Å and b = 4 
Å with an atom of species A located at (0, 0) and an atom of species 
B at (1/2, 1/2) (see Chapter I, Ex. 3a, Question (2) and Chapter III, 
Ex. 14).
 The valence electron dispersion relation obeys the nearly 
free electron theory that is to say that in a given [m, n] direction, 
it follows the theory of free electrons except when the wave vector 
k approaches the limit of the Brillouin zone (here the first). In this 
latter situation, the dispersion curve deviates symmetrically from 
the value of E0(m, n) given by the theory of free electrons and the 
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total amplitude of this deviation is U(m, n) [distance separating 
E1(m, n) from E2(m, n)].
 (1) Sketch the dispersion curves in the directions [00] Æ [10]; 

[00] Æ [01]; and [00] Æ [11].
 (2) There are two almost free electrons per “molecule” AB. What 

relationship (inequality) must exist between U(m, n), a and b 
so that the material is insulating?

  In the reverse assumption (the material is conductive), find 
the characteristics of the Fermi surface of the first Brillouin 
zone and specify the location of electrons and holes.

 (3) U(1,0) = 2 eV; U(0,1) = 1 eV; U(11) = 1.5 eV. Is the material a 
conductor or an insulator?

 (4) The atoms A and B are chemically identical. What is the shape 
of the new Brillouin and the modulus of k(m, n) for which 
discontinuities occur? Reconsider the conductive or insulating 
character of the material according to the amplitude of the 
discontinuities in the Brillouin zone. Successively considered 
the case where each atom A gives 1 and then 2 almost free 
electrons.( / . )

2 2 3 8m ª eVÅ2

Solution:

 (1) The reciprocal lattice is a simple rectangular lattice where 
A = 2π/a; B = 2π/b. (see Chapter I, Ex. 18, Fig. 18 for its 
construction).

  In the [10] direction, the boundary of the Brillouin zone is
  k = π/a; E0(10) = (2/2m)(p/a)2.
  In the [01] direction: k = p/b; E0 (01) = (2/2m) (p/b)2.
  In the [11] direction: k = p(1/a2 + 1/b2)1/2.
  and E0 (11) = (2/2m) p2 (1/a2 + 1/b2).
  The characteristics of the curves are shown in Fig. 22 where the 

dashed lines indicate free electrons dispersion: E k m= 2 2 2/ .
 (2) The first Brillouin zone can accept two electrons per molecule. 

The material will be insulating when this zone is complete (a 
full band does not participate in the electron transport).

  In order for this to occur, the bands must not overlap or, here, 
E1(11) <E2(01), that is to say



492 Band Theory

  E
U

E
U0 11 0 0111

2
01

2
( ) ( )- < +  or U U

m a01 11

2 2

2+ >  p

  For the reverse assumption (shown in Fig. 22), the Fermi 
level will intercept the second band in the [01] direction, 
EF > E2(01), and the first band in the direction [11], EF < E1(11). 
The shapes of the Fermi surface are shown in Fig. 23. Note 
that the area covered by the nearly free electrons is identical 
to that covered by free electrons: pkF

02 = 4p2/ab.

E
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E°(10)
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0
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1
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1
b2+p ½

Figure 22

 (3) U01 + U11 = 2.5 eV < 2p2/ma2 = 8.3 eV. Given the shape of the 
Fermi surface, the material is a conductive and will probably 
be semi-metallic, such as Sb or Bi. 

 (4) The reciprocal lattice of a rectangular centered lattice is itself 
rectangular centered. (In Fig. 23, remove the odd h + k points 
such that (0, 1), (10); see also Chapter I, Ex. 19, Fig. 21.

 The first Brillouin zone has a truncated diamond shape and 
corresponds to the first two Brillouin zones of the previous 
questions (constructed from the points ( , );( , );( , );1 1 1 1 1 1  and ( , )1 1 . If 
A is monovalent, the Fermi sphere corresponds to that shown in Fig. 
23 for free electrons (radius kf) because it has the same number of 
electrons as above. It is therefore a conductor.
 However, if there are two electrons per atom (i.e., 4 per area 
a × b), its radius will be 2 times larger and it will overlap partly the 
second Brillouin zone in the [11] direction (see Fig. 12b in Chapter 
III, Ex. 14, with kD = kF–).
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 If the dispersion curve is unchanged (see Fig. 22) for the [11] 
direction, the discontinuities in the [10] and [01] directions are 
brought respectively to point A (Fig. 23) and to point [01] (2π/b) 
and not π/a and π/b. Following the same reasoning as above, the 
amplitude of these discontinuities (E2 (A), E2 [01] < or >E1 relative 
to the point located at the mid-point between 00 and 11 which will 
determine the conductive or insulating nature of the material.

Exercise	6:	Phase	transition	in	the	substitution	alloys:	
application	to	CuZn	alloys

Copper crystallizes in the fcc lattice with parameter a. The progressive 
substitution of copper atoms (one free electron per atom) by zinc 
atoms (two electrons per atom) causes an increase in the radius of 
the Fermi sphere without altering the crystallographic structure 
(phase α) of the alloy, until the Fermi sphere comes into contact with 
the first Brillouin zone, which results in the appearance of the β-phase 
(bcc). In this problem, we determine the relative concentration ρZn 

of zinc atoms rZn
Zn

Cu Zn
=

+
Ê
ËÁ

ˆ
¯̃

N
N N

, which corresponds to the phase 

transition (α Æ β) as well as the phase change β Æ γ.
 (a) Find the general expression for the Fermi wave vector kF 

as a function of electronic concentration n (n = N/V) of free 
electrons.
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 (b) Specify the numerical value of kF for pure copper with 
a = 3.6 Å.

 (c) For an fcc structure, what is in the distance kM in reciprocal 
space that separates the center of the Brillouin zone from its 
nearest face?

 (d) Deduce the expression for ρ, that is ρ0, for which kF = kM, which 
corresponds to the phase transition between α and β. One 
must first find kF (evaluated above) as a function of ρ and a.

 (e) When ρ becomes ρ0, the lattice becomes bcc (phase β) with 
lattice parameter al. What is the new expression for kF, 
denoted k¢F as a function of ρ and al? What is the new minimal 
distance k¢M that separates the origin of the new first Brillouin 
zone? Compare k¢M to k¢F when ρ = ρ0 and deduce, see previous 
approach, the expression for ρ = ρ¢0, for which k¢F = k¢M (phase 
transition βÆY).

 (f) It is assumed that copper and zinc atoms behave as hard 
spheres with approximately the same radius. This means 
that in a given phase, the substitution of copper by zinc does 
not change the crystalline parameter. Can you deduce the 
relationship between a and a1 in the phase change αÆβ?

 Find the energy U(e) of the free electron gas (at 0 K) relative 
to N atoms in the α-phase and next in the β-phase. Comment on 
the resultant curve. Explain qualitatively the causes of the phase 
transition. 

Solution:

 (a) k nF = ( ) /3 2 1 3p , where n
N
V a

= = 4
3  (for monovalent fcc 

elements)
 (b) kF = (12p2)1/3 ◊ (1/a) = 1.36 Å–1

 (c) The reciprocal lattice of an fcc lattice is a bcc lattice and the 
distance between the center of the first Brillouin zone to the 
nearest side is equal to the half of the distance between the 
origin and the (111) point:

  k
a

h k
aM = + + =1

2
2 32 2 2 1 2p p( ) /

 .

  This result can also be obtained by considering that the first 
allowed reflection of the fcc lattice is the (111) reflection and 
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the distance that separates two successive reflection planes is 

d
a

h k

a
111 2 2 2 1 2 3

=
+ +

=
( ) /



. At normal incidence, the Bragg's 

law gives 2d111 = λm or lm = 2
3
a  and k

aM
m

= =2 3p
l

p .

 (d) kF = (3p2n)1/3, where n = 4(1 + r)a3.

  a bÆ , k kF M= Æ + = =1 3
4

1 36r p .

  or for a bÆ , Zn Cu0 36 0 64. . .

 (e) There are only two atoms per bcc cell from which
  k¢F = (3p2n¢)1/3, where n¢ = 2(1 + r)/a3

1.
  The new reciprocal lattice points are such that h + k + l are 

even. The point nearest to the origin is the (110) point. Thus 
k a′Μ = p 2/ 1 and k¢M < k¢F (r0).

  The transition βÆγ occurs when ρ = ρ¢0, where 

1 2
3

1 480+ = =r p′ . , thus Zn0.48Cu0.52.

 (f) The radius of atoms is such that r
a a

= =2
4

3
4

1  or 

a a/ /1 3 2= , assuming that the atoms are in contact either 
along the diagonal relative to a face (fcc) or along the 
diagonal of the body-centered cube. 

  U e NE( ) = 3
5 F

  

Phase

Phase

a p r

b p r

: [ ( )]

: [ (

/
U N

m a

U N
m

e

e

= +

= +

3
5 2

12 1

3
5 2

6 1

2 2 2 3

2

2 2



 ))] /2 3

1
2a

  In both cases, the energy of the electron gas increases as (1 + 
r)2/3 but, after simplification, the coefficient in front of 1 + ρ 

must be proportional to 2 1 5872 3

2 2

/ .
a a

ª  (fcc) or proportional to 

3/2a2 = 1.5a2(bcc).
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 In the light of Fig. 24, we understand the reasons for the phase 
changes. The addition of Zn atoms provokes an increase in kF. When 
the Fermi surface touches the first Brillouin zone (Fig. 24, left), this 
growth can no longer be isotropic because the extra electrons are 
forced to stay in the corners which would result in an increased 
slope in the energy evolution (Fig. 24, right: dotted line). The system 
recrystallizes in a structure where the Fermi surface will not be 
in contact with the first Brillouin zone and where the slope in the 
energy evolution will be smoother, until this mechanism starts over. 
Hume-Rothery was the first to draw attention to the strong influence 
of the electron concentration on the phase transitions in substitution 
alloys. Even though the reality is more complex (curvature of the 
bands: see preceding example, coexistence of phases α + β, existence 
of ordered and disordered phases of β (see Chapter I, Pb. 5), it is 
remarkable that the simplified calculation above gives almost the 
exact result ( : .a bÆ 1 38 instead of 1 36 1 48. ; : . ).b gÆ

Exercise	7:	Why	nickel	is	ferromagnetic	and	copper	is	not

Figure 25 shows a naïve sketch of the density of electronic states 
(outer shells) of metals such as copper and nickel above the Curie 
point. The bands result from the 3d levels and are divided into two 
subbands for spins ≠ and Ø and are juxtaposed next to the 4s levels. 
To simplify the problem, the densities of states are assumed to be 
constant in the various bands:
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g(E) = C1 (in the interval 0 < E < •) for the band originating from the 
4s levels
g(E) = C2 (in the interval 0 < E < Ed) for the band originating from the 
3d ≠ and 3d Ø levels.
 In addition we recall that there are 10 electrons per atom (5 ≠ 
and 5 Ø) as can normally fill the d band. 

E

d d

s

Ed

0
C1 g E( )

E

s

Ed

0
–E0

d d

C1
g E( )

2E0

(a) (b)

Figure 25

 (a) Using the following values: Ed = 5 eV, Cl = 0.14 e–/eV and 
knowing that one must fill all bands with 11 and 10 electrons 
per atom respectively, find the position of the Fermi level of 
copper (Z = 29 and 11 electrons 4s + 3d per atom) and of 
nickel (Z = 28 and 10 electrons 4s + 3d per atom).

 (b) How many available states remain in the d bands of nickel and 
of copper?

 (c) Below the Curie point, the exchange interaction between 
spins shifts the d subbands by ±Ee from their original position 
(see Fig. 25b).

  In the case of nickel, find the overpopulation of ≠ states 
compared to Ø states and deduce the number of Bohr 
magneton assigned to each atom when Ee = 0.27 eV.

  To simplify the calculation take f(E) = 1 when E < EF and 
f(E) = 0 when E > EF.
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Solution: 

 (a) For N atoms having z valence electrons, we have:

  f E g E E Nz( ) ( ) .
0

•

Ú =d

  With the notations and simplifications in the statement, 
reduced to an atom this relation becomes

  C E C E C E z
E E E E E

10 20 20

F F d F d
d d dÚ Ú Ú+ + =

, ,
.

  The filling of the d subbands will also not exceed five electrons 
per atom if

  (a) EF < Ed—upper bound of the second and third integrals 
will be EF (case for Ni).

  (b) EF > Ed—upper bound of the second and third integrals 
will be Ed (case for Cu) and each integral corresponds to five 
electron states per atom so that C2 = 5/Ed.

  The Fermi energy of Cu reduces to C1EF = 1 or EF = 7.17 eV.
  The Fermi energy of Ni reduces to (C1 + 2C2) EF = 10 or EF = 

4.67 eV.
 (b) The number of non-occupied states in each d band obeys 

P C E E
E

E
= Ú 2

F

d
d( ) = 0.33 electrons/atom for Ni even though in 

Cu, p = 0 because the d subbands are filled. 
 (c) Taking into account the exchange energy the relation in (a) 

becomes

 C E C E C E z
E

E E E

E

E E EE

1 2 20
d d d

e

F d e

e

F d eF
+ + =

-

- +

Ú ÚÚ
, ,

.

 The Cu Fermi energy remains unchanged and the resulting 
magnetic moment is zero. The Fermi energy in Ni is also unchanged, 
but the difference in spin population is

 n C E C E
E

E E E

E

E E E

B
e

F d e

e

F d e
d d= -

-

- +

Ú Ú2 2

, ,
.

 For Ni the number of Bohr magneton is nB = 2EdEe/5 = 0.54.
 Figures 25c and 25d represent the energy diagrams correspond-
ing to Ni above and below the Curie point. The position of the Fermi 
level of copper, EF(Cu) is also indicated for a comparison.
 • The above-mentioned discussion is provided to explain that 

the ferromagnetism of the nickel and the non-ferromagnetism 
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of copper are qualitatively correct. For the exact numerical 
values and for more details, see corresponding chapter in Ref. 
[15] to check a, b, or c.

  This explanation, however, is incomplete because it does 
not consider in details the reason for which the two bands 
of the d-electrons are energetically shifted. This shift, due 
to the coupling energy between the spins of neighboring 
atoms (exchange energy), is very sensitive to the interatomic 
distances r0 and the exchange energy is positive for Fe, Co, and 
Ni (as well as Cu), while it is negative for Cr and Mn (which are 
anti-ferromagnetic). 

 • Under the action of an external induction the s band will be 
responsible for the paramagnetism of free electrons (see 
Chapter IV, Ex. 22).

E

s T T> c

g E( )
dØ

EF(Cu)
EF(Ni)

g E( )

s

E

T T< c

EF(Cu)
E (Ni)F 00

dØ

(c) (d)

Figure 25

Exercise	8:	Cohesive	energy	of	transition	metals

The atoms of the transition elements are characterized by an outer 
electron shell of incomplete d electrons with an energy Ed close 
in energy to the subsequent s-electrons. In the solid state, d levels 
form a band of width W, which is centered on Ed, and from which 
the density of states is supposed constant: g(E) = C, and which can 
accommodate 10 electrons per atom (see Fig. 26a).
 (a) Consider a transition element with nd d electrons per atom. 

Find the expression giving the total energy of nd electrons 
(denoted EM) and compare it with their initial energy in the 
atomic state (denoted EA) in order to deduce the cohesive 
energy, EC = EA – EM for the element, assumed for simplicity to 
be at 0 K. How does Ec vary as a function from nd?
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 (b) The cohesive energy of the elements from Z = 37 (Rb) to Z = 47 
(Ag) is shown in Fig. 26.

  Compare these experimental results with those deduced from 
the above model. Assume T = 0 K and start from Rb (nd = 0), 
the additional electrons occupying exclusively the 4d band: 
the nd values are indicated between ( ) in Fig. 26b. Take W = 6 

eV and E W
D =

2
. Discuss these results. 

Solution:

 (a) Taking the origin at the bottom of the d band, we find

  E n E E E E E C
EE

A d D M g
FF

d= = ◊ =Ú; ( ) .
0

2

2

  We can write n g E E C E
E

Fd
F

d= ◊ = ◊Ú ( )
0

and 

10
0

= =Ú g E E CW
w

( ) .d

  Basic operations lead to

  E n E
W

nC d D d= -
20

2  or when E W
D =

2
to E

W
n

n
C d

d= -
Ê

Ë
Á

ˆ

¯
˜2 10

2
.
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  The cohesive energy follows a parabolic law as a function of nd 
electrons (per atom) occupying the d band.

  This cohesive energy will be maximum at nd = 5.
 (b) See Fig. 26c.
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Rb Y Nb Tc Rh Ag In0

1

2

3

4

5

6

7

8
Sr Zr Mo Ru Pd Cd
(1) (3) (5) (7) (9)

Ec
(eV)

(c)
Figure	26	(c)

Comments: Cohesive energy of transition metals

The constant density of states model for the d bands of transition 
metals was originally proposed by J. Friedel [32]. This model captures 
well the high cohesion energy of these metals (also inducing a strong 
bulk modulus, B, and high melting temperature), especially for those 
with a half-full d band such as tungsten and molybdenum.
 The excellent agreement is due to the adequate choice of W. In 
reality, the model could be improved by taking into account:
 (i) the energy shift, α, between atomic levels and the centre of the 

d band.
 (ii) the E evolution of the density of states s levels—with partial 

occupation from 0.5 to 1 electron per atom, as indicated in Fig. 
26 with respect to osmium.

 (iii) the d bandwidth, W, which varies from one element to another 
depending on the distance r0 between nearest neighbors 
(W µ r0

–5, see W. A. Harrison [12] page 487).
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 These modifications result in a better agreement with the 
experimental results without changing the explanation of the 
essential physical phenomenon, high cohesion, and its evolution.
 In addition, note that the transition metals are also characterized 
by an electronic specific heat Ce that can be 10 times greater than 
normal metals and thus by an effective d-electron mass that is very 
large: 

 
m
m

x
e

0
30ª .

 These two phenomena are explained by the narrowness of the d 
band, which leads to a large density of states, and Ce is related to the 
density of states at the Fermi level, g(EF) by (see Chapter IV, Ex. 19):

 C
k T g E

Ne
B Fª

Ê

ËÁ
ˆ

¯̃
p2 2

3
( )

 We thus find the same trend for mx by considering that 

g E m E
x

( )µ
3
2  and that the more one band is flat, the more mx is 

large: mx µ 1/W (Ex. 1 on tight binding in the present chapter).

Exercise 9: Semi-metals

The band structure of semi-metals (As, Sb, Bi) is characterized by the 
fact that the valence and conduction bands overlap in such a manner 
that the corresponding dispersion relations are described by:

E V m k Ex( ) ( / )= - +

2 2
02 h  and E C m kx( ) ( / )= 

2 22 e

where E0 > 0, me
x and mh

x are the effective masses of electrons and 
holes such that me

x < mh
x.

 (a) Draw the band diagram for a semi-metal and compare it with 
that of an alkali metal and a semiconductor.

 (b) Starting from the density of states for a free electron gas, and 
including the corrections induced by the effective masses me

x 

and mh
x, find the expression for the density of conduction 

electrons ne and the density of holes nh , at 0 K.
  Knowing that in semi-metals ne = nh, express the Fermi energy 

EF as a function of E0, me
x, and mh

x. Can one reach this result 
more quickly? 

  From the data, express the common density n0 = ne = nh.
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 (c) Numerical application: E0 = 0.4 eV:
  me

x/m0 = 0.05; mh
x/m0 = 0.1.

  Find EF and n0 using 2
02 3 8/ .m ª eVÅ2

  Find the electrical conductivity s for this type of material 
taking the value for the mean free time for both electrons and 
holes to be t = 2 ¥ 10 –14 s.

  Compare the values of n0 and s to typical values in good 
metals. 

 (d) What are the predictable electronic properties of semi-metals 
including the sign of the Hall effect, the effect of temperature 
on s, and the electronic specific heat, etc.? 

  Compare the corresponding evolutions with those of metals 
and semiconductors. ( , , ) m e0

Solution:

 (a) See Fig. 27. Note the sharper curvature of Ec compared with Ev 
due to me

x < mh
x.

 (b) We use the expression for the density of states for 3D free 

electrons: g E
V m

E( )
/

= Ê
ËÁ

ˆ
¯̃2

2
2

0
2

3 2

p 

; substitute me
x (and then 

mh
x) to m0 in order to take into account the bending of the 

different bands, and choosing the origin of energies at the 
bottom of Ec. Considering a unitary volume for the evaluation 
of ne and nh, we find

  n g E E g E
m

E
E x

e e e
eF

d where= =
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Ë
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Figure 27
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  and n g E E
E
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h
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d= Ú h( )
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ˆ
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which after integration becomes n
m

E
x

e
e
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/( )

  The equality ne = nh leads to E E
m

m m

x

x xF
h

e h
=

+0 .

  One can foresee this result by observing that the intrinsic 
nature of this type of material leads to an equality between 
the volume in k-space occupied by electrons to that occupied 
by holes, leading to a Fermi level located at the intersection 
of the two parabolas, as naively shown in Fig. 27b (even if the 
holes and electrons are not localized at the same point in this 
space). 
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  The latter expression is homogenous in the density of particles 
per Å–3 if we take into account 2

02 3 8/ .m = eVÅ2

 (c) n

E
0
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F .

  s m m= +n e n ee c h h, where m te e
xe m= /

  s t= +
Ê

ËÁ
ˆ

¯̃
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h h
m. .W

  The electronic density here is four orders of magnitude 
smaller than that of alkali metals (n0 = 5 × 1028 e– m–3) while 
the conductivity will only be two orders of magnitude smaller 
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due to the lower effective masses. The mobility is thus larger: 
r(Na) = 5 ¥ 10–6 W cm and s(Na) = 2 ¥ 107 W–1 m–1.

 (d) Comments: Semi-metals
  Arsenic, bismuth, and antimony are pentavalent elements 

that crystallize with two nonequivalent atomic positions in 
the elementary lattice cell. Of the 10 valence electrons per 
elementary lattice, eight completely fill four valence bands 
and the two others partially fill the fifth valence band and very 
partially the conduction band.This explains, as for intrinsic 
semiconductors, the equality between the densities of 
electrons and holes, whereas in normal metals only conduction 
electrons have a significant density of states. This equality 
exists at 0 K and the value of n0 is not significantly affected as 
temperature increases, contrary to the semiconductors which 
are theoretically insulators at 0 K. Despite this equality in the 
density of carriers, the sign of the Hall voltage is given by that 
of electrons due to their larger mobility. The magnitude of 
the Hall constant in bismuth is the largest of all metals due 
to the small value of n. The electronic specific heat of semi-
metals follows a γT law as for normal metals (the inverse of 
semiconductors), but the coefficient γ varies between 5% 
(Bi) and 30% (Sb) compared with that determined from the 
theory of free electrons. 

 Excluding the arbitrary choice of the effective mass, the numerical 
data obtained here agree with reality:
 n0(Bi) = 3 ¥ 1017 cm–3; n0(As) = 5 ¥ 1019 cm–3; n0(Sb) = 2 ¥ 1020 
cm–3.
 The fact that the largest carrier mobility in this material 
partially compensates for their small density (compared to normal 
metals) explains why the resistivity is only 10 to 100 times smaller 
for antimony (r = 39 mWcm) and for arsenic (r = 33 mWcm). As 
for normal metals, one can expect that the resistivity obeys the 
Matthiessen law and increases with temperature as well as with 
impurity concentration (see Chapter IV, Ex. 16).
 In addition to the existence of two types of carriers, the analogy 
with semiconductors lies in the analogous approach leading to 
the law of mass action as well as the fact that, to go from one band 
structure to the other one, one simply moves the conduction band 
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down below the valence band at E0 > 0 for semi-metals while Eg < 0 
for semiconductors, the origin of energy being chosen as in Fig. 27.

Exercise 10: Elementary study of an intrinsic semiconductor

Consider a semiconductor characterized by a constant density of 
states and equal to C in both the valence and conduction band. These 
bands, separated by Eg, have a respective width of Ev and Ec (see  
Fig. 28). 

E

C

E Ec g+

Eg

EF

0

–Ev

g E( )

Figure 28

 (a) Knowing that the Fermi level EF is in the bandgap 
(5kBT < EF < Eg – 5kBT), leading to the conventional 
simplification for f(E), find the expression for the number of 
electrons n in the conduction band and the number of holes h 
in the valence band respectively as a function of the data and 
absolute temperature. 

 (b) Deduce the expression for the volumetric density of intrinsic 
carriers ni at ambient temperature (kBT = 25 meV) as well as 
the position of the Fermi level EF(i). 

  Numerical application: Eg = 0.7 eV, Ec =Ev = 5 eV, and 
  C = 2 ¥ 1021 electrons/cm3/eV. 
 (c) At the same temperature, what is the intrinsic electronic 

conductivity of this material? Take mh = me = 1000 cm2/V◊s.
 (d) The material is doped with N0 boron impurities. Find the 

expressions and the new values of n(d), h(d), s(d), and EF(d) 
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with N0 = 1012 impurities per cm3 and next with N0 = 1014 
impurities per cm3.

Solution:

 (a) • n f E g E E
E

E E
= ◊ ◊

+

Ú e
g

g C
d( ) ( ) , where       

 f E

e

ee E E
k T

E E k T( ) ( )/=

+

ª-
-1

1
F

B

F B

   from which we find

   n Ce E CkTe eE E k T

E

E E E E k T E k Tª ◊ @ --+ - -Ú ( )/ ( )/ /[ ]F B

g

g c F g B e Bd 1

  • h g E f E E
E

= ◊
-

Ú ( ) ( )h
v

d
0

, where f E f E e E E k T
h e

F B( ) ( ) ( )/= - ª -1

   so that h = CkTe–E F/kBT◊ [1 – e–E F/kBT].

 (b) ni
2 = (CkT)2e–Eg/kBT [1 –e–EV/kBT].

  This expression is very similar to the law of mass action 
(analyzed in detail in Pb. 4 for 3D semiconductors), especially 
if one notices that numerically the terms associated with the 
bandwidth are negligible.

  For kBT ª 0.025 eV; ni ª 1.5 ¥ 1013 p◊ cm–3

  EF(i) can be deduced from the two values of h (or 
n) determined in (a) and from h = ni, determined 
in (b). Neglecting the terms in […], this leads to  
EF (i) = Eg/2 = 0.375 eV.

 (c) s = nie(m + me) = 4.8 ¥ 10–3 W–1 cm–1

 (d) Boron belongs to the third column of the periodic table and 
thus it acts as a ‘p’ dopant if (and only if) N0 (ionized) > ni. 
Otherwise (N0 = 1012 impurities per cm3) the material will 
remain essentially intrinsic and the results from (b) and 
(c) will be unchanged. When N0 = 1014 impurities per cm3, 
t(d) = N0; n(d) = n1

2/N0 = 2.25 ¥ 1012 e cm–3 (compensation);  
s(d) = t(d) mte 1.6 ¥ 10–2 W–1 cm–1.

  EF can be deduced from 
 (a) h = CkBTe –EF/kBT = N0

 (b) EF = – kBT log (N0/CkT) = 0.328 eV
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 When a semiconductor is p-doped, the Fermi level is lowered. 
When it is n-doped it is raised. 

Exercise 11: Density of states and bandgap

Figure 29 shows the evolution of the majority carrier concentration 
(in cm–3) in a semiconductor as a function of temperature. 
 Analyze this evolution by explaining the reason of each of the 
three regimes represented. 
 Find graphically the width of the bandgap Eg and the ionization 
energy of the impurities Ei in eV, thus the density (in cm–3) of 
impurities N0. Assuming that these are due to residual p-type 
impurities, find the electrical conductivity s when the concentrations 
of Fig. 29 are respectively equal to 1016, 1015, and 1014 cm–3 where 
me = 1400 cm2/V◊s; mh = 500 cm2/V◊s. ( , )k eB

1000/ (K )T –1

500

1000 300 200

10
17

100 75
T(K)

50

10
16

10
15

10
14

10
13

0 4 8 12 16 20

Figure 29

Solution:

Inspired from S. M. Sze [13], the curve shows three expected regimes 
(see Pb. 4 for more details). 
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 • The intrinsic regime is observed at high temperatures: 
n N V E k Ti c v g B= -exp ( / ).2

  In the logarithmic scale, the slope of the dashed lines 

(extrapolation from 1017 to 1013) is equal to - ¥( / )E k
Tg B2 1 .  

Thus, we have E
k

eg
B eV=

¥
- ª-

2
11 25 10

2 3 17 13 1 23.
. [ ] .  with a 

relatively poor precision of 10%. 
 • The plateau corresponds to the regime where all the impurities 

are ionized. It is the case at room temperature. Their density 
corresponds to N0 = 1015 cm–3.

 • As temperature is lowered the freeze out regime of a part of 
impurities is reached and the density of carrier obeys

  n N N E k Ti= -C B0 2exp / .
 • By evaluating the slope of the line as for Eg, we find that Ei = 44 

meV. 
 We are thus exploring silicon (Eg ≈ 1.1 eV) doped with 
either n-type impurities such as phosphorus or p-type 
impurities such as boron (where Ei = 45 meV for both cases). 
In the intrinsic regime ne = nh = ni =1016 cm–3 from which 
 s = nie (mh + me) = 3W –1 cm –1.
 On the contrary, note that in the other two regimes we have 
nh<< ne from which s = nhemh so that s = 8 × 10–2 W–1 cm–1 and 
8 × 10–3  W –1 cm–1 for n respectively 1015 and 1014 cm–3. 

Exercise	12:	Conductivity	of	semiconductors	in	the	degenerate	
limit

The application of the law of mass action is limited to 
5kBT < EF < Eg – 5 kBT when the semiconductor is nondegenerate. 
Show that the electrical conductivity s of an n-doped degenerate 
semiconductor, with EF = Eg – 5 kBT, is virtually independent of the 
nature of this semiconductor. It will be admitted, however, that the 
mobilities vary inversely to the effective masses and are inversely 
proportional to temperature.
Numerical application: Find s1 (limit) for Si (mc = 0.13 m2/Vs; 
me

x = 0.2 m0) and for GaAs (mc = 0.88 m2/Vs; me
x = 0.07 m0) at 77 K. 

Use the formula F1. 
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Solution:

Starting from the expression ne given in the Course Summary, Section 
7, we find
 nc/Nc = e(EF – Eg)/kBT = e–5 = 6.7 × 10–3, 

 where N
m k T

h

x

c
e B=

Ê

Ë
Á

ˆ

¯
˜2

2
2

3 2
p

/

. 

 s = neeme and meªA/me
xT, thus s ª B m Tx

e . 

 The result is independent of the bandgap and varies slightly with 
mx and T. 
Numerical application: 
Nc = 2.5(me

x/m0)3/2(T/300)3/21019 cm–3

ne(Si,77) = 2 × 1015 cm–3 ; ne (GaAs) = 4 × 1014 cm–3

These densities correspond to the density of ionized impurities that 
allow one to obtain the degeneracy limit by raising the Fermi level 
to Eg – 5kBT.

  s1 (Si) = 0.4 W–1 cm–1

  s1 (GaAs) = 0.56 W–1 cm–1

 When the measured conductivity of the semiconductor is less 
than 0.1–1 Ω–1 cm-1, one may assume that the semiconductor is 
nondegenerated. 

Exercise 13: Carrier density of a degenerated semiconductor

Find the relation between the charge carriers ne and the Fermi 
energy EF in a semiconductor that is fully degenerate, starting from 
the following dispersion relation:

 E
E E k

m
E= - ± +

Ê

Ë
Á

ˆ

¯
˜

g g
g2 4

22 2 2
1 2



/

Hint: Find ne with the help of the density of states g(k), neglecting 
the influence of temperature (f(E) = 1 for E ≤ EF). 

Solution:

The semiconductor is n-type and degenerate. Its Fermi level is in the 
conduction band and this level is quite insensitive to T, as for metals. 
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We retain therefore the + sign and observe that the energy origin is 
taken at the bottom of the conduction band. 

 n g E E g k k
E k

e
F F

d d= =Ú Ú( ) ( )
0 0

 The integration with respect to k is easier than in E and is allowed 
because the dispersion relation is isotropic. For a unitary volume, 
we evaluate

 n k k k
k

e Fd
F

= =Ú1 32
2 3 2

0p
p/ (note that this is the same result as 

for free electrons), using the proposed dispersion relation we 
have

 n
m

E
E E Ee
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Exercise	14:	Semi-insulating	gallium	arsenide

The following data correspond to GaAs and are used in this 
exercise: 
Eg = 1.4 eV; me

x ª 0.07m0; mh
x = 0.5m0 ª 0.5m0; µe = 8500 cm2/V◊s; 

µh ª 400 cm2/V◊s
 In addition, it is useful to note that

N
m k T

h0
0
2

3 2
25 32

2
2 10= Ê

ËÁ
ˆ
¯̃

= ¥ -p B m
/

 at T = 300 K or kBT ª 25 meV 

(a temperature remaining constant throughout the exercise). Also 
note that the law of mass action is always satisfied here.
 (1) Assume that the semiconductor is perfectly pure. 
  Find the density of intrinsic carriers ni, the electrical 

conductivity si, and the position of the intrinsic Fermi level EFi 
measured relative to the top of the valence band. 

 (2) In practice, it is impossible to purify a material to better than 
Nd = 1014 imp.cm–3. These residual impurities are of type n 
and their ionization energy Ed is small (Ed < 10–2), which can 
reasonably be considered ionized at 300 K. Find the density of 
the different carriers ne(d), nh(d), the electrical conductivity 
s(d), and the position of the Fermi level EF(d). 

 (3) Chromium atoms are introduced into GaAs with a density NCr 
>1017 cm–3 and the non-ionized electronic levels are located 
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in the bandgap. This addition of such monovalent deep level 
impurities results in a decrease in the Fermi energy to that 
of these levels: EF (Cr) = 0.7 eV (the hydrogenic model is not 
applicable for this type of deep impurity level). 

 Find the new density of carriers ne(Cr) and nh(Cr) and the new 
electrical conductivity s(Cr). Discuss the effect of chromium doping 
on the conductivity of GaAs. 

Solution:

The fundamental formulas that lead to the law of mass action are:
ne = Nce(EF – Eg)/kBT and nh = Nve–EF/kBT

where the expressions for Nc and Nv are taken from the Course 
Summary. We find the general result:

 (1) E
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n
N
NF

g B e

h

v

c
= + ◊

Ê
ËÁ

ˆ
¯̃2 2

log

  

n n n

n e

E
E k

i e h

i i e h

Fi
g B

m

m

= = ¥

= + = ¥

= +

-

- - -

1 1 10

1 6 10

2
3

12 3

7 1 1

.

( ) .s m m W

TT
m

4
0 737log( / ) .m eVh e =

 (2) n N n n N

d n e

E d

e d h i d

e e

F

cm cm

m

= = = <

ª ª

- -

- -

10 10

13

14 3 2 2 3

1 1

; ( / )

( )
( )

s m W
ªª 1 15. eV

  corresponding to a spectacular increase but logically of s(d) 
and of EF. 

 (3) Starting from the expressions for ne and nh in which we use 
the new values for EF, we find:

 
n e ne hCr cm Cr h cm

Cr m

( ) ; ( ) .

( )

= ¥ ◊ = ¥ ◊

= ¥
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6 10
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 We will observe that the addition of sufficient amounts of 
chromium to GaAs freezes the electrical activity of the residual 
impurities that cannot be eliminated chemically. 
 This addition allows one to obtain a higher electrical resistivity 
than a chemically pure material impossible to prepare. We are thus 
justified in calling such a doped GaAs semi-insulating.
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 The latter result can be explained by the fact that in pure GaAs, 
the Fermi level is located above Eg/2 due to the large inequality 
between the effective mass of electrons and that of holes. With the 
addition of chromium the density of slow holes is increased to the 
detriment of the density of more mobile electrons. 
 Technologically the preceding result is important because it 
allows the electrical isolation of active GaAs electronic components 
by growth on substrates doped with deep impurities that are 
therefore highly resistive (see Sapoval and Hermann [23] p. 112, the 
inspiration for this exercise, for the justification of the pinning of EF 
to that of the chromium level.) 
 For the conceptual point of view, one must keep in mind that the 
addition of impurities does not lead always to the increase of the 
electrical conductivity.

Exercise	15:	Intrinsic	and	extrinsic	electrical	conductivity	of	
some semiconductors

Assuming that it is not technologically possible to reduce the relative 
atomic concentration of impurity atoms below 10–10 for elements 
and 10–8 for binary compounds, find, at ambient temperature (kBT 
= 25 meV):
 (a) The intrinsic or extrinsic nature of the electrical conductivity 

s for the following semiconductors: Ge, Si, InAs, and GaAs
 (b) The order of magnitude of s (assuming that the residual 

impurities are all n-type). Use the numerical data presented 
in the table at the beginning of this chapter and recall the law 
of mass action: 

  ni
2 = NvNce–Eg/kBT in which Nc = Nv = 5 ¥ 1019 cm–3. To simplify, 

consider that the effective mass of electrons and holes are 
equal to the free electron mass and assume, in addition, that 
the average atomic density of the considered solids is ≈5 × 
1022 cm–3 and that they are nondegenerate. 

Solution:

 (a) To know whether the semiconductors are extrinsic or intrinsic 
at ambient temperature, one must compare the thermally 
excited density of electrons (ni) determined from the law of 
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mass action (see Course Summary) to the density of residual 
impurities (assumed to be ionized). We thus obtain:

  Ge: ni = 7.5 ¥ 1013 cm–3; n(extrinsic) ~5 ¥ 1012 cm–3

  Si: ni = 6 ¥ 1013 cm–3; n(extrinsic) ~5 ¥ 1012 cm–3

  InAs: ni = 5 ¥ 1016 cm–3; n(extrinsic) ~5 ¥ 1014 cm–3

  GaAs: ni = 2 ¥ 107 cm–3; n(extrinsic) ~5 ¥ 1014 cm–3

  Inversely, we could also determine Eg such that the intrinsic 
concentration coincides with the extrinsic concentration. We 
thus obtain:

  Eg = 2kBT ¥ log [Nc/n(impurities)]
  or
  Eg(limit) ª 0.8 eV for elements and Eg(limit) ≈ 0.6 eV for 

binary compounds Ge and InAs have an intrinsic conductivity 
at ambient temperature; Si and GaAs are extrinsic. 

 (b) s(intrinsic) = nie(me + mh)(see Course Summary)
  s (Ge) = 0.1 W–1 cm–1; s[(InAs) ª 250 W–1 cm–1]
  s(extrinsic) = n(ext) ¥ eme

    s(Si) = 10–3 W–1 cm–1; s[(GaAs) ª 1 W–1 cm–1]
 One can also refer to the next exercise concerning impurity bands 
in binary semiconductors. GaAs is treated more rigorously by first 
estimating if it is degenerate or not (see Ex. 12).

Exercise 16: Impurity orbitals

The physical characteristics of indium antimonide, InSb, are as 
follows: Eg = 0.23 eV; εr (dielectric constant) = 17; effective mass of 
an electron in the conduction band me* = 0.014 m. Using the Bohr 
model calculate:
 (a) The ionization energy of donors Ed

 (b) Their orbital radius of the ground state ri

 (c) What is the minimum concentration of donors to have orbital 
overlaps between adjacent impurities? These overlaps tend 
to produce an impurity band, in which electron conduction 
can occur by electrons hopping from one impurity site to its 
ionized neighbor. 
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Solution:

 (a) Using the reasoning and notation from Pb. 4, Question (3), we 
find:

  ( / )
*/

E E
m m

d H
g

r
=

e 2 , so that here we find Ed = 0.66 meV.

 (b) ( / )
*/

r r
m mi B

r

g
=

e , here we find ri = 640 Å.

 (c) The overlapping of impurity orbitals occurs when the 

concentration exceeds the value 4
3

3
1p

ri
Ê
ËÁ

ˆ
¯̃

-

, here ≈ 1015 cm–3. 

In the III–V semiconductors, any deviation from their 
stoichiometry leads to the creation of acceptors, p (if there is 
an excess of III atoms), or donors, n (if there is an excess of V 
atoms). Here the relative surplus of antimony concentration 
relative to indium, of order 10–7 leads to the appearance 
of impurity bands and it is difficult, in fact technologically 
impossible, to approach the ideal stoichiometry (see Ex.15). 

Exercise	17:	Donor	ionization

In a certain semiconductor there are 1013 donors/cm3 with an 
ionization energy Ed of 10–3 eV and an effective mass of 10–2 m. 
 (a) What is the concentration of conduction electrons at 4 K? 
 (b) What is the value of the Hall constant, RH? 
Note: Assume that there are no acceptor atoms.

Solution:

 (a) At low temperature, when the concentration of the impurities 
Nd is significant, the concentration of electrons n in the 
conduction band obeys (see Pb. 4, Question (3b)):

  n
N N

E k T=
◊Ê

ËÁ
ˆ
¯̃

-c d
d B2

2
1 2/

exp ( /( ))

  where Nc = 2(me * ◊ kBT/2p2)3/2

  At 4 K, kBT = 0.345 meV and Nc = 4.4 ¥ 1013 cm–3, which leads to  
n =3.5 ¥ 1012 cm–3 (50% atomic impurities are ionized). 

 (b) R
nH

e
= - 1 (see Chapter IV, Pb. 2) here we have RH = –1.8 m3/C.
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Exercise	18:	Hall	effect	in	a	semiconductor	with	two	types	of	
carriers

Consider a rectangular parallelepiped semiconductor with sides 
parallel to Ox, Oy, and Oz. This sample is placed in a uniform magnetic 
induction B



0  directed along Oz while a uniform constant current 
density jx flows parallel to Ox. 
 (a) In the xOy plane, find the vector equation of motion for a 

charged particle (q) with mass m when it is subject (in addi-
tion to  B



0) to a constant electric field E E E


( , )x y and a damping 
force of form -mv



/t , where v is the velocity of the particle, and 
τ is the relaxation time. Simplify this result in the steady state  
[(d/dt) = 0].

 (b) In the latter case (steady-state regime), find the expression for 
the vx and vy components of velocity as a function of Ex and Ey 
of E


and of the algebraic mobility µ of the particle (m = qt/m). 
Simplify the results by neglecting the terms in m2B0

2.
 (c) The electrical conductivity of the semiconductor is assured 

by two types of carriers of charge q1 and q2 with respective 
densities per unit volume n1 and n2, with (algebraic) mobility 
µ1 and µ2.

  As a function of this data and the components Ex and Ey of 
E


, find the jx and jy of the current density vector. Find the 
electrical conductivity s0 when B0 = 0.

 (d) The current is constrained to flow parallel to the x¢Ox axis (jy = 
0). What is the expression for the Hall electric field Ey? What 
is the expression of the Hall constant RH, where Ey = RH. B0jx?

  Find RH for
 (i) two carrier types of the same sign (e.g., electrons)
 (ii) two carrier types with different signs (e.g., electrons and 

holes)
 (iii) only one carrier type
 (e) Numerical application: The thickness c (along Oz) of the sample 

is c = 0.1 mm, the current flowing is I0 = 1 mA. For B0 = 1 T, 
find the Hall constant RH and the Hall voltage VH for intrinsic 
Ge at 290 K and for GaAs doped n using the following data: 
Ge: ne = 3 ¥ 1013 e/cm3 , me = 3,600 cm2/V◊s and mh = 1,700  
cm2/V◊s.
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 • GaAs (n) has two types, light and heavy, electrons of 
mass: 

  –light electrons: ml = 0.07 m, nl = 1015 e/cm3

  –heavy electrons: mL = 0.2 m, nL = 1014 e/cm3

  Assume that these two populations of electrons have the 
same relaxation time t = 4 ¥ 10–14 s. (e,m)

Solution:

 (a) m dv dt q E q v B mv( / ) ( ^ ) / .
     

= ◊ + -0 t  In the steady-state regime, 

(d/dt) = 0 and we find: E
v

v B




 

= -
m

( ^ ).0

 (b) Ex = (mvx/qt) – vyB0; Ey = (mvy/qt) + vxB0. 
  From which vx (1 + m2B0

2) = mEx + m2B0Ey ª vx and  
vy(1+ m2B0

2) = – B0m2Ex + mEy ª vy (taking into account the 
algebraic expression m = qt/m and not the usual positive 

m
t

=
q

m
).

 (c)  

j n q v

j n q v n q v n q n q E B E n q
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.

 (d) In equilibrium, the vector j


 is parallel to Ox so that jy = 0 from 
which we find

  
E B E

n q n q
n q n q

B E
n q n qy x
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( )j E
B j

n q n qx x
xª ◊ = +s

s
m mtherefore, E y

  which leads to RH = (n1q1m1
2 + n2q2m2

2)/(n1q1m1 + n2q2m2)2 .
 (i) For two types of carriers with the same sign electrons for 

example q1 = q2 = –q:
  RH = – (n1m1

2 + n2m2
2)/q(n1m1 + n2m2)2
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 (ii) For two types of carriers with different signs (holes and 
electrons):

  q1 = – q2 = q
  RH = – (nhmh

2 – neme
2)/q(nhmh – neme)2

  with the sign convention in (b) ( / )m te e= -q m  or 

R
q

n n

n nH
h h e e

h h e e
= -

-
+

1 2 2

2
m m
m m( )

 with the usual convention.

 (iii) For one type of carrier n2 = 0, RH = 1/n1q1; a result that 
is in agreement with that from Pb. 2 of Chapter IV. As in 
Chapter IV, Pb. 2, and Ex. 19 of this chapter one may also 
explicitly write the electrical conductivity tensor.

 (e) • Intrinsic Ge: ne = nh = ni from which R
n qi

H
h e

h e
= -

-
+

1 m m
m m

.

  

R v E b b R j B R
C

By xH H H H × cm C

volt

= ◊ = ◊ = ◊ ◊ ◊ = ◊ ◊

=

-7 5 10 1

0 75

4 3 1
0 0. ;

. .

 • GaAs (n): ml = qt/ml = 3.5 ¥ 10 –2 m2/V◊s,
    ml = qt/mL = 0.1 m2/V◊s.
  RH ª 6.9 ¥ 10–3 m–3◊C–1; VH = 69 mV.

Exercise 19: Transverse magnetoresistance in a semiconductor 
with two types of carriers

We reconsider the semiconductor from the preceding exercise with 
the same geometry.
 (a) Same question as Question (a) in the preceding exercise. 
 (b) Same question as Question (b) in the preceding exercise, 

still assuming that for the magnetic induction B0 is such that 
the terms in µ2B0

2 are small, << 1, and the terms in B0
3 are 

negligible. 
 (c) Find the components of the tensor sij that connect the current 

vector density and the electric field:

  
j E E

j E E
x xx x xy y

y yx x yy y

= +

= +

s s

s s

 (d) The sample has finite dimensions (jy is zero): find the 
longitudinal conductivity s ||(B) defined bys||(B) = jx/Ex and 
also the variation of the ratio [s||(B) – s(0)]/s(0) = Ds||/s(0) 
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as a function of B0 in which s(0) is the electrical conductivity 
of the material when the magnetic induction is zero. 

 (e) Find Ds||/s(0) for:
 (i) Two types of carriers with the same sign 
 (ii) Two types of carriers with different signs
 (iii) One type of carrier
  (For two types of carriers with the same sign, see the 

explanation on light and heavy holes in the exercise later 
on the band structure of III–V compounds)

 (f) With the numerical data from the preceding exercise, find 

the relative variation of the electrical resistance R B R
R

( ) ( )
( )
- 0
0

 

for intrinsic Ge and for n-doped GaAs when the magnetic 
induction B0 goes from 1 T to 0 T. 

  What DC voltage along Ox must be applied to maintain 1 mA 
of current across the sample when B0 = 0? Take a (along x) = b 
(along y) = 1 mm. 

 (g) The sample is now limited in such a way that Ey (Hall) = 0, 
what is the new ratio Ey (Hall) = 0 for a single carrier type? 
Qualitatively find this result starting from basic considerations 
relative to the effect of B0 on a mean free path Λ for charged 
carriers. 

Solution:

 (a) See answer to Question (a) of the preceding exercise. 
 (b) v B E B E v B E B E

v

x x y x x y

y

i i i i i i i i

i

( ) ; ( ) ;

(

1 12
0
2 2

0
2

0
2 2

0+ = + = - +m m m m m m

11 12
0
2

0
2

0
2 2

0
2+ = - + = - + -m m m m m mi i i i i i iB B E E v B E B Ex y y x y) ; ( ) .

 (c) j n q v n q v E E

j n q v n q v E
x x x xx x xy y

y y y yx x yy

= + = +

= + = +
1 1 1 2 2 2

1 1 1 2 2 2

s s

s s EE

n q B n q B

n q

y

xx yy

xy yx

s s m m m m

s s

= = - + -

= - =

1 1 1 1
2

0
2

2 2 2 2
2

0
2

1 1

1 1( ) ( )

( mm m1
2

2 2 2
2

0+ n q B)

 (d) j E E j E

B n q

y y xy yy x x xx xy xx x= = = +

=

0 2 2

1 1 1

; ( / ) ; [( )/( )]

( ) (||

s s s s s

s m ++ - -

+ ◊

n q n n q q

n q n q B

2 2 2 1 2 1 2 1 2 1 2
2

1 1 1 2 2 2 0
2

m m m m m

m m

) [( ( ) )

/( )]
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  Ds s
m m m m

s||/ ( ) ( )
( )

0
0

1 2 1 2 1 2
2

2 0
2= -

-n n
B , 

  where s(0) = n1q1m1 + n2q2m2.
 (e) (i) For two types of electrons:      

 q q q
n n

n n
B1 2

1 2 1 2
2

1 2

1 1 2 2
2 0

20= = - = -
-
+

; / ( ) ( )
( )||Ds s

m m m m
m m

  The result is identical for two types of holes.
 (ii) For two different types of carriers with different sign:
  q1 = – q2 = q;

  Ds s
m m m m

m m||/ ( )
( )

( )
.0 1 2 1 2 1 2

2

1 1 2 2
2 0

2= -
+

+
n n

n n
B

  As in the preceding hypothesis, the resistance of a material 
is an increasing function and proportional to the square of 
B0. 

 (iii) If n2 0= Æ
Ds
s

= 0, a result which is consistent with that 

of Chapter IV, Pb. 2. 
 (f) • Intrinsic Ge: 

DR R B B Vh e/ [ ( ) ( )]/ ( ) %: .= - = ◊ = =s s s m m0 0 6 3 90
2

0 V.

 • GaAs: DR
R

V= ¥ =-0 7 10 1 383
0. , . V.

 (g) If the semiconductor is infinite, the Hall field does not appear; 
however, jy π 0. This is what happens in a different geometry: 
the Corbino disc. 

  For one type of carrier, the magnetoresistance is nonzero: 

  s (B) = sxx = s0 (1 – m2B0
2).

 One can qualitatively find this result by considering that charge 
carriers will follow a trajectory along a cycloid segment of the length 
Λ instead of a line segment of length Λ (in absence of B0). The distance 
measured along x will be

 L L Lcosj j m
ª -

Ê

Ë
Á

ˆ

¯
˜ ª -

Ê

Ë
Á

ˆ

¯
˜1

2
1

2

2 2
0

2B
, 
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 where D is the mean free path.
	 The	resistance	of	the	semiconductor	increases	and	we	find	

 Ds
s

s
( )

.
0 2

2
0

2
= -

B

 Taking into account the statistics nature of the mean free time 
and	path,	the	½	coefficient	disappears	and	we	find	the	same	result	
as above. 

Comment

The	Hall	effect	is	odd	in	B0 and therefore it changes sign if B0 changes 
direction. The magnetoresistance is even in B0,	and	thus	regardless	of	
the	sign	of	voltage	V, there is an increase in the transverse resistance 
(that is to say jx ̂  B0)	for	weak	applied	magnetic	induction.	For	larger	
values	of	B0, the magnetoresistance can be negative, see [14] p. 321. 

Comment: Giant magnetoresistance (GMR); Nobel 
Prize in physics in 2007

In the present	 exercise,	 the	 explanation	 of	 magnetoresistance	
is	 based	 on	 classical	 arguments	 and	 it	 leads	 to	 change	 in	 the	
resistance	 of	 a	 few	 percent	 for	 semiconductors.	 Quite	 different	 is	
the	 giant	magnetoresistance	 (GMR)	 effect	 that	 has	 been	 observed	
in	 thin-film	 structures	 composed	 of	 alternating	 ferromagnetic	
and	 nonmagnetic	 layers.	 Similarly	 to	 the	 quantum	 Hall	 effect	 of	
Chapter	IV,	Ex.	21,	this	effect	can	only	be	explained	from	quantum	
mechanical	 arguments	 involving	 the	 spin	 orientation	 and	 it	 leads	
to	 a	 large	 change	 in	 resistance	 (typically	 10%	 to	 20%)	when	 the	
corresponding	nanotechnology	devices	are	subjected	to	a	magnetic	
field.	In	these	devices,	the	bit	of	information	is	carried	by	the	spin	
of	the	electrons	rather	than	the	presence	or	absence	of	an	electron	
and	 the	 corresponding	 technology	 is	 named	 “spintronics”	 instead	
of	“microelectronic.”	In	a	GMR	spintronic	device,	the	first	magnetic	
layer	polarizes	the	electron	spins.	The	second	layer	scatters	the	spins	
strongly	if	its	moment	is	not	aligned	with	the	polarizer’s	moment.	If	
the	second	layer’s	moment	is	aligned,	it	allows	the	spins	to	pass.	The	
resistance therefore changes depending on whether the moments 
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of the magnetic layers are parallel (low resistance) or antiparallel 
(high resistance). The overall resistance is relatively low for parallel 
alignment and relatively high for antiparallel alignment. GMR is 
used commercially by hard disk drive manufacturers. The Nobel 
Prize in physics in 2007 was awarded jointly to Albert Fert and 
Peter Grünberg “for the discovery of Giant Magnetoresistance.” For 
additional details, see P. Grünberg, Rev. Mod. Phys., 80, 2008, 1531.

Exercise 20: Excitons

In semiconductors and pure insulators, the minimum energy ET 
for which a photon can be absorbed may be slightly less than the 
bandgap Eg, when the excited electron from the valence band 
remains bounded to its hole by a Coulomb attraction. This bound 
electron–hole pair is called an “exciton.” 
 We start from the Bohr model of atomic hydrogen applied to two 
particles of mass me* and mh* of charge ±e and separated in material 
with relative dielectric constant εr. Find the quantum energies EL = 
E1, E2, … En and the radii r1,2, … n of an exciton with a weak bond 
(called Mott exciton). 
 Find the corresponding energetic positions relative to the 
conduction and valence bands as well as the minimum energy ET of 
a photon leading to the creation of an exciton in its ground state.

Numerical application for CdTe:
 Eg = 1.6 eV; er = 10.2; me

x = 0.09m0; mh
x = 1.38m0

Find E1, r1, and ET known that EH = 13.6 eV and rB = 0.53 Å.

Solution:

The procedure is formally the same as that used for the calculation 
of the ionization of impurities in a semiconductor. In the Bohr model 
of an atom, we substitute ε0 by ε0εr and the real mass by the effective 
mass in the expressions for EH and rB. Nevertheless here, the electron 
mass and that of holes are comparable and it is necessary to use the 
effective reduced mass of these two particles:

  m –1 = me
x–1 + mhx–1

We thus obtain: E n
E

n

m
L

H

r
( )

/
= ◊2

0
2

m
e

 and r
r

m
nn =

◊B re
m / 0

2.
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 When n = •, the electron and hole are completely disassociated: 
one is in the conduction band and the other in the valence band. 
 When n = 1, the exciton is in its ground state. This corresponds 
to a bound electronic state, in the bandgap at a distance EL(1) below 
the bottom of the conduction band—see Fig. 30a. Then,

 ET = Eg – E1(2, n), E1 = 11 meV; r1 = 64 Å; ET = 1.589 eV.

CB n = 1
EL

ET

VB

n = 2

a
n = 2

n = 3

1.58 1.59 1.6 eV

n = 1

(a) (b)

Figure 30

 The characteristics of the optical absorption spectra can be 
obtained and are shown in Fig. 30b. 
 We note that the energy of excitons is such that E1<<Eg so that 
E ≈ Eg, which does not significantly change the results from Ex. 28 
concerning the color and transparency of semiconductors and 
insulators. 

Remark: The electron–hole systems are more or less bonded. 
 Here we consider weakly bonded excitons (Mott–Wannier type) 
having a radius that is large compared to interatomic distances, 
which justifies the use of a macroscopic dielectric constant, as used 
for shallow impurity levels in semiconductors.
 In the opposite case, Frenkel excitons result essentially from the 
excitation of a valence electron (excited state but not fully ionized), 
which leads to an electron–hole pair with a small radius and thus 
very localized on an atom. 

Exercise 21: III–V compounds with a direct bandgap: light and 
heavy holes 

Through some approximations (the Kane model), the band structure 
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of III–V compounds (InSb, InAs, InP, GaAs, GaSb) having a direct 
bandgap Eg can be described by the following relations:

 • CB: E E
k
m

E Qk E= + + + -( )g g g


2 2
2 2

2
1
2

 • VB1: E k m= -2 2 2/

 • VB2: E
k
m

E Qk E= - - + -

2 2
2 2

2
1
2

( )g g

 (1) For each band, find the effective mass of the particles 
situated at k ≈ 0 with Q > 0. 

 (2) Knowing that the optical absorption starts at λ0 = 8670 Å 
and that the effective mass of electrons (determined 
electrically) is mx ≈ 0.07 m in GaAs, find the numerical 
values of Eg (in eV) and of Q. Sketch the band structure of 
GaAs and indicate the light and heavy hole bands. 

 (3) Assuming that Q has the same value for all the III–V 
compounds considered, find the evolution of the effective 
mass of conduction electrons, their mobility as a function 
of the Eg (see Table 1 in of the Course Summary). Find µe 
of InSb, InAs, and InP knowing that µe(GaAs) = 8800 cm2/
V◊s. Starting from the band structure, explain qualitatively 
why the electrical conductivity of these materials 
are essentially given by electrons even when they  
are intrinsic. ( , ) m

Solution:

 (1) For CB: ∂
∂

+ - = + -
2

2
2 2 2 2 2 3 2

k
E Qk E QE E Qk( ) ( ) /

g g g g

  from which 1 1
2

2

2/m
E

k
x = ∂

∂

Ê

ËÁ
ˆ

¯̃

 • CB: 1 1
2 2m m

Q

Ex = +
 g

: electrons ( )mx > 0

 • VB1: m mx = - : heavy holes
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	 •	 VB2: 1 1
2 2m m

Q

Ex = - +
Ê

Ë
Á

ˆ

¯
˜

 g
: light holes

 (2) Eg = hc/l @	1.43	eV;	Q	=	290	(eV.Å)2

  The characteristics of the corresponding band 
structure (including the spin-orbit band with equation 

E
k
m

Q k
E

= - - -
+

D
D



2 2 2

2 8 ( )g
) is shown in Fig. 31. 

 (3) m m
Qm

E
x/ e = +1

2 2
 g

	 	 As	the	bandgap	increases,	the	electron	effective	mass	increases	
(me

x = 0 for Eg = 0, me
x = m for Eg = •).	The	electron	mobility	

(me ª – et/mx) increases when the bandgap decreases. One 
expects	that	the	ratio	of	mobilities	varies	as	the	inverse	of	the	
effective	mass	which	is	inversely	proportional	to	Eg.	From	this	
we	find,	me(InSb) ª	70,000	cm2/V◊s;	me(InAs) ª	36,000	cm2/
V◊s;	and	me(InP) ª	10,000	cm2/V◊s.

Light holes (VB )2

E

C.B.

EG
f E( )

N EF

g h( )

1– ( )f E
Spin orbit

0
k

D
Heavy holes (VB )1

G6

G8

G7

Figure 31

	 Comparing	the	calculated	values	with	the	experimental	results,	
77,000	 cm2/V·s;	 33,000	 cm2/V·s;	 and	 4,600	 cm2/V·s,	 respectively	
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(see Table 1 in the Course Summary), we note that there is an 
excellent agreement for all compounds except InP. 
 In fact the semiconductor mobility also depends on τ by the 
Matthiessen's rule (see Chapter IV, Ex. 16): τ–1 = τ–1(impurities) + 
τ–1(temperature) + τ–1(deformation).
 In addition to the electronic mobility evolution in the III–V 
compounds, the band structure of these compounds (from the Kane 
model) can explain why their conductivity is essentially electronic 
when they are intrinsic. 
 The electronic conductivity s obeys s = neµe + nlhµlh + nhhµhh 
and for an intrinsic material: ne = nlh +nhh. Nevertheless, the density 
of heavy holes (nhh) is much larger than that of light holes (nlh) 
because the density of states at the common maximum of the 
two valence bands is larger for heavy holes than for light holes  
 (g(E) µ mx3/2). In addition, the Fermi–Dirac (or Maxwell–Boltzmann) 
statistics favor the occupation with holes on the top of the valence 
band with the smallest curvature that of heavy holes (see Fig. 31). 
From this it results that the mean effective mass of holes is nearly 
that of heavy holes and the average mobility of holes mh is close 
to that of heavy holes. Thus, the contribution of holes (which is an 
order of magnitude smaller than that of electrons) will be negligible 
compared with electrons so that s = neeme. This high electron 
mobility (compared with that of Si) explains in part the attention in 
III–V compounds for electronic applications. 

Comment: Band structure of semiconductors

As in IV–IV semiconductors (Si–Ge), the chemical bonds between 
elements of type III (ns2p1) and of type V (ns2p3) leads to hybrid 
tetrahedral sp3 orbitals taking into account the crystalline geometry. 
Knowing that there are two atoms per lattice, there are eight valence 
electrons per unit cell and if there are N unit cells in the crystal, the 
8N valence electrons will be divided into two valence bands:
 • A binding s-band with 2N states sufficiently deep so that it 

does not interfere with the principle properties of the material 
(not shown in the figure). 

 • A binding p-band with 6N states giving rise to three subbands 
(each with 2N states), which in the absence of spin–orbit 
coupling, that degenerate at k = 0 (VB1, VB2, and spin–orbit). 

 The spin–orbit coupling lifts this degeneracy. For the valence 
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band at k = 0, we thus obtain, two bands G8 (j = 3/2) and G7 (j = 1/2) 
separated in energy by D. The first unoccupied band (Ec) corresponds 
to the s antibonding band containing 2N states: it is the conduction 
band, CB. The difference in energy at k = 0 between the conduction 
band (G6 band) and the valence band (G8) gives the bandgap of the 
material (Eg). 
 Qualitatively, the energy Eg represents the bonding/antibonding 
splitting of the IV–IV, III–V, or II–VI chemical bond. For the homopolar 
bonds of the IV column, the amplitude of this splitting is inversely 
proportional to the interatomic distance. The bandgap decreases 
(from diamond via Si to Ge) when the corresponding elemental 
atomic number increases (because the atomic radius and therefore 
the distance separating them increase with Z). For a given row of 
the periodic table, this splitting also increases with the ionic nature 
of the bond (for the same row Eg(IV–IV) < Eg(III–V) < Eg(II–VI), for 
instance: 

 Eg (Si) < Eg (AlP); Eg (Ge) < Eg (GaAs).

 By combining these two rules, it is therefore easy to foresee that 
Eg (GaP) > Eg (GaAs) > Eg (InAs) > Eg (InSb) (simple knowledge of the 
periodic table without looking at a table giving Eg). 
 The objective of the present exercise is to correlate the values 
of Eg with the values of mobility that are an important part of the 
electric properties of these materials. Reciprocally, the electrical and 
optical measurements allow the experimental determination of the 
parameters Eg and Q, the deduction of the dispersion curves (VB1, 
VB2, and CB), and thus the corresponding density of states (out of 
the present exercise). 
 Ex. 25 will explore empirical expressions for the bandgap in ionic 
crystals and study their influence on the static dielectric constant. 

Exercise	22:	Electronic	specific	heat	of	intrinsic	semiconductors

To simply evaluate the electronic specific heat of an intrinsic 
semiconductor with bandgap Eg, one can take into account (i) the 
increase of electronic energy of electrons Dni passing from the 
valence band to the conduction band for a temperature increase 
DT and (ii) the increase in kinetic energy of ni conduction electrons 
associated with the same temperature variation. 
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 (a) Find the corresponding expression. Precise the characteristics 
of the function Ce (s◊c) = f (T). Express the result in the form 
C s c

ni

e( )◊
and indicate the dominant mechanism (i) or (ii). 

Take kBT << Eg and in the law of mass action neglect the T 
dependence of the pre-exponential terms Nc and Nv. Indicate 
in integral form but do not try to resolve the expression that 
leads to a more exact result. 

 (b) Numerically compare this specific heat at room temperature 
with that of a metal with the same atomic density. The 
semiconductor is germanium Eg ≈ 0.7 eV and ni ≈ 1013 cm–3, 
the metal is characterized by EF ≈ 5 eV, and n = 5 × 1022 cm–3. 
Comment on the results.

Solution:

 (a) (i) D DU E ne
i

g i
( ) = ◊ , where n N N

E

k Ti c v
g

B
= -

Ê
ËÁ

ˆ
¯̃

exp
2

  (ii) D D

D D D

U n k T

C U U T

C k
E

k T

e e

e
ii

i B

e
i ii

e B
g

B

( )

( ) ( )

( )

( )/

ª ◊

= +

=
Ê

ËÁ
ˆ

¯̃
1
2

2

++
È

Î

Í
Í

˘

˚

˙
˙

-1 2N N E k Tc v g Bexp ( / )

  The function Ce (s◊c) = f (T) is dependent on the exponential 
term which is µ ni . The interband electronic transitions (i) are 

the dominant contribution and 
C s c

n

E

k T
ke

i

g

B

B( )◊
ª

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

2

2
.

  The exact expression can be deduced from U E E E E
E

e g f d
g

= ◊
•

Ú ( ) ( )

plus an analogous expression describing the energy of holes. 
The integral form to solve x e xax3 2/ -Ú d  is similar to that leading 

to the evolution of n, x e xax1 2/ -Ú d  with the same condition: 

5kBT < EF < Eg – 5kBT.
 (b) In the case of Ge at ambient temperature, we have
  Ce (Ge) ª 4 ¥ 1015kB (cm–3).
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  For a metal at the same temperature, we find

  C n k
k T
E

ke B
B

F
Bmetal cm( ) ( ).= ◊

Ê
ËÁ

ˆ
¯̃

ª ¥ -p2
21 3

2
12 10

 These order of magnitudes show that the electronic specific heat 
of an intrinsic semiconductor is, at ambient, considerably smaller 
than that of a metal and it is inaccessible to experiment due to the 
lattice contribution. This explains why in the literature we only find 
experiments between 0.5 K and 4 K on heavily doped semiconductors 
(>1018 cm–3) to determine the effective mass of the density of states 
(Baranski et al. [2], p. 106).
 Nevertheless, the exponential behavior of Ce seen here is 
characteristic of electronic systems that have a bandgap and is very 
different from the linearity seen in a free electron gas. Such behavior 
was also seen in metallic superconductors at very low temperatures 
and it evidences a bandgap in these materials (see Ex. 23).

Exercise	23:	Specific	heat	and	the	bandgap	in	metallic	
superconductors

The specific heat measurements in metallic superconductors lead to 
the following data in the superconducting state: 

T(K) 2.48 1.91 1.62 1.46 1.24 1.08
C

(mJ/mol◊K)
10.33 5.01 3.03 2.1 1.14 0.65

 An applied magnetic induction larger than a critical value results 
in the metal becoming normal and the evolution of C, then follows 
the conventional law of form: C/T = g + aT2, where g = 1.65 and  
a = 0.256.
 Graphically compare the evolution of the specific heat for normal 
electrons Ce.n with that of superconducting electrons Ce.s as a function 
of T. Deduce the bandgap Eg of the superconductor. (kB, e)

Solution:

In the normal state, C includes an electronic term Ce = gT and a term 
related to the vibrations of the lattice aT3.
 In the superconducting state, one must subtract the lattice term 
in aT3 from the measured values of C in order to extract only the 
contribution of the superconducting electrons Ce.s. 
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 Figure 32 shows the evolution of Ce.s compared with the variation 
in gT of Ce.n.  
	 As	bandgap	materials	have	a	specific	heat	that	varies	as	exp	–	(Eg/
kBT)	(see	preceding	exercise),	it	suffices	to	graphically	determine	the	
slope of the line following log Ce.s = f(T–1) to determine Eg	(see	inset):	
Eg ª 4.9 ¥ 10–4 eV. 
 In fact the width of a superconducting bandgap decreases as the 
temperature increases and goes to zero at T = Tc.	For	simplicity,	this	
problem	(inspired	by	J.	Giber	[7])	ignores	this	difficulty.	

Ce.s

Ce.n

5

0
0 1 2 K

T

log Ce.s
2

1

0

–1

1/T
10.4

Eg Ka

Figure 32

Exercise 24: The Burntein–Moss effect

In	 III–V	 semiconductors	 of	 direct	 bandgap	 that	 are	 completely	
degenerated,	the	Burstein–Moss	effect	results	in	an	increase	in	the	
threshold	energy	 for	 the	optical	absorption	with	n-doping	of	 III–V	
compounds.	Explain	simply	this	effect	by	evaluating	the	filled	level	
DE	of	the	conduction	band	as	a	function	of	the	impurity	concentration	
ND,	assuming	that	all	impurities	are	ionized.	Use	the	expression	for	
the	density	of	states	g(E)	in	the	conduction	band	in	3D	weighted	by	
the	effective	mass	me

x	but	neglecting	the	effect	of	temperature.
 Numerical application:	 Evaluate	 the	 corresponding	 optical	
absorption threshold energies and wavelengths for InSb where 
ND	=	1014 cm–3	and	next	1017 cm–3; me

x=	0.017m0 and Eg	=	240	meV.
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Recall that for free electrons g( )
/

E
V m

E= Ê
ËÁ

ˆ
¯̃2

2
2

0
2

3 2

p 

and that



2

0

2

2
3 8

m
= -. eVÅ .

Solution:

The Fermi level is in the conduction band and the optical absorption 
begins when hv = Eg + DE (see Fig. 33). 

DE

Eg

B.V.

hn

B.C.

Figure 33

 If all the impurities are ionized, we have, assuming a unitary 
volume:

n N E E
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E E

E
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E
e

x E

x
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Ë
Á

ˆ

¯
˜ ◊ ◊

=
Ê

Ë
Á

ˆ

Ú ÚD

e

g d d( ) ,
/
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D D

D

p 



¯̄
˜ ( ) ,/3 2 2 3p ND

where DE = 0.461 meV for ND = 1014 cm–3, but DE = 46.1 meV for ND 
= 1017 cm–3.
 The optical absorption is shifted from hv @ 240.5 meV to 286 meV. 
The phenomenon is observed in the infrared. The wavelength of 
optical absorption is 5.156 μm (ND = 1014 cm–3) to 4.335 μm (ND = 
1017 cm–3).

Remark: This effect, observed in 1954, is very noticeable in InSb 
because the conduction band fills quickly with doping due to the 
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small value of the effective mass involved in g(E) that is proportional 
to me

x 3/2.
 In addition, the ionization energy of impurities is very small in 
this material (0.7 meV), taking into account its low effective mass and 
its large dielectric constant (er @ 17.7), which results in impurities 
being effectively ionized even at relatively low temperatures.

Exercise 25: Bandgap, transparency, and dielectric constant of 
ionic crystals

The bandgap Eg of compounds of type ANB8 – N crystallizing in the 
NaCl type structure (fcc structure, see Chapter I, Fig. 1e), is given 
by: E mrg g= h ( / ).

2
0

2  The width of the valence band ΔEV associated 

with p-states is DE mrv v= h ( / )

2
0

2 where r0 is the distance between 
nearest neighbors (r0 = a/2) where a is the lattice parameter) and 
the coefficients ηg and ην are such that hg = 12.9 – 3.8N; hv = 2.1 + N 
where N = 1 for the alkali halides and N = 2 for the oxides, sulfides 
and selenides of Mg, Ca, Sr, or Ba. 
 Numerically determine Eg, e1(0), and the energy 

w ¢p at which 
the dielectric constant e1(w) is zero in the ultraviolet, for the 
compounds below. Also evaluate the energy interval at which e2(ω) 
and the energy loss function are zero.
LiF Å NaCl Å KI Å MgO Å( . ), ( . ), ( . ), ( . ),a = 4 02 5 63 7 06 4 2  
and BaO (a = 5.52 Å).
For e1(0), the evaluation is limited to the electronic contribution to 
the static dielectric constant using the simplified Lorentz model with 
eight electrons per molecule making transitions with an average 
energy of wT g v= +E ED .

 Compare w ′p with wp, the energy of plasma oscillations for a 
free electron gas (with eight molecules AB).
 Neglecting the effect of impurities, which crystals are 
completely transparent in the visible, qualitatively describe 
the effect of temperature and pressure on the bandgap energy. 

( / . ; ; )

2
07 6m mª eVÅ-2 e

Solution:

Taking into account that r0 = a/2, we construct Table 2 where the 
experimental values of Eg are also indicated for comparison. 
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Table 2

I-VII : hg = 9.1
            hv = 3.1

II-VI : hg = 5.3
            hv = 4.1

LiF NaCl KI MgO BaO

Cal.
Eg (eV)

Exp.

17

13.7

8.7

8.75

5.55

6.3

9.1

8

5.3

–

DEv         Cal. 5.8 3 1.9 7 4.1

 The agreement between Eg (Cal) and Eg (Exp) is satisfactory. 

 The Lorentz model is of the form: e w
w

w w
1

2

2 2
1( ) = +

-

p

T

(see Pb. 6), 

where w T g v= +E ED . We have w ep
2 2

0= ne m/ , where n a= ¥8 4 3/ . 

We thus obtain e
w

w
1

2

20 1( ) = + p

T

, while e1(ω) = 0 for w w w¢ = +p p p
2 2 2

.

 The numerical applications result are provided in Table 3 in 
which the experimental values of e1(ω) are also included. 

Table 3

LiF NaCl KI MgO BaO

wp (eV) 26.2 15.7 11.2 24.5 16.3

Cal.
e1 (0)

Exp.

2.3

1.9
(9)

2.8

2.25
(5.9)

3.25

2.7
(5.1)

3.3

3
(9.8)

4

-

w¢p (eV) 32.7 18.6 13 27.5 17.9

 As noted in the statement of the problem, the evaluation 
of e1(0) only concerns the electronic contribution to the static 
dielectric constant. The experiments cited as a comparison were 
done at frequencies much larger than the resonant frequency 
of ions and therefore correspond to a measure of e(∞) in the 
Lyddane−Sachs−Teller (LST) relation relative to phonons (see 
Chapter III, Pb. 1). The true static dielectric constant mentioned in 
parenthesis in the table results from the sum of the electronic and 
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ionic contributions. Finally, note that wp
¢  is also slightly larger than 

wp (see comment on the bandwidth).
 Since Eg > 3 eV, all the materials here are transparent in the 
visible spectrum (1.5 eV < hν < 3 eV; see Ex. 28). The absence 
of optical absorption in the energetic interval extends from 
the beginning of the visible spectra up to Eg, corresponds to 
the zero of e2(ω) and therefore to the energy loss function  
e2/(e1

2 + e2
2) in this interval.

 Given that the r0
–2 law governs Eg, hydrostatic pressure, which 

brings atoms closer together, will result in an increase in the bandgap 
while an increase in temperature results in a thermal expansion and 
leads to a decrease in the Eg.

Comment: Width of the bandgap

The expressions given in this problem were proposed by Pantelides 
(Phys. Rev. B 11, 1975, 5082) and can also be applied to certain 
metallic nitrides (III–V compounds) that crystallize in the NaCl 
structure. With ηg = 2.8, they can also be correctly applied to the 
bandgap of CaF2 type crystals and with ηg = 12.9 can be used for rare 
gas crystals (Ne, Ar, Kr, and Xe). 
 The study of Pantelides is based on the tight-binding 
approximation and results in the complete valence band structure of 
51 corresponding crystals using simply two empirically determined 
parameters. The expression obtained here for Eg precise the 
qualitative remarks made in Ex. 21 for diamond (C, Si, and Ge) and 
zincblende (GaAs) crystals: the bandgap increases when the distance 
between nearest neighbors decreases and when the ionic nature 
of the compound increases. This allows us to generalize that the 
bandgap of all semiconductors and insulators increases as a function 
of applied pressure and decreasing temperature.

Comment: e1(0)

The choice of the average transition energy as w T g v= +E ED , as 
proposed in this exercise, is relative arbitrary. This explains the 
non-negligible difference between the calculated values and the 
measured values of e1(0). The interest in this assumption lies in that 
it qualitatively explains the quasi-general tendency of the decrease 
in the static dielectric constant as the bandgap increases, a trend 
found in the semiconductors: 
C(diamond): Eg = 5.5 eV,  e1 = 5.7
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C(Si): Eg = 1.12 eV,  e1 = 12
C(Ge): Eg = 0.7 eV,  e1 = 16
C(PbTe): Eg = 0.31 eV,  e1 = 30

Comment: “Plasmons” in semiconductors and insulators

In the 1960s, there were many questions on the following experimen-
tal facts: the energy loss function of semiconductors and insulators 
often exhibited a maximum at w′p, very near the calculated value of 
wp, where all valence electrons are assumed to be free even though 
this was not the case. For example, in diamond we find w′p eV= 33
and wp (free) = 31 eV, while Eg = 5.5 eV (J. Cazaux, Surf. Sci., 29, 
1972, 114). Thus, the word “plasmon” was more or less associated 
to “free electrons” instead of a better spelling: collective excitations. 
The Lorentz model developed here provides a simple explanation: 
the loss function e2/(e1

2 + e2
2) is maximum when e1(w) = 0 and the 

zero of e1 corresponds to

   





w w w w
w
w

′p p T p
p

T= + ª 1+
È

Î
Í
Í

˘

˚
˙
˙

[( ) ( ) ]
( )
( )

/2 2 1 2
2

2
1
2

 because 

( ) ( ) w wp T
2 2>> .

 We observe that the zeros of e1(w) correspond to natural 
frequencies of oscillations for a longitudinal excitation (see Chapter 
IV, Pb. 5) and that the evolution of e1 in the UV (with w T, wp, plasmon) 
and in the infrared (with wT, wL, polariton) are very similar if we 
compare Fig. 17 of Chapter III, Pb. 1, and Fig. 34 in Ex. 26. 
 In addition the approximation made to determine the zeros of 
e1(w) is the same type as that used to evaluate the optical index of 
X-rays in matter. In the latter, the Z atomic electrons were considered 
to be oscillating quasi-freely and these oscillations were the origin 
of the coherent diffusion of X-rays (see Chapter I, Ex. 23; Chapter IV, 
Ex. 30; and Ex. 27 of this chapter).
 Finally, we note that if the Lorentz model allows us to explain the 
general trends of e1 and e2 at large values of w, a detailed study of 
these evolutions must take into account quantum mechanics based 
on interband transitions at critical points in the Brillouin zone, 
especially when the energy interval is located near Eg (see Pb. 6). In 
particular, the bandgap corresponds to the energetic position of the 
optical absorption threshold, where the energy loss function begins: 
a fact not taken into account in the Lorentz model. 



536 Band Theory

Exercise 26: Dispersion of light: Sellmeier formula

Transparent optical medium in the visible (0.4 mm < l < 0.8 mm) have 

an optical index n which obeys the Sellmeier relation: n2
2= +A B

l
.

 Show that this relation can be deduced from the evolution of 
the complex dielectric constant as described by the Lorentz model 

in the form e
w

w w gw
 r

p

T
= +

- +
1

2

2 2 i
, where w

ep
2

2

0
= ne

m
in which the n 

electrons per unit volume make an average energy transition wT  
and γ is the damping constant. 

Simplify the expression for e r using physical justifications and then 
express A and B as a function of the remaining parameters. Using 
these results, describe the microscopic causes of the dispersion of 
white light by a glass prism.

Solution:

In the spectral domain considered, the medium is transparent. This 
implies that the optical absorption conditioned by the damping 
coefficient is negligible (e2 = 0 because g ≈ 0) and that the visible 
photon energy is smaller than the bandgap energy of the material: 
 w w< <Eg T .

From this we have e
w

w w
w

1

2

2
2

2

1
1

= +

-
Ê

Ë
Á

ˆ

¯
˜

p

T
T

e
w

w
w
w1

2

2

2

21 1ª + +
Ê

Ë
Á

ˆ

¯
˜

p

T T

 to first order. 

Since n = er , we find A = +1
2

2

w

w
p

T
 and B c=

w

w
pp

T

2

4
22( ) , where 

l p
w

= 2 c .

 The evolution of e1 in the spectral interval from the infrared to 
the ultraviolet is shown in Fig. 34. 
 In the visible this evolution is conditioned by the presence of 
the resonance, which is located in the UV (at w = wT). Physically, 
when going from the red to the blue, the dipolar moment 

 p x= -e  
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induced by the electric field of the EM wave and associated with 
the polarization of each atom will increase because x increases as 
this resonance is approached (see top insert in Fig. 34). 





p NP=  
and 



 

p E E= = -e c e e0 0 1( )r , a microscopic increase of 


p  explains 
the macroscopic increase of er and therefore of n, which leads to an 
index n slightly larger for the blue than the red. We thus can explain 
the decomposition of light by a transparent prism. 

En2

w

wp

wT

w¢p
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+
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Figure 34

 It is clear that to express e  more rigorously than the Lorentz 
model used here, a more accurate summation of all the possible 
electronic transitions weighted by the corresponding oscillator 
strength is necessary. This procedure complicates the intermediate 
results without profoundly changing the physical description of the 
mechanism. 

Exercise	27:	Back	to	the	optical	index	and	absorption	
coefficient	of	X-rays	

Consider an element irradiated with a beam of monochromatic 
X-rays with frequency ω. The different electronic levels (1s, 2s, 2p, 
etc.) of an atom of this element are characterized by their binding 
energy 

w jT  and their population by zj, in such a manner that the 
complex dielectric constant of this material can be described by an 
expression of the form:

e
w

w w g wr
p

T
= +

- +Â1
2

2 2
j

j jj i
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where w
ejp at at2
2

0
= N z

e
m

Nj( ) , ( )  is atomic density, and γj is the 

damping constant. 
 (1) Consider the case of metallic sodium (Z = 11) radiated with 

X-ray photons of energy  w = =v 10 keV (see Chapter 
IV, Ex. 30). Show that the proposed expression can be 
identified with that obtained by considering that all 
electrons, including atomic electrons, are free therefore that 
( ) ( ) , ( )  w w w2 2 2>> j jT p .

  Neglecting the term γ (because γj << ωjT), put e1 in the form 
e1 = 1 – Δe1 and find numerically Δe1 assuming that atomic 
electrons are free. Estimate the error introduced by such a 
simplification. 

  
Na s eV,

s p eV

cond.

T

T

T

: ( )
( ) ,

( ) ,
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w
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e

1 1070
2 2 50
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    wp eV0 6= , where w
ep at0

2
2

0
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e
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( ) .

 (2) Find Δe1 and Δe2, the expressions for the complex index 
N n ik= - , the coefficient of attenuation with amplitude α, 

and the coefficient of attenuation in intensity μ.
 (3) Now the goal is to correlate the factors governing the X-ray 

diffusion with those conditioning their propagation. 
  Can you express e1, e2, and μ as a function of the summation 

f jÂ of the electronic diffusion factors of the considered 
atoms? Recall the anomalous diffusion factor f  for a bound 

electron is f
i

=
- -

w
w w gw

2

2 2( )T
 (see Chapter I, Ex. 23), which 

leads to a comparison between a bound electron and a free 
electron. 

Solution:

 (1) The proposed simplification (also done in Chapter IV, Ex. 30) 
consists of identifying the expression: 

  1 1 0
2

1
2 2

2 0
2

2
2 2

3 0
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z z z( )

( ) ( )
( )

( ) ( )
( )
(



 



 

w

w w

w

w w

wp

T

p

T

p

w)2  with 



539Exercises

1 0
2

2-
Z( )

( )




w

w
p where z1 = 2(1s); z2 = 8(2s + 2p); and

  z3 = 1(3s = conduction e).
  Taking into account that ( ) ( ) w w2 2>> jT , we note that the 

error will essentially only affect the term w1T  relative to 
the most tightly bound 1s electrons. It will be of order of 

z1 0
2 1

2

4( ) ( )
( )







w
w
wp

T , or 0.8 × 10–8 for a e1 ≈ 1 – 0.4 × 10–5. 

 (2) N n ik i= - = -e e1 2 or n ª - Ê
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p , where fij  and f i2 0>

  e e er i= -1 2 , where e1, e2> 0 (see note Chapter IV, Ex. 29),
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w

= Â f

c
jpj

j

2
2

. .

Exercise	28:	Optical	absorption	and	colors	of	semiconductors	
and insulators

Consider a semiconductor with a direct bandgap Eg eV@ 2 3.  (GaP, 
for example). 
 (a) What is its color, as observed by transmission when pure?
 (b) Same question for rutile; TiO2 (Eg ª 3eV); ZnS (Eg ª 3.6 eV); 

and CdS (Eg = 2.5 eV).
 (c) Suppose that GaP has an impurity level located at 0.7 eV 

above the valence band, what is its new color as viewed by 
transmission? 

 (d) Can you generalize the above results and explain why the 
majority of oxides and alkali halides are transparent when 
they are pure? (h)
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Solution: 

(a & b) Neglecting the possible creation of excitons (see Ex. 20), pho-
tons hn can only be absorbed by electrons from the valence 
band if the photon energy allows these electrons to reach to 
the conduction band. 

  The visible spectra are 4000 Å < l < 8000 Å or equivalently  
 3 eV > hv > 1.5 eV and thus no absorption is possible in pure 
materials such that Eg > 3 eV. These materials (TiO2, ZnS) will 
thus be transparent. 

 • GaP absorbs in the green, blue, and violet (see Fig. 35) and 
allows the yellow, orange, and red to pass. It will thus be 
orange by transmission.

 •  In addition, CdS allows the green to pass and will thus be 
yellow by transmission.

 (c) If the material contains an impurity level “n,” the transitions 
between this level and the valence band will occur, resulting 
in selective absorption of photons hv = Eg – ED. In the case of 
GaP, the red will thus be absorbed and to a large extent change 
toward the yellow, which is the transmission color. 

 (d) The bandgap reflects the bonding energy of valence electrons. 
Its value will be larger if electrons are more tightly bound. 
Without knowing the exact value of the bandgap (but using 
the comment from Exs. 21 and 25), we expect that the oxides 
(Al2O3, BeO, MgO) and the alkali halides (LiF, NaCl) will have 
bandgaps greater than 3 eV. They will therefore be transparent 
(without color) if they are pure (without impurities; see 
comments below). 

 Most of the transparent materials are also electrical insulators 
with a noticeable exception: indium tin oxide (ITO, or tin-doped 
indium oxide) has a large bandgap of around 4 eV and, thus, it is 
mostly transparent in the visible part of the spectrum in thin layers, 
200–850 nm, but it is also a conducting oxide via a large concentration 
of dopants such as Sn. The mechanism of DC conductivity is detailed 
in H. Peelaers et al., Appl. Phys. Lett. 100, 2012, 011914.
 These specific properties makes that it is widely used to make 
transparent conductive coatings for displays such as liquid crystal 
displays, flat panel displays, plasma displays, touch panels, and 
electronic ink applications. Its elaboration is increasing the thickness 
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and increasing the concentration of charge carriers, which will 
increase the material’s conductivity, but decrease its transparency.

UV

395

violet blue green orange red IR

455 490 575 650 750 l(nm)

hv
(eV) 3.1 2.7 2.5 2.3 2.1 1.9 1.7

ye
llo

w

590

Figure 35

Comment: Color of insulators and semiconductors

The electrical insulators (Eg > 3 eV), when they are pure, are 
transparent for all radiations in the visible spectra but inescapably 
absorb photons in the ultraviolet when hn reaches hv ª Eg. In virtue 
of the law on the value of Eg developed in Exs. 21 and 25 (see 
comment), the largest bandgap is of LiF (Eg ª 12 eV), if we exclude 
solidified rare gases Eg (Ne) = 18 eV). This implies that we can only 
build transparent lenses for UV optics below λ ª 100 nm. It is more 
convenient to use quartz for the near UV but for the far UV the 
use of LiF (up to the limit mentioned above) is needed and its use 
requires operations in the vacuum in order to limit absorption by 
gas molecules. 
 For semiconductors, their reflecting color will be complimentary 
to that observed by transmission because the absorbed wavelengths 
will be the most efficiently reflected and rediffused (see for instance 
Pb. 6, Question 1b(ii)—R increases with e2 which itself starts at hν = 
Eg). With exceptions, they appear therefore blue by reflection. 
 The presence of impurities modifies the color of insulators 
because the absorption process (between the impurity levels and 
Ec or Ev) is often located in the visible. This explains the color of 
precious stones (ruby, sapphire, emerald, etc.), which are initially 
transparent metallic oxides that are accidentally or not doped with 
metallic impurities (for instance ruby is corundum, a variety of Al2O3 
doped with chrome).

Comment: Color of insulators and semiconductors

The detailed mechanism of optical absorption differs depending on 
whether the transitions are direct or indirect. 
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 If the forbidden band is direct (see Fig. 36a), the absorption 
coefficient μ is of the form (near the absorption threshold):

m µ (hv – Egd) 1/2

 This is quantum result that one can also deduce from 
m w e= ( / )c 2 2  (Pb. 6, Question 1b(ii)) where e2 µ 1/w (Question 
(2b) where ω ≈ ωT). 

E

hv
hv1

hv1

m2
m1/2

hv1 hv2

hv

E

Dk

E hv hvgi P= +
w
wP

kP

k

Egd

k
(a) (b)

Figure 36

 If the bandgap is indirect, phonon transitions (creation or 
absorption) are necessary to ensure wave vector conservation:
 ki + (2p/l) + kp = kf; Ef = Ei + hv + hvp.
 Compared with direct transitions, conservation of energy is not 
modified significantly since hvp(phonons) < a few meV, whereas the 
change in momentum Dk ª kp is essentially due to phonons, which 
modifies the characteristics of μ near the absorption threshold: μ1/2 
will contain two linear parts (Fig. 36b) instead of being linear in μ2 
as for a direct transition. 

Exercise 29: Optoelectronic properties of III–V compounds 

In order to realize emissive optoelectronic devices (LEDs and lasers), 
the following constraints are imposed on the active materials:
 (a) Its bandgap Eg must be direct and its value must be exactly 

adjusted to the wavelength of emission.
 (b) The active material must be sandwiched by an adjacent 

material (substrate) having a bandgap Eg¢ greater than Eg.
 (c) The active material and the substrate, both single crystals, 

must have a lattice parameter “a” (of the fcc lattice) relatively 
close to one another. 
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 As a result, if the substrate is a simple binary compound A¢B¢ 
from the III–V family (III: Al, Ga, In; V: As, P, Sb), one must often use 
a tertiary compound of type AX

1, A1 – x
2B1, or A1By

1B1 – y
2 (0 ≤ x, y ≤ 1) 

to realize the active material. 
 Using the table showing the bandgap of III–V compounds as a 
function of their lattice parameter a (Table 1 in Course Summary), 
find the explicit composition (A(1), A(2), B(1), B(2), x, y?)of the active 
material and substrate necessary for the two following realizations:
 (1) A laser emitting in the visible at λ = 7500 Å.
 (2) An active device in the infrared at λ = 1.6 μm (minimum 

absorption of fiber optics). In each case, state the value of the 
crystal lattice a. 

 (3) What is the emission wavelength for a quaternary active 
material: GaxIn1 – xAsyP1 – y, where x = 0.29 and y = 0.63?

Note: In the transition A B A A B A Bx x
( ) ( ) ( ) ( ),1

1
1 2 2Æ Æ-

 assume that 
the bandgap and the crystal parameter vary linearly with x (Vegard 
law). 

Solution:

In each case, it is sufficient to trace a horizontal line from the y-axis 
corresponding to Eg = hc/λ (constraint: a) and find the intersection 
of this line with the curves connecting the different semiconductors. 
To find the substrate for the constraints imposed by (b) and (c), one 
looks perpendicular and directly above this intersection for a III–V 
semiconductor, if it exists.

 (1) l = Æ ª7500 1 65 Å eVgE . . The first intersection connects 
AlAs and GaAs, with the substrate being AlAs. 

  The active compound will be AlxGa1 – xAs where x is such that
  xEg(AlAs) + (1 – x) Eg (GaAs) = 1.65 eV or x ≈ 0.30. 
  The lattice parameters will be (Vegard law):
  xa(AlAs) + (1 – x) a(GaAs) = a(AlxGa1 – xAs), which gives a = 

5.64 Å.
  More precise values are tabulated in handbook on 

semiconductor such as that by Baranski et al. [Ref. 2].
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 (2) l = Æ =1 6 0 775. .mm eVgE . The first intersection connects 
GaAs to InAs and is below InP. The substrate will thus be 
InP (a0 = 5.87 Å; Eg = 1.27 eV). The active compound will be 
Ga1–xInxAs where x = 0.61 and a = 5.90 Å (in reality the 
composition used is Ga0.47In0.53As, which has a lattice 
parameter closer to InP).

 (3)  a E x y y x y y

E

, [ ( ) ( )( )] ( )[ ( ) ( )( )]

.
g

g

GaAs GaP InAs InP= + - + - + -

=

1 1 1

0 9997 1 243eV m; . .l = m
  This material is effectively used in the infrared (1.3 μm) on a 

InP substrate.

Comment: Optoelectronic properties of the III–V compounds

 (a) The bandgap must be direct so that electronic transitions 
(EcÆEv) are vertical (ki = kf + k(photon) ≈ kf). 

  If the minimum of Ec (in k-space) does not correspond to the 
maximum Ev, the corresponding transitions will be oblique 
and the conservation of k will favor nonradiative transitions 
(Auger type—see Chapter IV, Pb. 4 and comment). 

  For direct bandgaps, the number of emitted photons will be 
proportional to the convolution of the density of electrons 
occupying the bottom of the conduction band (gEv(E) ∙fh(E) 
where fh(E) = 1 – fe and fe(E) is the Fermi–Dirac distribution 
function). 

 (b) The adjacent material (substrate) must have a bandgap that 
is larger than that of the active material so that electrons 
emitted from n-impurities in the substrate are trapped by the 
potential well of the active material (injection of carriers; see 
Pb. 10 for the electronic states in quantum wells and the band 
diagram). 

 (c) The crystallization of the adjacent and active materials must 
be continuous so that interfacial problems are avoided. This 
epitaxy (see Chapter I, Pb. 4) can only be done correctly if there 
is a small difference in lattice parameter a otherwise strains 
created will relax by forming dislocations (see Chapter II,  
Pb. 5). 

 All of these delicate technologies are well mastered and the 
characterization of the material must be carried out at each step (see 
Chapter I, Pbs. 9 and 10, for example). 
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Exercise 30: The Gunn diode

Consider a rectangular parallelepiped, of length c and cross-section 
a2 of gallium arsenide (GaAs), which contains an excess of N arsenic 
atoms, all ionized at ambient temperature. 
 (a) When the applied bias U0 at the ends of the bar is weak, the 

electrical conductivity s is carried by a single type of (light) 
electrons with mass ml = 0.07 m and mobility μl ≈ 7500 cm2/ 
V∙s. Find the expression and the numerical values of s and the 
resistance Rb with the following parameters’ values: N = 1014 
cm–3, a = 1 mm, and c = 10–2 cm. 

 (b) The light electrons are located at the bottom of the 
conduction band which has a second minimum (see Fig. 37) 
corresponding to heavy electrons with an electron mass that 
nearly corresponds to that of the free electrons. These heavy 
electrons may participate to the electric conduction. 

E

ml = 0.07 m
m mL =

0.36 eV

Eg = 1.4 eV

0 r K[100]V.B.

Figure 37 Conduction band of GaAs.

  Find the expression of s as a function of μl and densities nl and 
nh for charge carriers (light electrons and heavy electrons) 
by assuming that the relaxation time τ is the same for both 
carriers. 

 (c) Assume that the density nh of heavy electrons increases 
proportionally to applied electric field E following the law 

n N
E
Eh =

0
and that this increase occurs to the detriment of the 

density of nl of light electrons until the latter has disappeared 
(for E = E0). Thus, we have nh + nl = N. 
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  Find the expression for s, j


 (current density), and v


(average 
drift velocity of electrons) for E < E0 and next for E > E0. 
Find the value of EM, for which j is maximum in the interval 
0 < E < E0. 

 (d) Sketch the characteristic curves v = f(E) and I = f(U0) indicating 
the numerical values of v and I at the important points M and 
C (E = EM in M and E = E0 in C) where E0 = 6 kV/cm. 

 (e) A DC current is applied to the bar that is inserted in series 
in a circuit containing a resistance R and a source e0. Using a 
graphical construction, find the maximum value of e0 so that 
the Gunn diode functions at the average electric field (EM + 
E0)/2. What is the value of R? 

 (f) In fact in the latter hypothesis, the electric field and the 
charge distribution are not uniform in the diode: a domain 
formed from the large density of charge appears at the –pole, 
propagates in the crystal at the drift speed v and when it 
attains the +pole is instantly replaced by another domain 
(which appears at the –pole).

What is the frequency of the waves thus created?

Solution:

 (a) s m
s

= = = =-Ne R
c

al
-1

bcm0 12 1 8 31
2. ; . .W W

 (b) 
m t m t s m m ml

l
h

h
h h l l l l h

l

h

l h
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ËÁ

ˆ
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+

e
m

e
m

e n n e n n
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n n
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== N.

 (c) E E n N
E
E

n N
E
E

Ne
E
E

m
m

E
E

j

< = = -
Ê
ËÁ

ˆ
¯̃

= ◊ + -
Ê
ËÁ

ˆ
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h
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NNe
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E
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E v
j

Ne
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E
E

m
m

E
E
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l

h
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h
-

Ê
ËÁ

ˆ
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+
È
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Í
Í

˘

˚
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Ê
ËÁ 0

1 1 1
0 0
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  d
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j
E
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E m

m mM
l

h l
=

-
0

2
.

  E E n n N Ne
m
m

j Ne
m
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E v
m
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 (d) When E E j
Ne m

m m
E I

j
Ne

= = ◊
-

= = = = ¥M M
l l

h l
M MA cm Å v cm; / , . , .m

2
360 3 6 2 25 100

2 7 //s.

E E j
Ne m

m m
E I

j
Ne

= = ◊
-

= = = = ¥M M
l l

h l
M MA cm Å v cm; / , . , .m

2
360 3 6 2 25 100

2 7 //s.  

  When E E j Ne
m
m

E I= = ◊ = =0 0 50 0 5: , . ,C l
l

h

2
CA/cm Åm  

  vc = 0.315 × 107 cm/s.

7
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       Figure 38  Figure 39

 (e) The operating point corresponds to the resolution of the 
systems formed by: U0 = e – RI (1) (Ohm’s law) and by I = f(U0) 
(2) (characteristic of the diode). 

  Knowing the analytic expression of (2) this system can 
be solved algebraically, but the statement of the problem 
suggests to solve it graphically, as usually in electronics when 
the characteristics are given graphically. We thus obtain from 
Fig. 38 that e = 61 V and R ≈ 6.7 Ω.

 (g) The periodicity T of the waves is such that T = c/v from which 

f
v
c

= = ¥ @-
1 56 10

10
1 6

7

2
. . .GHz
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Note: Gunn diodes
In partially ionic semiconductors such as GaAs or InP from which 
the electronic density N is such that N∙c ≈ 1012 cm–2, the application 
of an intense electric field provokes the appearance of waves with 
frequencies between 1 and 10 GHz and inversely proportional to the 
length c of the bar. 
 Figure 39 schematically depicts the propagation mechanism of 
a strong electron concentration domain along the bar (the domain 
generating the wave). Hot and heavy electrons located in the front 
of the wave will abandon the wave which moves too fast for them 
and became light electrons. During this the cold and light electrons 
initially left by the impulse appearing from of the impulse in high-
field region, etc.
 These diodes serve as high-frequency generators for radars 
that are used in commercial airlines, as well as radars found on 
highways. With their light weight and low cost they can also be used 
to advantage in applications normally using the photoelectric effect 
such as alarms and automatic doors. In the LSA (limited space charge 
accumulation) mode, the charge domains do not have time to form 
and the amplification of electromagnetic waves is assured by the 
fact that the speed of charge carriers decreases as the electric field 
increases, they thus transfer the energy of the continuous electric 
field toward the high-frequency field. 

Problems

Problem	1:	Krönig–Penney	model:	periodic	potential	in	1D

In order to establish the existence of energy bands that are 
alternatively allowed and forbidden when electrons are subject to 
a periodic potential, we explore the behavior of an electron subject 
to a periodic potential created by N equidistant ions separated by a 
in a 1D lattice. 
 The potential energy V(x), shown in Fig. 40, in the periodic 
interval –b ≤ x ≤ c takes the successive values: Region I (0 ≤ x ≤ c), 
V(x) = 0; region II (–b ≤ x ≤ 0), V(x) = V0 where a = b + c. 
 (1) Find the solutions to the Schrödinger equation in region I and 

in region II (use A, B, C, and D as integration constants).
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I

x

Va

-b a c a

VxII

Figure 40 

 (2) When an electron is subject to a periodic potential, its wave 
function obeys cyclic boundary conditionsy(x) = y(x + Na) 
(Bloch’s theorem), and must take the form of a Bloch wave: 

  where u(x)= u(x + a), (a is y(x) = uk(x)◊eikx the period between 
regions).

  Find the wave function as a function of C and D in region III (c 
≤ x ≤ a) and state the sequence of discrete values of the wave 
vector k. 

 (3) Find the integration constants A, B, C, and D using the continuity 
of the wave functions and of their first derivative at x = 0 and 
x = c. Show that the systems of equations thus obtained gives 
a trivial solution only when

  cos cos cos sin sinka c b c b= ◊ - + ◊a b a b
ab

a b
2 2

2
,

  where a b= ◊ =
-( ) [ ( )]/ /2 21 2

0
1 2mE m E V

 

 is satisfied. 

 (4) Verify that we recover the relation E = f(k) of free electrons 
when the potential energy everywhere is zero. 

 (5) Assume that the following inequalities are satisfied: 
  qb << 1(where iq = b); E < V0.
  Show that the condition established in (3) can be reduced to 

the form:

  cos sin cos .ka p
a

a
a= +a

a
a  Find P. 

  Show the graphical evolution of the 2° term of the equality 
when P = 3π/2. Deduce the existence of energy bands 
alternating between allowed and forbidden. How many 
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electronic states are in the allowed bands? Comment on the 
result. 

  What happens when P tends to infinite?
 (6) Numerical application: By successive operations, find the 

energy width of the first allowed band and the forbidden band 
that follows it using P = 3π/2 and a = 3 Å. 

 (7) Find the symbolic expression and then the numerical value of 
the effective mass m* for particles situated at the maximum of 
the first allowed band: 

  1 1
2

2

2m
E

k*
.= ∂

∂

  (e, m, )

 Solution:

 (1) 
2 2

22m x
V E

d
d

y y y+ =  or d
d

2

2 2
2 0y y

x

m
E V+ - =



( )

  Region I: V = 0; y1 = A exp(iax) + B exp(–1ax), where 

a = ( ) .
/2 1 2mE



  Region II: V V C i x D i x= = +0; exp( ) exp( )y b bII , where 

  b =
-[ ( )] /2 0

1 2m E V


  β is real if E >V0, β is purely imaginary if E < V0. 
 (2) The wave function in region III is deduced from that obtained 

in region II by a translation of a: 

  yIII(x) = yII (x + a) = u(x)eik(x + a) = yII(x) eika = eika [Cexp (ibx) + 
Dexp (–ibx)].

  Cyclic boundary conditions result in y(x + Na) = y(x) or 

exp(ikNa) = 1 from which k
n

Na
= 2p , where n is a positive or 

negative integer. 
  As for phonons (see Chapter III, Course Summary) or for free 

electrons (see Chapter IV, Course Summary), the electronic 
states are characterized by a wave vector k from which the 

discrete steps are  2 2p p
L Na

=  (periodic conditions).
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 (3) y y
y y a

I II

I II

 A + B = C + D
 (A B) 

( ) ( )
( ) ( )
x x

x x

= = = fi
= = = fi -
0 0
0 0¢ ¢ == (C D)

 A exp( ) + B exp( )
= 

I III

b
y y a a

-
-= = = fi( ( )

exp
x c x c i c i c

ikaa C i c D i c

x c x c i c

[ exp( ) exp( )]
( ( )

b b
y y a a

+
= = = fi -¢ ¢I III  [A exp( ) B eexp( )]

= 
-

-
i c

ika C i c D i c

a
b b bexp [ exp( ) exp( )]

  This set of linear and homogeneous equations has a nontrivial 
solution such that if the determinant of the coefficients is 
canceled, then

  cos cos cos sin sin .ka c b c b= ¥ + ¥-a b a b
ab

a b
2 2

2

 (4) When V0 = 0 and b = 0, then c = a and coska = cosaa or 

k
me= 2 1 2



, such that E
k
m

= 
2 2

2
(see the dashed curve in Fig. 

42).
 (5)  If E < V0, b is purely imaginary: b = iq, and the equality [given 

in (3) above] becomes

  cos cos sin s .ka c qb
q

q
c qb= ¥ ¥+ -a a

a
ach h

2 2

2
  The bands prohibited are determined by the double 

inequality:

  - £ ¥ ¥ £+ -1
2

1
2 2

cos sin sa a
a

ac qb
q

q
c qbch h .

  In the case where qb ª e (chqb ª 1; shqb ª qb), equality (3) 
above takes the form

  coska = cosaa + 
mV

h
0

2a
 × b sinaa = cosaa + P 

sina
a

a
a

  where P
V

=
abm 0

2


.

  This transcendent equation must have a solution for a so that 
the wave functions of the form yI exist.

  Figure 41 represents the evolution of P 
sina

a
a

a
 + cosaa as 

a function of aa for P = 3
2
p . As the cosine term of the first 
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member can take only values between +1 and –1, only those 
values of aa will be permitted for which the second member of 
the equality is located in this interval. These intervals allowed 
for aa, drawn in thick lines in Fig. 41, (a = (2mE)1/2/h) 

correspond to the values of k equal to n
a
p . The variation of E 

as a function of k is represented in Fig. 42.

 p4
 p3

 p2
p

0

+1

1

p
2p

3p
4p

aa

 cos aasin aa
aap

Figure 41

16
15

10
9

4

1

0

5

p 2p 3p 4p

( = 2)n

( = 3)n

( = 4)n

ka

( = 1)n

Figure 42 Energy as a function of wave vector for a Krönig-Penny 
potential (P = 3π /2).

  Has the interior of a band allowed, coska varies between 

–1 and +1 is –p £ ka £ p or else – N
2

 £ n £ N
2

 (see Question 
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(2)). If N is the number of faces of the crystal, there will be N 
discrete values of the vector waveform per band, which gives 
an opportunity to logically fill the first strip with 2 electron (≠ 
and Ø).

  If P tends towards infinity, sinaaÆ0 and aa = ( ) /2 1 2mE


 ◊ a = n p.

  The energy spectrum becomes discrete, values itself are those 
of an electron trapped in a segment of side a (see the order in 
Fig. 42 which specifies the succession of these discrete values, 

E = n
ma

2
2 2

22
 p

.

 (6) The function 3
2
p a

a
asin cosa

a
a+  is greater than 1 when 

a p
a = 2

3
and is slightly smaller than 1 for a p aa am= << >>3

4
;  

is therefore of the order of 2.2 radians, and E
mm m eV= =

2
2

2
2a .

The maximum of the allowed band corresponds to 

E
mam eV= =

2

2
2

2
4 1p . .

  The width of the first allowed band is thus 2.1 eV. 
  As the same function is equal to –1 for αa of order a2ma ª 3.5 

radians, the width of the bandgap which follows is
  Ei = E2m – EM ª 1 eV, where E2m = 5.1eV.

 (7) E
m

= 
2 2

2
a . At the top of the first allowed band αa = π,

  cos ka = –1 and d
d
a

a pk a

Ê
ËÁ

ˆ
¯̃

=
=

0.

  At this point d
d

d
d

2

2

2 2

2
E

k m k
a

=
Ê

ËÁ
ˆ

¯̃ =

 a a

a p

.

  Differentiating P
a

a
ka

sin cos cosa
a

a+ =  two times with respect 

to k, we find m
mP m

m* . .= - = - = - = - ¥ -

p p2
313

2
0 48 4 34 10 kg .

  As in other exercises and problems of this chapter, one finds 
that the particles located at the top of the band have a negative 
effective mass: they are holes. 



554 Band Theory

Problem	2:	Nearly	free	electrons	in	a	1D	lattice

Consider a row of identical equidistant atoms separated by a along 
the axis Ox. A fraction of electrons of each atom can propagate 
along the row and are subject to a periodic potential of ions, which 
result in potential energy of U = U1cosgx (where g = 2π/a) and U1 is 
sufficiently small that the Schrödinger equation can be resolved by 
successive approximations. 
 (1) Find the wave function ψ0 and energy E0 of electrons as a 

function of wave vector k when U1 = 0. 
 (2) Now assume that U1 differs from zero and find the solutions 

for ψ in form of Bloch waves: [ ( )]y y= ◊0 u x , where such that 

u x A en
ignx

n

( ) .= + -

-•
π

+•

Â1

0

  Find the expression of An by assuming that U1 is small, the 
energy of the Bloch waves is nearly equal to that of free 
electrons E0, the first-order approximation. 

 (3) Starting from An calculated previously, re-evaluate the 
energy E of the corresponding waves, the second-order 
approximation. 

 (4) Show that the results thus obtained are in general compatible 
with the hypotheses made, specifically:

  An << 1  and 
E E

E

-
<<

0

0 1  except when k
a

ª ± p .

  Numerical application: a = 3 Å; U1 = 2 eV. Find A1 and A–1 
as well as |E – E0| for k = π/2a and k = (p/a) (1 + e), where 
e = –2%. 

 (5) To study the energy when the wave vector approaches g/2, 
k ≈ π/a, we now consider that only the coefficient A1 is not 
small compared to 1 in the expression of u(x). Show that A1 
appears simultaneously in the two linear relations. Deduce 
the expression for energy. 

  Taking as a numerical example k = π/2a, show that when k is 
very different from π/a, E thus obtained is equal to the result 
evaluated in Question (4) and approximately corresponds to 
the energy of free electrons with the same wave vector. 
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 (6) Find the simplified expression of E when k = (g/2) – Δk (Δk is 
small compared to g/2). Deduce the existence of a discontinuity 
for k = π/a = g/2. What is the amplitude of this discontinuity 
and the value taken by A1? Comment on the results. 

 (7)  After having studied the evolution of E relative to the wavevec-
tor k = –(g/2) + Dk, show the shape of the curve E = f(k) in the 
interval (2p/a) < k < (2p/a) in the extended zone scheme and 
next in the reduced zone scheme. 

 (8) Show the shape of the density of states g(E) relative to the two 
first allowed energy bands after having evaluating g(k) for k 
neighboring π/a. 

 (9) Find the expression of the effective mass m* for an electron 
whose wave vector neighbors π/a. Evaluate numerically the 
ratio m*/m using the results from Question (4), and then with  

k
a

k k
a

kª - << ≥p pD D D( ).and 0

 (10) The element considered is monovalent. Evaluate symbolically 
and next numerically the Fermi energy at 0 K. 

  The element considered is now divalent. Why it will not be a 
good conductor of electricity? ( , , )e m

Note: In order to be accessible to the largest audience, the resolution 
of this problem does not use perturbation theory or calculus of 
variations which would result in a more elegant and faster solution. 

Solution:

 (1) When U1 = 0, electrons are free and the solutions to the 

Schrödinger equation - =

2 2
0

2
0

02m x
E

d
d

y
y  correspond to plane 

waves y0 1 2
1=

L
eikx

/ , where E
k
m

0
2 2

2
=  .

 (2) We introduce Bloch waves of form 

y( ) /
( )x

L
e A cikx

n
i k gn x

n

= +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

-

π
Â1

1 2
0

 in the Schrödinger equation 

- + =

2 2

2 12m x
U gx E

d
d

y y ycos  and we obtain (1):
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[ ( ) ] ( cos )

(

( )k k ng A e
m

E E U gx e

m
E

n
n

i k ng x ikx2 2

0
2

0
1

2

2

2

- - + - -

+ -

π
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EE U gx A e
n

n
i k ng x0

1
0

0- =
π

-Â cos ) .( )

  In the first-order approximation, we neglect the last summation 
because the coefficients AnU1 are of second order, and E ≈ E0 
so that, after developing the cosine, the equation simplifies 
to:

  [ ( ) ] [ ].( ) ( ) ( )k k ng A e
m

U e e
n

n
i k ng x i k g x i k g x2 2

0
2 1- - = +

π

- - -Â


  By identifying term by term, the terms having the same 
exponentials, we find:

  A
m U

g k g
A

m U
g k g1 2

1
1 2

1
2 2

=
-

= -
+-

 

( )
,

( )
, and A nn( , , )π - =0 1 1 0

  In the first-order approximation, the solutions to the 
Schrödinger equation (taking the form of a Mathieu 
equation in the case of a sinusoidal potential) are 

y
p p p

p p
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Ê

Ë
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ˆ
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   (2)

 (3) In the second-order approximation, we evaluate the unknown 
E starting from the An previously calculated and identify the 
terms between them in factor of exp ikx. 

  We thus find E E
U

A A
m U

k g
− = + =

−−
0 1

1 1
2

1
2

2 22 4
( )

( )
.



 (4) The coefficients A1 and A–1 are in general very small to first 
order (in U1) and E – E0 is infinitely small in second order (in 

U1
2), except when k

g
aª ± ª ±

2
p/ .

  We thus obtain numerically
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  For k
a

= +p e( )1 , where e = -2% . 

A A E E E1 1 0
03 3 3 03 4 16= - = - = - ª-; %: . .eV; eV ; and 

E E

E

-
=

0

0 0 72. .  

 (5) Setting y = + -1
1L

e A eikx i k g x( )( )  into the Schrödinger 

equation, we find the expression

   

2 2
1 1

2
2

1
1

12 2 2 2
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m

A U
E e

m
k g A

U
EA eikx i+ -

È

Î
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+ - + -
È

Î
Í
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˚
˙
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( ) (kk g x- =) 0

  which reduces to system of two relations:

  





2 2
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1

1
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2 2
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k g E A
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È

Î
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˘

˚
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  They are only compatible when E is the root of

  ( )( )E E E E
U

k k g
0 0 1

2

4
0- - - =- , where E

k
mk

0
2 2

2
=


  and E
m

k gk g
0

2

2- = - ( ) .2

  We deduce that the energy is 

E E E E E Uk k g k k g= + ± - +È
ÎÍ

˘
˚̇- -

1
2

0 0 0 0 2
1
2( ) , which leads to 

E E
U

E E
k
mk

k k g

ª +
∞ - ∞ -

0 1
2 2 2

4 2( )


 (when k is very different from 

π/a).

  Numerical application: E k
a

=Ê
ËÁ

ˆ
¯̃

= -
p 1 04 0 12. . .eV eV

  The correction term has the same magnitude as that evaluated 
in Question (4), and it will be negligible when the potential 
created by the ions of the lattice is weak.

  We have retained the (+) solution for E because k
a

£ p ; the (–) 

solution corresponds to p p
a

k
a

£ £ 2 and in the last case the 

correction term is positive. 
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 (6) For k = g/2 – Δk, we find

  E
m

g
g k kk

0
2 2

2

2 4
= - +

Ê

ËÁ
ˆ

¯̃
 D D  and 
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  Using E
m

g
B
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2 2

2 4
=  :

 • E E
m

k
E
U

U
- = 1-

Ê
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ˆ

¯̃
-B

B0
2

2
0

1

1
2

4
2

 D for Δk > 0: parabolic arc 

where the maximum is at point [p/a, E0
B –(U1/2)]or

 • E E
m

k
E

U
U

- = +
Ê

ËÁ
ˆ

¯̃
+B

B0
2

2
0

1

1
2

1 4
2

 D for Δk < 0: parabolic arc, 

where the minimum is at point (p/a, E0
B + (U1/2)).

  If Δk = 0: k = – (k – g), E0
k – E0

k – g, the equation for E results in 

a double root: E E
U

k= ±0 1
2

.

  We note that E is discontinuous when the wave vector k 
approaches the first Brillouin zone. The amplitude of the 
discontinuity is equal to U1: it is the width of the forbidden 
bandgap in the model for nearly free electrons.

  In this case, A1 = –1, the electronic waves propagating in the 
direction of increasing x with a wavelength of a/2 are subject 
to Bragg reflections on equidistant ions; the reflected waves 
have, in absolute value, the same amplitude as the incident 
waves and the resulting is a standing wave. If the potential was 
periodic without being purely sinusoidal, its decomposition in 
Fourier series would result in discontinuities of amplitude Vn 
for k values such that k = ng/2. 

 (7) The energy is an even function of k; the dispersion curves are 
shown in Figs. 43a (extended zone scheme) and 43b (reduced 
zone scheme). 
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 (b) For Δk < 0:

  

g E
m E

U
E E

U
( )

/ / /

= Ê
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ˆ
¯̃
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Ê

Ë
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¯
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E E
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  g E( )Æ • when E E
U

Æ -B
0 1

2
 and E E

U
Æ +B

0 1
2

.

  The synthesis of these results is shown in Fig. 43c. 

 (9) 1 1
2

2

2m
E

k*
,= ∂

∂

 if E
k
m

m m= =

2 2

2
* ,

  1 1 1 4 0

1m m
E

U*
= -

Ê

ËÁ
ˆ

¯̃
B  for Dk ≥ 0 so that m

m
* . ,= -0 137

  1 1 1 4 0

1m m
E

U*
= +

Ê

ËÁ
ˆ

¯̃
B  for Dk £ 0  so that m

m
* . .= +0 107

  Under the action of an applied field, the electrons located at 
the maximum of the first band, near the energy discontinuity, 
behave like free electrons with a negative effective mass, 
independent of E; the equation of motion only involve the 
ratio q/m. We can thus treat the particles as holes with charge 
+e and mass |m*|. 

  Electrons located at the bottom of the second 
band near the energy discontinuity behave as free 
electrons with a positive effective mass, m* < m. This 
is a general result. We also note that the larger the 
crystalline potential U, the flatter the allowed bands and 
the higher the effective mass. 

 (10) In each energy band, we can place two electrons per basis. If 
the element is monovalent, only half the first energy band will 
be complete and the second band will be empty (at 0 K). Under 
the action of an applied electric field, the electrons located 
in the full band cannot increase their kinetic energy and 
therefore cannot transport an electrical current: the material 
is an insulator. At T ≠ 0 K, some electrons are thermally excited 
to the conduction band leaving holes in the valence band: 
electrical conductivity of the material increases with T. We 
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observe that, as at the extremities of the band the electrons 

are no longer free, the Fermi energy is not equal to E
U

B
0 1

2
- , 

but it must be evaluated using the method developed in the 
next problem. 

Problem	3:	1D	semiconductor:	electronic	specific	heat

In the nearly free electron approximation, conduction electrons 
subject to a periodic potential energy of formU = U1 cos gx (where 

g
a

= 2p and a is the lattice parameter of the linear lattice), the energy 

E of electrons with wave vector k
a

k= -p D  is of the form (see Pb. 2)

 E E
m

k
E

U
U

- = -
Ê

ËÁ
ˆ

¯̃
-B

B0
2

2
0

1

1
2

1 4
2

 D  for Δk > 0 

 E E
m

k
E

U
U

- = +
Ê
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ˆ

¯̃
+B

B0
2

2
0

1

1
2

1 4
2

 D  for Δk < 0

 where U1> 0, E
ma

UB
0

2 2

2 12
= > p .

 (a) Sketch the curves E= f(k) in the vicinity of k = π/a.
 (b) Find the expression for the effective mass m* of particles 

situated near from the maximum of the lower band [E < E0
B 

– (U1)/2] and that of particles located at the minimum of the 
upper band E > E0

B + (U1)/2. Comment on the results.
  Numerical application with U1 = 0.2 eV, E0

B = 1 eV. 
 (c) After recalling the expression for the density of states in k-space 

(k > 0) for a 1D lattice, g(|k|), find the density of state g(E) at 
the maximum of the lower band as well as at the bottom of the 
upper band. Compare, in the same energy domain, this result 
to the density of states of a 1D gas of free particles (affected by 
the effective mass calculated in (b). Comment on the results.

 (d) The solid considered consists of two electrons per basis which, 
at non-zero temperature, occupy nearly all the states of the 
lower (valence) band and very partially the states of the upper 
(conduction) band. 
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  Taking the maximum of the valence band as the new origin of 
energy, find the integral expression giving the density of n per 
unit length of electrons located in the conduction band. Same 
question for the density p (per unit length) of holes located in 
the valence band. 

 (e) Suppose that the bands are semi-infinite and that EF is located 
in the bandgap (which allows us to relax the Fermi distribution 
into a Boltzmann distribution), find the linear densities, n and 
p (for a nondegenerate semiconductor) and thus the product 

np. Recall that x e x-• -Ú = Ê
ËÁ

ˆ
¯̃

1 2

0

1 2
/

/
a p

a

 (f) When the semiconductor is intrinsic, find the expression for EF 
and describe the evolution of n and p with temperature. What 
are the numerical values taken by n, p, and EF at T =290 K?

 (g) Find the increase in the number of holes and electrons 
resulting from an increase in temperature dT. Deduce the 
approximate expression for the corresponding increase of 
electronic energy dU. Establish the expression for the specific 
electronic heat Cv of the semiconductor. Using the preceding 
numerical data, find Cv at 290 K. ( , , , )e m k B

Solution: 

 (a) See Pb. 2 and Fig. 44. 

E

-Dk +Dk
p/a

E U
0
B 1- ( /2)

E
0
B

E U
0
B 1+ ( /2)

Figure 44
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 (b) 1 1 1 1 1 4
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  The particles occupying the maximum of the lower band 
behave as holes with mass mh* such that 
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  Numerical application: 
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  The density of states of a 1D free electron gas is 

g E
Na m

E( )
/

/= Ê
ËÁ

ˆ
¯̃

◊ -

p
2

2

1 2
1 2



.

  When the origin of energy coincides with the bottom of the 

parabola, E
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, the density of states takes the form

  g E
Na m U

E E( )
/ /

= Ê
ËÁ

ˆ
¯̃

- ±Ê
ËÁ

ˆ
¯̃

-

p
2

22

1 2
1 0

1 2



B
 respectively for E E

U
£ -B

0 1
2

and E E
U

≥ +B
0 1

2
 when taking these limiting values as extremes 

of the parabolas.



564 Band Theory

  By replacing m with the expression for the effective mass 
evaluated in (b), we find the results above. We verify that it is 
possible to evaluate g(E) in the general case starting from the 
expression relative to free electrons and substituting it into 
the effective mass, which takes into account the particular 
form of the dispersion curves and therefore the effects of the 
lattice.

 (d) Per unit length Na = 1:

n f E g E dE
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 (f) If the semiconductor is intrinsic,
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 (g) n and p have the form p = n = AT1/2◊e–B/T from which: 
dp
dT
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A T e
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B T= = ◊ ◊ +Ê
ËÁ

ˆ
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- -1 2 1
2

/ / . 

  For an increase of temperature dT, each of the dn or dp 
particles gains energy equal to the width of the bandgap U1 
(the electrons jump to the conduction band, the holes fall in 
the valence band). Then
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  C
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  Numerically, Cv = 46 × 10–16 J/deg.m = 29 × 103 eV/deg◊m
 We find that Cv does not obey the linear T dependence of free 
electrons but a law dependent in exp – (Eg/2kT), which governs the 
generation of the electron/hole pairs for intrinsic semiconductors.
See Ex. 22 for another calculation of Cv. 

Problem	4:	DC	conductivity	of	intrinsic	and	doped	Ge	and	Si

We consider a 3D semiconductor in which the Fermi energy EF 
is located in the bandgap of width Eg such that taking the origin 
of energy to be at the valence band maximum, the inequality  
5kBT < EF < Eg – 5kBT is satisfied (nondegenerate semiconductor). 
 (1) Law of mass action
 (a) Recall the density of states of a free electron gas for unitary 

volume. Taking into account the fact that the conduction 
electrons behave as free electrons with effective mass 
me*, express their number, n, at temperature T, a function 
of EF, Eg, and me* (assuming that the conduction band is 
semi-infinite). 

  Show that the result can be expressed in the form 

n N
E E

k T
= -

-Ê
ËÁ

ˆ
¯̃c

g F

B
exp  and find Nc. 

  Recall that ( ) ./
/

x e dxx1 2

0

1 2
1

2
-•

Ú =
Ê
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ˆ
¯̃

b

b
p
b

 (b) What is the probability of electron occupation f(E) in the 
valence band? Deduce, for this same band, the probability 
of holes, fh(E). Simplify this expression assuming that 
EF/kBT>> 1 is satisfied. Deduce the number of holes p 
located in the valence band, assumed to be semi-infinite 
( )-• < <Ev 0  taking into account that holes behave as 
positive free charges with an effective mass mh*. Show 
that the result can be presented in the following form:

  p = Nv exp – (EF/kBT) and find Nv. 
 (c) Evaluate the product np (law of mass action) and show 

that it is independent of EF. 
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 (2) Intrinsic semiconductors
  The semiconductor is absolutely pure and perfectly regular 

(intrinsic) and the conduction electrons (in the band) at 
temperature T can only originate from the breaking of certain 
valence bonds. 

 (a) In this case compare the concentration n and the 
concentration p. 

 (b) Express the law of variation of n as a function of T and Eg. 
 (c) Deduce EF as a function of Eg, me*, and mh*.
 (d) Find EF and n at 290 K, using the following numerical data: 

Germanium: Eg ª 0.6 eV, me* = mh* = 0.1 m0

  Silicon: E m m mg e heVª = =1 0 2 0, * * . , where m0 is the mass 
of a free electron.

  What note suggests this result at room temperature, 
knowing that it is technologically impossible to obtain 
a crystal containing less than 1011 impurities.cm–3 (or a 
relative concentration of 10–11). 

 (e) We denote by μn and μp the respective mobility of the two 
types of charge carriers (electrons and holes). Find the 
expression for the electrical conductivity s of an intrinsic 
semiconductor. Express the temperature variation of 
s knowing that μn and μp vary as T–3/2. Show the curve  
log s = f(1/T) in the case of silicon and germanium after 
having determined s at 290 K. Use

    mn (Si) = 1200 cm2/V ◊s, mh (Si) = 450 cm2/V ◊s,
    mn (Ge) = 3600 cm2 /V ◊s; mh (Ge) = 1700 cm2/V ◊s
  Specify what temperature increase, ΔT, around ambient 

leads to a relative increase of 100% in their conductivity. 
 (3) Influence of impurities:doped semiconductors
  During the elaboration of samples, pentavalent impurities 

(arsenic) are added to the sample with a concentration Nd. 
Each impurity atom substitutes into the crystalline lattice in 
the place of one germanium or silicon atom such that four 
electrons make covalent bonds with their nearest neighbors 
and the fifth (with charge –e and mass me*) rotates around the 
impurity of charge +e. 

 (a) Assume that this behavior can be described by the Bohr 
model for a hydrogen atom in order to establish the 
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expression for ri (radius of the ground state circular orbit 
described by an excess electron). Hint: Take into account 
the relative dielectric constant of the medium er and the 
effective mass of an electron in a periodic potential. 

  Evaluate ri numerically using er(Si) = 11.7 and er(Ge) ≈ 
15.7 and find the ratio ri/rB in which rB is the Bohr radius 
of the hydrogen atom (rB = 0.53 Å).

  Each impurity atom can be thermally ionized and the 
electron can thus escape the attraction of the impurity 
and move freely in the lattice (always with the mass me*). 

  Find the expression for the ionization energy Ed of 
impurities and determine the ration Ed/EH in which 
EH is the ionization energy of atomic hydrogen. 
Numerical application: EH = 13.6 eV. In an energy diagram 
show the donor level relative to the unionized impurity. 

 (b) Find the density of electrons occupying the donor level of 
the unionized impurity at temperature T as a function of 
EF, Eg, Ed, and Nd and taking into account the distribution 
function of electrons for impurity states of energy E is of 

the form f E
g

e
E E
k T( ) = +

È

Î

Í
Í

˘

˚

˙
˙

- -

1 1

1

i

F

B , where gi = 2 because each 

state can be occupied by one electron with spin ≠ or Ø, see 
Ref. [14] p. 206. 

  Express the density n of electrons that is found in the 
conduction band. 

 (c) Identify the preceding result with that established more 
generally in Question (1a), in order to give the equation 
that must satisfy the Fermi energy EF. 

  Find explicitly the expressions for EF in the two following 
limiting cases:

 (i) 8(Nd/Nc) exp Ed/kBT << 1, weak doping
 (ii) 8(Nd/Nc) exp Ed/kBT >> 1, low temperature
  Deduce the corresponding expressions for n such 

that the unknown EF does not appear. 
  In the case of silicon, numerically determine EF and 

n for Nd = 1014 imp.cm–3 and T = 290 K; then for Nd = 
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1017 imp.cm–3 at 245 K. Compare these results with 
those of intrinsic Si. What are the values taken for the 
density of holes p?

 (d) Find the expression of electrical conductivity s for a 
n-doped semiconductor. Describe the evolution of s as a 
function of 1/T when Nd is large and show the result on 
the curve Log s = f(1/T) established in Question (2b). 
Find the numerical value for Si at 145 K where Nd = 1018 
impurity·cm–3. ( , , , )e m kB 

Solution:

 (1) (a) g E
m

E( ) .
/

=
3 2

2 3 2
p 

  Taking into account the choice of origin for the energies and 
replacing m by me* to account for the effects of the lattice 
potential, we find
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, where we have 

substituted x = E – Eg.
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E E
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m k T
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2 2

3 2*
.

/

p
 (b) In the case of a nondegenerate semiconductor, the 

Fermi function can be approximated by the Boltzmann 
distribution. 
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  p N ev

E
k T=

- F
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2
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p

 (c) n.p = Nv◊ Nc◊ e– Eg/kBT: Law of mass action.

 (2) (a) If the semiconductor is intrinsic p = n = ni from which we 
have

  (b) n N N
E

k Ti v c
g

B
= -( ) exp ./1 2

2
 (c) Comparing this expression with the result obtained in 

Question (1a) or (1b), we find
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 (d) At ambient temperature, silicon, contrarily to germanium 
cannot be an intrinsic semiconductor because residual 
impurities play a non-negligible role and the calculations 
of s(Si) done in Question (2e) are purely formal. 

  j n e v n ev e n n E E
    

= - + = + =+ + + +, ( )m m s  (see Course 
Summary)

  Here n– = n+ = n = p from which s m m= +eni p n( )
    s(Ge) ª 0.4×10–2 W–1◊cm–1, s(Si) ª 1.1×10–6 W–1 ◊cm–1.
 (e) We observe that the conductivity of germanium exceeds 

that of silicon by several orders of magnitude because of 
the larger bandgap of Si (Eg plays a role for n and p in an 
exponent with a negative sign). 

  If we assume that the mobilities vary as A◊T– 3/2, this 
evolution compensates for the T3/2 factor of Nv and Np 
and s = C◊e– Eg/2kBT, where C is independent of T;

log log g

B
s = -C

E

k T2
; the curve log s = f (1/T) is a line with 

slope – Eg/2kB. We can deduce the double conductiv-
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ity for an increase of ΔT around ambient such that 

DT
k T
E

ª
2 2

2
B

g
log ; s(Ge) doubles every 15°, s(Si) doubles 

approximately every 9°.

2

Ed

Doped Si

0

–2

–4

–6

–8

Eg

2k TB

Si(i)

Ge (i)
2k TB

290

10.5
(a)

1

Log s

Ed

Eg

C.B.

V.B.

(b)

Figure 45

(3) (a) The Bohr radius of the ground state of hydrogen is

r
meH Å,= =

4
0 530

2

2
pe 

.  and the corresponding energy is 

E
e
r

me

o o
H

H
eV= = =1

8 2 4
13 6

2 4

2 2pe pe( )
. .



  r
m e

m
m

ri
0 r

e
r

e
H= = ◊ ◊

4 2

2
pe e

e


* . *
. Applied to an impurity, this 

model must be modified by taking into account the 
potential effects (m*) and the relative dielectric constant 
of the medium, er . Thus, we have:

  E
m c m

m
E

d
e

0 r

e H

r
= =

*
( )

*
.

4

2 2 22 4pe e e

  and from which we find for silicon: ri = 31 Å, Ed = 20 meV
  and for germanium ri = 83 Å, Ed = 6 meV.
  When the impurity is ionized, an electron escape from the 

atomic attraction to and it propagates freely in the crystal. 
The free energetic state corresponds to the bottom of the 
conduction band. Thus, the bound state corresponds to an 
energy smaller than Ed of the previous state and is located 
in the forbidden gap at a distance Ed below the bottom 
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of the Ec (see Fig. 45b, Course Summary and Pb. 6). The 
combined effects of light effective masses and of relative 
dielectric constants larger than unity may facilitate the 
ionization of impurities and the values of ri far larger 
than the interatomic distances to justify the use of a 
macroscopic dielectric constant. 

 (b) The density of bounded electrons is

  n N f E
N

e
de

d= ◊ = 1 +
( )

2
1a

 where a =
- -E E E

k T
g d F

B
.

  We thus deduce the density of electrons in the conduction 
band: 

  n = Nd – ne = Nd/(2e–a + 1). 
 (c) The result of Question (1a) was established without 

making a hypothesis on the nature of the semiconductor 
(intrinsic or extrinsic) and thus it remains valid. 

  Equating the two expressions for n and substituting 

  g
E

k T
d

E
k T

= =exp ; expg

B

d

B
, we find x

g
d

x
N
N

g
d

2
21

2
1
2

0+ - =d

c
. 

The only positive solution is x
g
d

d
N
N

= - + +
Ê
ËÁ

ˆ
¯̃4

1 1 8
1 2

{ }
/

d

c
, 

where x E
k T

= exp F

B
.

 (i) When 8 1
N
N

eE k Td

c

d B/ << , weak doping and large T

  x g
N
N

@ ◊
Ê
ËÁ

ˆ
¯̃

d

c
 so that E E k T

N
NF g B

d

c
log= + . 

  Using this result in the equation 1a, we find n ≈ Nd: all 
the impurities are ionized. 

 (ii) When 8 1
N
N

e
E

k Td

c

d

B >> , large doping and small T

  x
g

d

N
N

ª ◊
Ê
ËÁ

ˆ
¯̃( ) /

/

1 2

1 2

2
d

c
 so that 

E E
E k T N

NF g
d B d

c
log= - +

2 2 2
, 
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  and n
N N E

k T
ª

◊Ê
ËÁ

ˆ
¯̃

-c d d

B2 2

1 2/

exp .

 • For silicon at 300 K where Nd = 1014 impurities·cm–3, 
we are in situation α, EF = 0.79 eV

   or n ª 1014 e◊cm –3 and from the law of mass action:

  p
n
n

ª = ¥ -i cm
2

5 32 10  (negligible). 

 • At 150 K with Nd = 1017 impurities.cm–3,

Nc
e m e/cm= ¥ ◊ = ¥

-2 1 10
2

7 5 10
24 3

3 2
17 3. ./

  8(Nd/Nc) exp(Ed/kBT) ª 5 > 1 we are in situation β:
  EF = 0.973 eV, n = 8.6 × 1016 e/cm3, p is negligible. 
  Nevertheless the doping is insufficient for silicon to be 

degenerate and the approximation 1a is justified (see 
Pb. 5). When the concentration of donors increases, 
the Fermi level increases while np remains constant: 
The concentration of holes becomes negligible.

  The reverse conclusion holds for a p-doping. 
 (d) There is only one type of charge carrier s = neeme 

so that a = ◊ ◊ ◊Ê
ËÁ

ˆ
¯̃

--e A T
N N E

k T
3 2

1 2

2 2
/

/

exp ;d c d

B
 when 

the doping is important the curve logs = f (1/T)
is a line with slope –(Ed/(2kBT)) instead of slope 
–Eg/(2kBT)) obtained when the semiconductor is 
intrinsic. 

  We find m sn( ) .145 3 400 47 1K cm /V s; cm2 1= ◊ = ◊- -W

Problem 5: Degenerated and nondegenerated semiconductors

We consider a 3D semiconductor in which the n-type impurity atoms 
with density Nd have an ionization energy Ed. 
 (a) Assume that the impurity states with energy E has a 

distribution function of form f E
g

e
i

E E k T( ) ( )/( )= +
È

Î
Í

˘

˚
˙

-
-

1 1
1

F B   

where gi = 2, and find the density ne of electrons that occupy 
the donor levels at temperature T. Deduce the density n of 
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electrons, originating from donor levels, that occupy the 
conduction band. Express the result as a function of Nd, Ed, Eg 
(bandgap), and EF (Fermi energy). Take the energy origin at 
the top of the valence band. 

 (b) After recalling the expression for the density of states g(E) for 
a free electron gas enclosed in a unitary volume, find in the 
form of an integral the general expression of the density of 
electrons n in a conduction band assumed to be semi-infinite. 
The result should be expressed as a function of EF, Eg, and me*, 
the effective mass of electrons in this band.

  The expression thus established is independent of the 
nature of the semiconductor (doped or not) but the resulting 
integration depends on the position of the Fermi energy. We 
can thus envisage two limiting cases: 

 (i) The Fermi level is in the bandgap and the Boltzmann 
distribution can be used as the distribution function 

  
x x

e
ex

1 2

0 1 2
0

/ ◊
+

= - • < £-

•

Ú d whenx
xp x ; the semiconductor 

is nondegenerated
 (ii) The Fermi level is located at an energy greater than 5kBT 

above the bottom of the conduction band and the Fermi 
integral obeys

  F1 2
1 2

0

3 2

1
2
3

/
/

/( )x xx= ◊
+

=-

•

Ú x x

ex

d  when 5 ≤ ξ < ∞; the semicon-

ductor is completely degenerated.
 (c) In the case of a nondegenerated semiconductor, show that the 

density of conduction electrons can be put in the form:
  n = NC exp – (Eg – EF)/kBT. Express Nc. 
  Comparing this result with that established in (a), find the 

expression for EF assuming that 8 1
N
N

eE k Td

c

d B◊ >>/ .

  For which temperature T(max) is EF maximum? What is the 
value of EF(max)? 

  At which critical concentration Nd(critical) that the 
semiconductor becomes partially degenerated, EF reaching 
the conduction band minimum? 

  Numerically determine N(critical) for silicon using
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  Ed = 0.02 meV, me* = 0.2m and for InSb using Ed = 10–4 eV and 
me* = 10–2m. 

 (d) Find the density of conduction electrons for a completely 
degenerated semiconductor (hypothesis (ii) above) as 
a function of EF and Eg. Comment on the result. Which 
equation does EF satisfy? Numerically find the impurity 
concentration Nd for Si and InSb at room temperature (T 
= 290 K) for the Fermi energy to be located at 5kBT above 
the bottom of the conduction band. Comment on the result.  
( , , , )e m k

Solution:

 (a) n N f E
N

e
e d

d= ◊ =
+

( ) 1
2

1a
 and n

N

e
=

+-
d

2 1a where

a =
- -E E E

k T
g d F

B
 (see Pb. 4, Question (3b)) 

 (b) g E
m

Eel( )
/

=
3 2

2 3 2
p 

 and

n g E f E dE
m E E E

e
E E E

k T
Eg

= ◊ ◊ =
-

+

•

-

•

Ú Ú( ) ( )
* /

g F

B

e g d2

1

3 2

2 3p 

 (c) Nondegenerated semiconductor:
  Using (E – Eg)/ kBT = x, (Eg – EF)/kBT = x .

  We find n N E E kT= -e F gexp( )/ , where N
m k T

c
e B=

◊È
ÎÍ

˘
˚̇

2
2 2

3 2* /

p
.

  Identifying the values of n obtained in (a) and (c), EF is given 

by y
g
d

y
N
N

g
d

2
21

2 2
0+ - 1 =d

c
 where

   y E k T g E k T= =exp( / ), exp( / )F B g B , and d = exp (Ed/kBT).
  This result conforms to that already established in Pb. 4 which 

used the same notations. In the hypothesis that

  8 1
2 2 2

N

N
e E E

E k T N
N

E k Td
d B

c
F g

d B d

c
log/ ,>> = - + .
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  EF has a maximum at
d
d

d
d

F B d

c

B d

c d

cE
T

k N
N

k T N
N N

N
T

= - ◊ ◊ ◊ =0
2 2 2 2

2 0; log ,  which gives

  log (Nd/2Nc) = (T/Nc)◊(dNc dT),
  where (dNc/dT) = (3/2)◊(Nc/T), resulting in

   log (Nd/2Nc) = 3/2; (Nd/2Nc) = e3/2.

  T N
e

m k
m

m
N

( )
*

.
*

/
/

/

Max d
e B e

d= ◊ ◊ =
Ê
ËÁ

ˆ
¯̃

◊Ê
ËÁ

ˆ
¯̃

2 3
1

1 3

3

18

2

2
8 15

10
p 33

, where Nd 

is in cm–3. 
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ˆ
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N
e
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  E E
E m
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n
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* /

= - Ê
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ˆ
¯̃

+ ¥ Ê
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ˆ
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  Si: Nd (critical) = 8 ¥ 1018 cm–3; T(Max) = 160 K
  InSb: Nd (critical) = 3 ¥ 1013 cm–3; T(Max)ª 1 K
  We note that in the III–V semiconductor group, InSb has a very 

low critical concentration, related to its small effective mass 
and ionization energy. Taking into account the difficulties to 
obtain a stoichiometric alloy, it is almost always a partially 
degenerate semiconductor. 

 (d) Substituting (E – Eg/kBT) = x and (EF – Eg/(KBT) = x, the 
electronic concentration in a completely degenerate 
semiconductor is described by  

n g E f E dE

m
k T

x dx

ex

= ◊ ◊

=
◊
+

=

•

-

•

Ú

Ú

( ) ( )
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/
/
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3 2

2 3
3 2
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  n N
E E

k T
m

E E= ◊ ◊
-Ê

ËÁ
ˆ
¯̃

ª Ê
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ˆ
¯̃

-4
3

1
3

2
3 2

2 2

3 2
3 2

p pc
F g

B

e
F g

/ /
/*

( )


, from 

which we obtain E
m

nF
e

= 

2
2 2 3

2
3

*
( ) /p . 

  Note that the electronic concentration does not explicitly 
depend on temperature and that there exists an identical 
relation between n and EF as that established for metals (see 
also Exs. 13 and 24): assuming that the energy origin is at the 
bottom of the conduction band.

 Identifying this concentration with that established in (a) and 
taking into account - ≥ +a ( / )E kTd 5, we find

n
N E E E

k T
N

E E

k T
ª

- -
ª

-Ê
ËÁ

ˆ
¯̃

d g d F

B
c

F g

B2
4

3

3 2

exp
/

p
,

which leads to the following equality and allows, in 

principle, the calculation of EF: x x p3 2 3
8

/ e e
N
N

E
kT d

c

= ◊
- d

, when 

E E k T N N
e

e e N
E

k T E k T
F g B d c c

d

B d B= + = ◊ ◊ ◊ = ◊ ¥ ◊5 5 8
3

2 5 10
3 2 5

3; ./
/

p
. 

 At 290 K, for Si: Nd = 1.2 × 1022 cm–3; for InSb : Nd = 6 × 1019 
cm–3. 
 As the atomic concentration of pure silicon is of order 6 × 1022 
cm–3, a doping change of 20% will radically change the physical 
properties of the element and the resulting behavior will be that 
of an alloy, whose electronic properties cannot be described by 
the method used here. This shows that silicon is never completely 
degenerated at ambient temperature. 
 The critical concentration Nd in InSb varies with temperature 
as Nc, thus has a T3/2 dependence because eEd/kBT ª 1 and this 
semiconductor can be completely degenerate. But at the very large 
impurity concentrations needed to ensure its degeneracy, the 
impurity levels broaden and an impurity band (formed by the overlap 
between electrons placed in orbits ri becomes important (see Ex. 
16). This band will also participate in the electrical conductivity of 
the material. The theoretical study of heavily doped semiconductors 
thus requires special techniques (see Ref. [14], p. 232).
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Problem	6:	Electron	transitions:	optical	properties	of	
semiconductors and insulators

 (1) General relations between optical constants:
  In a vacuum (e0, μ0), which occupy the half space of negative 

z, a monochromatic electromagnetic wave with angular 
frequency ω and electric field amplitude Ei is polarized along 
Ox, and propagates along increasing z. It hits a medium 
occupied along the half space z > 0 that is characterized by μ0 
and by a complex relative dielectric constant e e er = +1 2i .

 (a) Starting from Maxwell’s equations, show that the 
transmitted wave in the dielectric is of the form: 

E z t E e i n
z
c

tc
z

T T( , ) exp= ◊ -Ê
ËÁ

ˆ
¯̃

-w c
w  where c is the speed 

of light in a vacuum. 
  Find explicitly the index of refraction n and the extinction 

coefficient χ as a function of e1 and e2 after having 
determined the phase velocity vp and the wavelength λ in 
the medium of interest. 

  Show that the attenuation of the wave intensity is of form 
I = I0e–mz and find the optical linear absorption  
co-efficient μ as a function of ω, χ, and c. 

 (b) Using the boundary conditions and after having found 
the impedances Z = E/H of the incident, reflected, and 
transmitted waves, find the expression for the intensity 
of the reflection coefficient at normal incidence, R, as a 
function of e1 and e2 and then as a function of n and χ. 

  Specify the values taken by n, χ, μ, R, and T = 1 –R with the 
following assumptions: 

  a e e b e e e g e e e: , ; : , ; : ,1 2 1 2 1 1 2 11 0 0 1> = < >> ª <<
 (2) Classical model of the dielectric function
  We assume that the dielectric medium is an assembly of N 

atoms per unit volume in a volume immersed in a vacuum 
(e0). Subject to the action of the electric field wave, E0e–iwt, a 
fraction n of electrons from an atom are displaced from their 
equilibrium position, each one remaining linked to a central 
ion (+e) due to a restoring force of form: Fr = – mw2

Tx (where 
x is the elongation of an electron, m is its mass, and ωT is a 
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constant) and is subject to a frictional force proportional to its 
velocity v: FF = –mgv.

 (a) Write the differential equation of motion for an electron 
under the action of an electric field wave. Find the steady-
state solution of its elongation, deduce the expression for 
the polarization (per unit volume) P of the medium and its 
relative dielectric constant er .

  Simplify the problem by using Ne2/me0 = w2
p, where 

  N = nN.
 (b) Find the expressions for e1 and e2. Find the limiting values 

when ω = 0 and ω = ∞.
 (c) Now assume that the damping constant γ is small such 

that (g/wT) << 1. How does this simplify the expressions 
for e1 – 1 and for e2 when the excitation frequency ω is 
near the resonance frequency ωT? 

  Sketch the representative curves and specify the extreme 
value and the full width at half maximum of e2. 

  How are the expressions for e1 – 1 and e2 simplified when 
far from the resonance: w w gT - >> ?

 (d) Starting from the previous results in the limiting case 
where γ = 0, show graphically the evolution of e1 – 1 and 
e2 and that of n and χ.

 (3) Elementary quantum approach
 (a) The considered medium is in fact a semiconductor without 

impurities having a horizontal valence and conduction 
band: Ev (k) = C, Ec (k) = C ¢ (C and C¢ are the constants 
independent of the electron wave vectors k and we can 
write Eg = C¢ – C). A flux of photons with energy hv = w  
irradiates this material. 

  Write the equations of energy momentum conservation 
when a photon can be absorbed by an electron.

  Is optical absorption possible when w < Eg ?
  What is the physical meaning (and value) of the parameter 

ωT used in the first two parts of this problem? 
  Qualitatively describe the optical behavior of the material 

considered.
  Show that the electronic transitions leave the wave vector 

practically unchanged (vertical transitions) if the modulus 
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of the electron wave vector taken into account is of order 
p/a ª -1 1Å , if Eg eVª 1 and if there is a direct forbidden 
bandgap.

 (b) The energy bands of the semiconductor considered are 
no longer flat and the density of electronic states in the 
valence and conduction bands are shown schematically in 
Fig. 46. 

V.B. C.B. E
0

0 2 4 6 C C
8 11

13 15 17 (eV)

g E( )

Figure 46

  Sketch the optical absorption curve of this material [or 
the curve e2 = f(ω)] as a function of the angular frequency 
of the incident electromagnetic waves. 

  What is the maximal wavelength λ0 at which optical 
absorption begins? 

  Deduce the color of the semiconductor. 
  What is the approximate value of the static dielectric 

constant er(0) knowing that the atomic density is of 
order 5 × 1022 cm–3, that there are four valence electrons 
per atom to consider and neglecting the other possible 
contributions to er . ( , , , )e m e0

Solution:

 (1) (a) — + =2
2

2 0E
c

E




w er
; d

d r

2

2

2

2 0E

z c
Ex

x+ =w e .

  From which we have
  Substituting ( ) /

e cr
1 2 = +n i , we find (not retaining the 

positive solution that represents the propagation for 
increasing z):
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z i
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  where we have v
c
n

c
nvp and= =, l , and ( ) /



e cr
1 2 = = +N n i , 

where

  n = + + = - + +1
2

1
21 1

2
2
2 1 2

1 1
2

2
2 1 2[ ( ) ] [ ( ) ]/ /e e e c e e eand ,

  or equivalently e1 = n2 – c2 and e2 = 2nc.
  In addition, since the intensity is proportional to the 

square of the amplitude of the electric field: m wc= 2
c

.

 (b) By introducing E E i
c

z tT T
r= -

Ê

Ë
Á

ˆ

¯
˜exp w

e
 into one 

Maxwell’s equations, we find for the wave transmitted 
in the dielectric; E H zT T T r/ ( / )/= = m e e0 0

1 2
  and for the 

incident and reflected waves (in vacuum):
  E H Z E H Zi i r r/ ( / ) , / ( / )/ /= = = - = -0 0 0

1 2
0 0 0

1 2m e m e .
  At z = 0, the boundary conditions can be written as 

E E Ei r t+ =  and H H Hi r t+ =  so that

  

r E E
Z Z
Z Z

n i
n

= =
-
+

=
-
+

= - -
+ +t i
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 (i)  e2 = 0 and c = m = 0: the medium is not absorbing

  n R
n
n

= = -
+

Ê
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ˆ
¯̃

( ) /e1
1 2

21
1
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T
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 (ii) e e c e m w w

e
e

2 1 2
1 2

2
1 2

2
1 2

2

2 2

1 2 2
1 2

>> ª ª ª

= - =
+ +

, ( / ) ( ) :
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(

/ /

/

n
c

T R
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ee2
1 2)

./

 (iii) As in (a) χ and μ are small but n ≈ 1, the reflection is 
weak and transmission is nearly complete, then

 (2) (a) m T
d x

dt
eE e m v m xi t

2

2 0
2= - - -- w g w .

  The steady-state solution is in the form x = x0e–iwt from 
which we have ( )- - + = -m im m x eEw wg w2 2

0 0T  so that 

x
eE

m i
0

0
2 2=

-
- -( )

.
w w gwT
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Nne E
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  (c) When ω is in the vicinity of ωT, the approximation
  w2

T – w2 = (wT + w) (wT – w) @ 2wT (wT –w) is valid and we 
find
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w

w w
w w g

e
w g
w w w g

1 2 2

2

2

2 2

1
2 2

4
1

2

- ª
-

- +

ª ◊
- +

p
2

T

T

T

p

T T

.
( ) ( / )

( ) ( / )

  The corresponding curves, shown in Fig. 47, are 
Lorentzian: the function e2 is even compared to ωT – ω 
and e1 –1 is odd; the full width at half maximum of e2 is 
equal to γ at the points where the extremes of e1 – 1 are 
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located. Finally e2 is maximum on resonance (w = wT) and 
the amplitude M of this maximum is M = w2

p/wTg , it can be 
very sharp. Far from resonance, γ can be neglected in the 

denominator and e
w

w w
e

w gw

w w1

2

2 2 2

2

2 2 21- =
-

=
-

p

T

p

T
,

( )
.

  In this approximation, e2 is very small and corresponds 
most often to e e2 1<< .

 (d) In the limit when γ = 0, e is zero everywhere except when 

w = wT: e w
w

w
d w w2

2

2( ) ( )= -A p
T .

 (e) Using the Kramers–Krönig relations (Chapter IV, Pb. 5), 
we can show that the constant A is equal to π/2. The 
evolutions of e w( ) and of N n i= + c  are shown in Fig. 47. 
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0

g
wT

<<1
e2
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wT – /1g wT + /1g
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e2 (w wT p

2 2 1/2+ )
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w
w

p

T

( )

g = 0

n c

c c
n

n0
w w wT T p

1/2
( + )

2 2

1
M
2

–

Figure 47

 (3) (a) Denoting the electron energy Ei and wave vector ki


before 
absorption of a photon, and EF and kf



 as the values after 
absorption by a photon of energy hν and with wave vector 

hv
c

= 2p
l

. Conservation of energy and momentum impose 

that E E hv k k uf i f i= + = + Ê
ËÁ

ˆ
¯̃

; .









2p
l

  These relations can only be satisfied when the final state 
is allowed. When wr  is less than Eg, the final energy of 
the electron is located in the bandgap and absorption 
cannot occur: the solid is considered to be transparent to 
all corresponding electromagnetic radiation: (m = e2 = 0). 
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Absorption can only start when hv E= g  or equivalently 
wT = Eg . We thus are in the case 2d studied above where 
e2 takes the form of a delta function: reflection is weak for 
ω located near wT g= E /  and total transmission occurs 

for ω above ( ) /w wT p+ 2 1 2.
  When hv = 1 eV, the photon wave vector 

  kp Å Å= = = ¥- - -2 2
12400

5 101 4 1p l p/ is much smaller 

than the electron wave vector ( )0 1 1< < -k Å : in the band 
diagram E f k= ( )



 the electronic transitions are vertical 
because they occur without notable change in the wave 
vector k kf iª . For indirect transitions, see Ex. 28. 

 (b) The initial electronic levels (in the valence band) and final 
ones (in the conduction band) are not discrete and one 
must observe an absorption band which begins around 
hv = Eg = Ec¢ – Ec = 3 eV. Neglecting the selection rules, μ(ω) 
and e2(ω) must reflect the evolution of the convolution 
product of gvb(E)dE and gCB(E¢)dE¢, giving in particular 
the first maximum of energy E that separates the last 
maximum of the valence band from the first maximum of 
the conduction band. As in this region e e m w e2 1 2>> µ: , 
the features of e2 show up in μ but with a weight that 
varies with hν, see comment 2 for details. Figure 48 gives 
the characteristics of e2(ω) and e1(ω) taking into account 
the most probably transitions located at hν = 5 eV (from 
the VB: 7 eV toward the CB: 12 eV); at hν = 7–8 eV (from 
the VB: 7 eV toward the CB: 14 eV), as well as at hν ≈ 10 eV 
(from the VB: 2 eV toward the CB: 12 eV and from the VB: 
7 eV toward the CB: 17 eV).

 • l0 4100= =c
E

Å: This corresponds to the end of 

the violet at the limit of the near UV. The solid is 
transparent for all radiation in the visible spectra and 
is therefore colorless. 

  •  er(0)=1+ (wp
2/wT

2) (see Solution 2b). Taking into 
account the electronic density wp is equal to 16 
eV and that, taking the average transition energy 
wT eV= 6 , we find that e1 0 8( ) .ª  We are thus 
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concerned with the electronic contribution to e1(0), 
see Ex. 25.

0 2 3 4 6 8 10 12

e2m

hn

eV

Figure 48

Comments 

 (1) Setting wT = 0 the results obtained in the Question (2) of this 
exercise can be identified with those of Chapter IV, Pb. 5, 
relative to a plasma of free electrons. In particular, they show 
that, when γ = 0, e2 is not zero everywhere (which would 
result in e1(ω) = 1; see comments in Chapter IV, Pb. 5) because 

it is not zero at the origin; the limiting value is p
w
w

d w w
2

2
p

T
T( )-  

when ωT Æ 0. 
 (2) In the third part, we have seen that probabilities of the 

electronic transitions are not uniform but that they depend 
on the density of states in the valence and conduction bands. 
Using quantum mechanics, we find (see Greenaway and 
Harbeke, citation in Chapter IV, Pb. 7): 

  e w p
e w p

d w2

2

2
0

2 3

22
2

( )
( )

[ ( ) ( ) ]= ◊ - -Úe

m

dk
e M E k E k

BZ

   

vc c v .

  Averaging certain approximations concerning the matrix 
elements |Mvc| which describe the electronic transition 
probabilities between the initial and final state, we can show 
that e2 is proportional to the surface integral 

  J
S

E E
E E cst

vc
k c v

d

c v

=
— -

- =
ÚÚ2

2 3( ) ( )p
.

  involving the joint-density of states between the valence 
and conduction bands. The most probable transitions are 
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located at critical points in the Brillouin zone (known as Van 
Hove singularities) for which —k (Ec – Ev) = 0 and which often 
correspond to points where the dispersion curves E = f (k) are 
in contact with the Brillouin zone (for which —kE = 0).

 The theoretical calculation of the semiconductor or insulator band 
structure thus allows one to determine the position of these critical 
points and therefore foresee the optical properties in the visible 
and ultraviolet. Reciprocally obtained from the reflection spectra or 
characteristic energy losses, the experimental evolution of e2(ω) can 
be used to verify the validity of band structure calculations found in 
the literature and to interpret their results. (Pb. 10 illustrates this 
point for graphite). Such a procedure will be facilitated by taking into 
account symmetry considerations and the use of summation rules 
(deduced by quantum considerations and from the Kramers–Krönig 
relations) such as:

 we w w p w e
p

e w
w

w2
2

0 1

2

02
0 1 2( ) ( ) ( ) .d or dp= = +

• •

Ú Ú
 Technical Note: See the corresponding technical note of  
Chapter IV, Ex. 29, for the present use of e1 + ie2 and n + iχ. Also, the 
imaginary part of the index is represented here by χ and not k as 
previously (in order to avoid confusion with the wave vector k). 

Problem 7: The p–n junction

At ambient temperature, a p–n junction diode of germanium is doped 
by p1 acceptors (per unit volume) in the p-region and by n2 donors 
(per unit volume) in the n-region. The indices 1 and 2 designate 
respectively the regions p and n. The concentration of impurity 
atoms is assumed to be uniform in each of these two regions and 
all impurities are ionized. In addition, the p–n interface is plane 
and abrupt. The potential V(x) at a point M is a unique function of 
the x-axis relative to the perpendicular axis of the junction plane. 
The origin 0 is located at the interface between region A (x < 0) and 
region 2 (x > 0). 
 (1) Diffusion current and potential barrier
 (a) Discuss the nature of the currents that appear 

when the p-semiconductor is set in contact with the 
n-semiconductor. Justify qualitatively the fact that the 
electrostatic distribution of charges can, in equilibrium, 
be represented by the curve in Fig. 49. 
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  Using the Einstein relation D kT
em

= , where D is the 

diffusion coefficient, μ is the mobility, and e is the absolute 
value of electron charge), find the expression for the 
contact potential U0 [U0 = V(x2) – V(–x1)] which arises 
between the p region and the n region in the absence of 
an external applied field.

  Express the result first as a function of n2, p1, and ni (ni
2 = 

nipi) and next as a function of the electrical conductivity 
sp and sn of regions 1 and 2.

 (b) Numerically determine U0, n2, and p1 using 

  s sp n= =- - - -100 11 1 1 1W Wcm cm,

  n1 = 2.5 ¥ 1013 cm–3, 

  mp = 1700 cm2/V◊s, 

  mn = 3600 cm2/V◊s.
 (c) From purely electrostatic considerations, find the 

evolution of the internal field E(x) and then the potential 
function V(x). Draw the representative curves (take V = 0 
at x = 0) and find the expression for U0. 

 (d) Numerical application: For Ge, er (relative dielectric 
constant) = 16. Find the width d = x2 + x1 @ x2 of the 
transition region and the value Em of the maximal electric 
field.

0

n e21

P

–X1

–

–p e1

X2

X

2

n

+

r

Figure 49
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 (2) Reverse bias: capacitance of the junction
  A DC voltage –U is applied between the negative pole at the 

p-side and positive pole at the n-side: 
 (a) What is the new width of the transition zone (assuming 

that the electrostatic concentration remains the same as 
shown in Fig. 49)?

 (b) S being the area of the section of the junction, find the 
charge +Q that is stored on the n-side, 0 ≤ x ≤ x2. 

 (c) The voltage –U fluctuates with an amplitude u around the 
value U1, –U = –U1 ± u where u << U1. Find the expression 

for the differential capacitance C
Q
Uj

d
d

=  for U = U1. 

 (d) Using the previous numerical data, find the capacitance 
Cj for S = 1 mm2, –U1 = –5 V and U1 = 0. Sketch the curve 
Cj = f(–U1).

 (e) The voltage u is sinusoidal with angular frequency 
ω. Show that the current i flowing through the diode 
contains terms with frequency 2ω. Find the weight of this 
harmonic compared to the fundamental one. Comment on 
the result. 

 (3) Forward bias
 (a) Using the result of Question (1c), show schematically the 

energetic position of the valence and conduction bands 
of both p and n sides, as well as the Fermi level when 
0 voltage is applied (Hint: The Fermi level EF is in the 
forbidden bandgap). 

 (b) A forward bias is now applied to the diode. What are the 
modifications to the band diagram above? Starting from 
this diagram and using simplified Fermi–Dirac statistics, 
justify the following expression relating the current in 
the diode to the applied voltage: i = is (eeU/kBT – 1). What 
happens when U is negative? 

  Find the characteristics of the curve i = f(U) and find the 
values of current at ambient temperature when U = 0.5 V 
and U = –0.5 V (take is = 10 μA). 

  Why is the result obtained when U = 0.5 V unrealistic? 
 (c) U = u0 cosωt where U0 << kBT/e. In the current flowing 

through the diode, find the weight of the 2ω-harmonic 
relative to the first one in ω. (e, e0, kB)
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Solution:

 (1) (a) When a p-doped semiconductor is put into contact with a 
n-doped semiconductor, the strong concentration gradient 
of mobile carriers that exists at the interface gives rise to 
a diffusion current i eD p

  

p p= - —  that circulates from 1 
toward 2 and leads to a decrease in the hole concentration 
in the p region near the interface. 

  In the same way, a flux of electron will diffuse in the 
opposite direction, giving rise to a current i eD n

  

n n= — and 
a decrease in the electron concentration on the n-side. The 
two parts of the junction, initially neutral electrostatically, 
will thus be charged negatively in the p region and 
positively in the n region. In equilibrium a double layer 
–/+ will block any further diffusion by the creation of an 
internal electric field E



 (from which a contact potential 
arises); the resulting currents are zero.

  i ne E eD n i pe E eD pn n n p p p= + — = = - — =m m
   

0 0, .

  Using the Einstein relation, we find 

E
k T

e
dn
dx n

V
k T

e
nx = - ◊ ◊ =B B l1 ; og or 

U
k T

e
n
n

k T
e

n p

n0
2

1

2 1

1
2= =B Blog log .

  The regions 1 and 2 are doped so that their electrical 
conductivity is due to one type of carrier:

  sn = n2emn, sp = p1emp from which we find 

U
k T

e n e0 2 2=
◊

◊ ◊
B n p

i p n
log

s s

m m

 (b) U0 = 0.3 volt, p1 = 3.6 ¥ 1017 cm –3, n2 = 1.7 ¥ 1015 cm–3.

 (c) — =
= - = - + - < <

= -
E

dE
dx

p e
E

p e
x b x x

dE
dx

n
r

e e
e e e e

0

1

0

1

0
1 1

2

0

r

r r
where for

ee
E

n e
x b x x

e e e e0

2

0
2 20

r r
where for= - + < <

 • E = 0 for x < –x1 and x > x2, it is continuous at x = 0 
(b1 = b2). At the latter point, it reaches its absolute 
maximum:
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  E b b
p e

x
n e

xM
r r

= - = - = =1 2
1

0
1

2

0
2e e e e

.

  We observe that the system is globally neutral, that is, 
p1x1 = n2x2

  E V

V
p e x p e

x x c x x

V
n e x

  

= -—
= + + - < <

= +

1

0

2
1

0
1 1

2

0

2

2
0

2

e e e e

e e

r r

r

( )

nn e
x x c x x2

0
2 20

e er
+ < <( )

  From which we obtain the graphs shown in Fig. 50. 

  
U V x V x

e
n x p x

n x
d

n e
d

0 2 1
0

2 2
2

1 1
2

2 2

0

2

0

2

2

2 2

= - - = +

= ª

( ) ( ) [ ]

.

e e

e e e e

r

r r

E

x1 x2 x
x2x1 x

v

0

Figure 50

 (d) d
U

n e

E
n e

d
U

d

=
È

Î
Í

˘

˚
˙ =

ª ª ª

2
0 56

2
10
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2
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2

0
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e e

e e

r

M
r

 m

V/cm

/

. m

 (2) (a) The charge distribution gets larger without an increase 
in density. It is thus sufficient to consider the result from 
Question (1c) and replace U0 by U0 + U from which we find 

d
n e

U U= +
È

Î
Í

˘

˚
˙

2 0

2
0

1 2
e er ( )

/
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 (b) Q n e S x n eSd S n e U U
d

= ◊ ◊ = = +Ú 2 20 0 2 0
1 22d r[ ( )] /e e

 (c) C
Q
U

n e
U U

Sj = =
+

È

Î
Í

˘

˚
˙

d
d

re e0 2

0 1

1 2

2( )

/

 (d) U1 = 0,Cj = 320 pF, U1 = 5v, Cj = 60 pF
 (e) From 2b, Q is of the form a(U1 + u) 1/2 

Cj pF( )

0 –5V U

Figure 51

  With limited development

  Q U
u

U
U

u
U

u

U

i

= +
Ê
ËÁ

ˆ
¯̃

ª + - + ◊◊◊
È

Î
Í
Í

˘

˚
˙
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/
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U
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d
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1

0

1
22 4

/ cos sin cos- + ◊◊◊
È

Î
Í
Í

˘

˚
˙
˙

  where u = u0 sin wt.
  Taking into account sin wt◊ cos wt = (1/2) ◊ sin2wt, we find 

that i
i

u
U

( )
( )

.2 1
4

0

1

w
w

=

  The diodes with a variable capacitance can serve as 
harmonic generators in telecommunications. 

 (3) (a) Figure 52 shows the electronic potential energy diagram: (a) 
Before p and n regions are connected and (b) after contact 
[U(ext) = 0]. 
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Figure 52

  After contact, the Fermi levels align and EFp – EFn = – eU0 
in which U0 represents the contact potential difference 
calculated in solutions 1a and b (note the sign change 
when going from potential to potential energy). 

  Starting from the expression E
E k T N

N
n
pF

g B v

c
p

log= +
2 2

1

1
 

(see Ex. 14) and the equivalent expression for EFn, we find 
again the expression for U0 obtained in 1a. 

 (b) See Fig. 53.

E
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Fp(E)

p n

E pF

U(ext) = 0

E
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EFn

Fn(E)

eU0

Figure 53

  When the diode is forward biased, the level EFn is shifted 
upward on the y-axis by a quantity of eU0 relative to EFp. 

  The number of electrons that can diffuse from n toward p 

is proportional to f E
e

eE E k T
E E k T

n B B Fn B

Fn B B( ) ( )/( )
( )/=

+
ª-

-1
1

.

  Analogously, the number of electrons that 
can diffuse from p to n is proportional to

f E
e

eE E k T

E E k T
p B B Fp B

Fp B B( ) ( )/( )
( )/

=
+

ª-
-1

1
.
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  The resulting electrical current is thus proportional to
 

f E f E e e i i e
E E k T eU k T eU k T

n B p B s
Fp B B B Bor( ) ( ) ( ) ( ).

( )/ / /- = - = -
-

1 1

  We must also add the contribution of holes but the final 
relation will not be modified. 

  The relation obtained is algebraic and valid when U is 
positive as well as negative. 

  For U = 0.5 eV, i(0.5v) ª I ¥ (e20 – 1) ª Ige20 ª 5.000 A.
  This result is not realistic because one must take into 

account the voltage drop in the p and n regions (here 
especially the n region). If for example, S = 1 mm2 and e = 
0.1 mm, R ≈ 1 Ω, and i(0.5 V) = 0.25 A. As for a Gunn diode 
(Fig. 32, Ex. 30), the operating point will be determined 
using a graphical construction where the result of an 
intersection of the diode characteristics i = f(U) with the 
line U = E – Ri (see Fig. 54). 

  U = –0.5 eV; i(0.5V) = is(e20 – 1) ª –is = 10 mA.

e R/

ue
is

0

i

Figure 54

 (c) i
i

e
u

U
u

U
u U

s T T

T= - ª +
Ê
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ˆ
¯̃

+ ◊◊◊/ 1 1
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2

, where U k T eT B= /  and

  
u u t= 0 cos .w

  Expanding the quadratic term, we find: 
1
2

1
2

2 10
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2◊ ◊ +
u
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  The characteristics I = f(V) are strongly nonlinear and this 
property may be used for the generation of harmonics 2ω, 
3ω, etc. 

Problem 8: The transistor 

As shown below, a transistor consists schematically of a base with 
thickness a, which lacks electrons and in which diffusion phenomena 
of electric charges will occur. It is placed between an emitter, E, and 
a collector, C, both rich in electrons. In all that follows, we consider 
only 1D, x, and are only interested in the physical phenomena that 
occur in the base. 

E BASE C

0 xe

 The electric current flowing through the junction results almost 
exclusively of electrons whose number n per unit length (carrier 
density) is controlled by two phenomena:
 • Electrons disappear from their recombination of positive ions 

and their number per unit length and per unit time is 
n n- 0

t
 

where n0 and τ are two constants that characterize the base;
 • Diffusion at each point of the x-axis the intensity I of the 

electrical current is related to the derivative of the carrier 

density per unit length ∂
∂

n
x

 via the relation: I qD
n
x

= ∂
∂

 where 

D is the diffusion coefficient and q is the absolute value of the 
charge of an electron.

(1) Show that the general equation for the density of carriers in the 

base obeys to ∂
∂

=
-

+ ∂
∂

n
t

n n
D

n

x
0

2

2t
.

(2) In thermodynamic equilibrium, the density of carriers 

n per unit length is given by n x t N
q x t

k T
( , ) exp ( , )= -

Ê
ËÁ

ˆ
¯̃

j

B
, 

where N is a constant kB is the Boltzmann constant, T is absolute 
temperature, and f(x,t) is the suitable electric potential such 
that:

 • When the base is at a constant and uniform electric potential 
(electrical equilibrium) f takes a constant value f0 and n is 
n0.
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 • When a potential difference VE is applied between the emitter, 
E, and the base (at x = 0), the effective voltage the value of f is 
given by f = f0 – VE.

 • When a potential difference VC is applied between the collector, 
C, and the base (at x = a), the above expression applies with 
+VC , instead of –VE, so that the value of f is very large and 
positive and the density of carriers n per unit length is thus 
equal to zero at x = a. 

  Express the number of carriers at x = 0 as a function of n0, VE, 
and T as well as at x = a (as a function of Vc).

 (3) We investigate now the mechanisms of the transistor in a DC 
state regime where, thus, VE is constant potential. 

 (a) Write the equation for n, using L D= ( ) /t 1 2. Find the 
expression for n(x) as a function of the parameters 
n0, VE, T, a, and L. What is the physical interpretation 
of L? 

 (b) Calculate the electrical current I(x) in the base. Denote 
IE and IC respectively as the current at x = 0 and x = a. 
Calculate the static gain s0 = I IC E/  as a function of a 
and L by assuming that a is very small compared to L 
and that qVE is very large compared to kBT. 

 (4) A small sinusoidal potential v is now superimposed on the 
potential difference VE: v v i t= E exp( )w .

 (a) Write the boundary conditions at x = 0 and at x = a of 
the carrier density n assuming that qve is very small 
compared to kBT.

 (b) Calculate the term dependent on time n1(x, t) of the 

carrier density. To simplify use b wt2
2= 1+ i

L
.

 (c) As previously, calculate the alternating currents iE at x 
= 0 and ic at x = a. Calculate the dynamic gain defined 
by s = ic/iE. If a is very small compared to L and for 
low frequencies (ωτ << 1), how can one simplify α? 
What is the physical interpretation of the imaginary 
part of α?

 (d) Determine the frequency ω1 for which the modulus 
of the dynamic gain changes by 10% compared to the 
static gain α0. 
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Solution:

 (1) We consider an element of length between x and x + dx. Carried 
by the diffusion current, the flux of particles (per unit surface) 
going through the plane at x during a unit interval of time is 

D◊∂n(x)/∂x. The exiting flux at x + dx is D
x

n
n
x

dx
∂
∂

+ ∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ . 

The density of carriers that recombine between x and 

dx is 
n n

dx
- 0
t

. Combining these elements we have

∂
∂

= ∂
∂

+
-n

t
D

n

x

n n2

2
0
t

.  We could also obtain this result directly 

using charge conservation equation: div j
t

+ ∂
∂

=r 0.

 (2) The boundary conditions imposed successively are
  n0 = N exp – (qf0)/(kBT) from which N = n0 exp(qf0/kBT).
 • At x = 0, the density n(0) is such that
  n(0) = N exp – q(f0 – VE)/kBT = n0 exp + (qVE/kBT)
 • At x = a, the density n(a) is such that
  n(a) = N exp – q(f0 + Vc)/(kBT) ª 0

 (3) (a) In the steady-state regime, ∂
∂

=n
t

0  and the expression 

obtained in (1) becomes ∂2n/∂x2 – n/L2 = –n0/L2 which 

gives n x A
x
L

B
x
L

n( ) exp exp .= - + + 0

  When x = 0, n n
qV
k T

A B n A B n
qV
k T

( ) exp exp0 10 0 0= = + + + =
Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

˘

˚
˙
˙

E

B

E

B
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n n
qV
k T
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ˆ
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È
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Í

˘

˚
˙
˙

E

B
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B
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a
L

B
a
L

n= = = - + +, ( ) exp exp .0 0

  The integration constants A and B are given by

  

A
n qV k T a L

a
L

B
n qV k T

=
- - -

+ -

=

0

0

1

1 2
[exp( / ) exp ( / )]

exp
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E B
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a L
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  where L is the diffusion length of the particles.

 (b) I x qD
n
x

qD
L

A
x
L

B
x
L

( ) exp exp= ∂
∂

= - - +Ê
ËÁ

ˆ
¯̃

  where I
qD
L

A BE ( )= - + and 

I
qD
L

A
a
L

B
a
LC exp exp= - -Ê

ËÁ
ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ .

  With the help of the expressions and integration constants 

obtained above, we have a = - +
- +

e ch a L

e ch a L

qV k T

qV k T

E B

E B

/

/
( / )

( ) ( / )
1

1 1
.

  Taking into account the suggested approximations, this 

simplifies to a ª ª
+

1 1

1
2

2

2
ch

a
L

a

L

.

 (4) (a) Replacing VE by VE + v, the condition (2) at x = 0 becomes 

n n
q V v

k T
n qv k T qV k T( ) exp ( ) [( / )]exp( )/( ).0 10 0=

+
ª +E

B
B E B

 (b) The term dependent on time will be of the form  
n1(x, t) = f(x).exp iwt and must satisfy the continuity 
equation (Question (1)) which becomes

  i t
f

D
f

x

f

x

i

L
fw

t
wt= - + - + =d

d
or d

d

2

2

2

2 2
1 0 or d

d

2

2
2 0f

x
f- =b .

  We thus have that f = C exp – bx + E exp bx and 
  n1 (x,t) = C exp(iwt – bx) + E exp(iwt + bx).
  This solution is dependent on time and must satisfy the 

boundary conditions

  n t n
qve

k T
qV
k T

i t

1 00( , ) exp= ◊
w

B

E

B
 and n a ti( , ) .= 0

 (c) The expression for the sinusoidal current i(x) will be given 

by i x qD
n
x

qD C i t x E i t x( ) [ exp( ) exp( )]=
∂
∂

= - - + +1 b w b b w b i x qD
n
x

qD C i t x E i t x( ) [ exp( ) exp( )]=
∂
∂

= - - + +1 b w b b w b

  or i(E) = i(0) = qDb[E –C]exp(iwt),
  ic = i(a) = qDb[– C exp – ba + E exp(ba)]exp(iwt).
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i
i

C a a
E C

C

E
= = - - +

-
a b bexp exp with (boundary conditions)

  C E n
qv

k T
qV
k T

+ = 0
B

E

B
exp  and Ce Eea a- + =b b 0.

  We thus obtain 

  a w b
b

wt

wt
( ) ( / )( )

( )
= @ 1+ +

+ +
2

2
6 1

1 2
3

1

2 2

2

sh a
sh a

a L i
a

L
i

.

  This result can be identified with that established in 
condition 3 when ω is zero.

  The imaginary part of α represents the delay between Ic 
and IE due to the recombination time of minority carriers. 
One may treat this phenomenon by introducing the notion 
of emitter-base (diffusion) capacitance.

 (d) 
a w
a
( )

( )
.I

2

2 0
0 8=  when w tI = 0 75

2

2. L

a

Note: Nobel Prize in physics in 1956: J. Bardeen, W. Shockley, and W. 
Brattain won the Nobel Prize in physics in 1956 for the invention of 
the transistor.

Problem 9a: Electronic states in semiconductor quantum wells 
and	superlattices

Consider a 3D gas of electrons that can propagate freely (with an 
effective mass mx) in the xOy plane but are limited in the interval 
0 ≤ z ≤ d by the existence of two potential barriers (assumed to be 
infinite) at z = 0 and z = d. 
 (1) By applying periodic boundary conditions of period L along 

x and y, and fixed conditions at z = 0 and z = d, find the wave 
function for these electrons and characterize the quantization 
of the wave-vector components, kx, ky, and kz, by the quantum 
numbers nx, ny, and nz. What are the conditions imposed on 
nz?

  Find the expression for the quantized energy of these electrons 
and specify the minimal value E1 of this energy. 

 (2) Looking temporarily to the electron motion along z (kx = ky 
= 0), find the symbolic expression and the numerical value 
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(in eV) of the first three allowed energy levels E1, E2, and E3 
where d = 100 Å and mx (As Ga) = 0.066 m. 

 (3) Consider that d << L, sketch the dispersion curve along the 
parallel direction k|| and perpendicular kz to the xOy plane.

  Describe the progressive filling of the allowed levels. Specify, 
in particular, the conditions on nx and ny when going from nz = 
1 to nz = 2. Deduce the characteristics of the density of states 
g(E) curve. 

 (4) In reality, the electrons studied above are electrons in the 
conduction band of a semiconductor SC1 with bandgap Eg1 
and thickness d which is surrounded (quantum well) by a 
semiconductor SC1 with bandgap Eg2. The two semiconductors 
in contact have the same reference potential (vacuum level) 
relative to which (with the help of their electron affinity 
respectively eχ1 and eχ2) is located the bottom of their 
conduction bands. 

  Sketch the position of the conduction band minima and the 
valence band maxima when going through the structure SC2/
SC1/SC2 along z. Choose the example of the structure AlAs/
GaAs/AlAs where (in eV): Eg(GaAs) = 1.43; Eg(AlAs) = 2.16; 
eχ(GaAs) = 4.07; and eχ(AlAs) = 3.5. 

  Find in particular the height of the potential barrier at the 
SC2/SC1 interface. Indicate them on the diagram of the energy 
states E1, E2, and E3, evaluated previously (assuming that the 
finite height of the barrier does not significantly influence the 
positions established in 2). 

  Also indicate the position E1(t), of holes in GaAs, taking into 
account their effective mass mx(h) = 0.68 m. Deduce the 
radiation that may be emitted from GaAs.

 (5) Show the diagram of energy levels through the Oz axis of a 
heterostructure of type GaSb/InAs/GaSb. Take, in eV, Eg (GaSb) 
= 0.81; Eg(InAs) = 0.42; ec(GaSb) = 4.06 and ec(InAs) = 4.9.

  Specify the regions in space where electrons as well as holes 
will be localized in such a structure.

 (6) Now consider a succession of quantum wells with width L1, 
distant from L2 resulting in a juxtaposition of alternating 
multilayers with identical composition to that studied in 
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Question (4): AlAs/GaAs/AlAs/GaAs/ where L1 = L2 = 100 Å. 
Can you sketch the approximate dispersion relation of 
conduction electrons of GaAs that propagate along the Oz axis 
and give the order of magnitude ΔEm of the first allowed energy 
subband taking into account the limits of the Brillouin zone of 
the superlattice. Note that L1 and L2 >> a because a(GaAs) =  
5.65 Å.

Solution:

 (1) See Chapter IV, Exs. 1 to 4 and especially Ex. 7 (object 4):
  f = Asinkzz.exp i(kxx + kyy); kx = nx2p/L; ky = ny2p/L.
  nx.ny integers > 0 or < 0 or = 0. 
  kz = nzp/d where nz > 1 

  E
k

m m L
n n

n

dx x x y
z= = + +

È

Î
Í
Í

˘

˚
˙
˙

 

2 2 2 2

2
2 2

2

22 2
4p ( )

  E
m dx1

2 2

22
=  p  with nx = ny = 0 and nz = 1.

 (2) E1 = (see the solution of Question (1)); E2 = 4E1: E3= 9E1 
(which corresponds respectively to nz = 1.2 and 3 with nx, ny = 
0). E E E1 2 356 0 226 0 51= = =meV eV eV; . ; . .

 (3) See Fig. 55.
  The first occupied state is nz = 1; nx = ny = 0. Starting from 

this state, the filling occurs along kx and ky (nx and ny 
increasing in absolute value). nz remains equal to 1 until 

E
m

k k Ex x y1

2
2 2

22
+ + = ( )  or n2

x(1) + n2
y(1) = (3/4)L2/d2.

E

E2

E1
kz

3 2 1nz 2p
L1

2p
L

k//p/d

Figure 55
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  After this, the occupied states occur simultaneously for 
  n n n n nz x y x y= ≥1 1 1; , ( ) , ( )  and nz = 2; n nx y, , , ,= ± ± ◊◊◊0 1 2  

  The density of states g(E) will be 2D and therefore constant 
[ g E L m( ) /= 2 2p , see Chapter IV, Ex. 14] between E1 and E2, E2 
and E3, etc. 

  It will change suddenly when going from E2 to E3, as seen in 
Fig. 56. 

E2E1

g E L m( ) /2 2
p

1
2
0

Figure 56

 (4 & 5) The height of the potential barrier in the conduction bands 
is ec1 – ec2 , or (AlAs/GaAs) = 0.57 eV. This value makes 
the infinite height approximation acceptable for level E1 
but not for level E3. For holes, the potential barrier will be 
Δ(VB) = ec2 + Eg2 – ec1 – Eg1 (or 0.11 eV in the case considered 
here). Measured starting from the maximum of the valence 
band, the energy E1(t) of holes will be 

  E1 (t) = 2p2/2mx
t d2 ª 5.6 meV◊

  hv = E1 + Eg + E1 (t) ª 1.5 eV.
  In the case of a GaSb/InAs/GaSb structure, the same analysis 

leads to e ec c1 2 0 84- = . eV .
   Contrarily, the maximum of the valence band of SC2 is now 

higher than the bottom of the conduction band SC1. The 
holes will be localized in SC2 (because Δ (VB) = –0.45 eV), 
while the electrons remain localized in the quantum wells 
of SC1. 

  The results of this analysis are shown in Fig. 57. 
 (6) The dispersion relation will be of the form E E k mx= +1

2 2 2 / .  
The imposed discontinuities of the lattice (at k = π/a) will 
be superposed with the discontinuities (which are much 
compressed) imposed by the periodicity of the superlattice 
(in k = nπ/d). Neglecting the amplitude of the latter 
discontinuities, we find DE m dx

m = ( / )( / )

2 22 p  of order E1, 
see Fig. 58. 



601Problems

EG2

0(vide)

CB

VB

type IEG1
E t1( )

hv

E2

E3

E1

ec2

holes

SC2 SC1 SC2

0(vide)
ec2

EG2
type II

CB

VB

+++++++–
+++–+–+–

Lx

+ + + + + + + + + + + +

Figure 57

SC1 SC2

DEm

E k( )z

1st BZ of SL

–3rd band

2nd band

DEm

p
a- - 4 -3 2- 0

kz

p
d

p
d

p
d

-p
d

p
d -2

p
d -3

p
d -4

p
d–

p
a

Figure 58



602 Band Theory

Comment: Semiconductor heterostructures; Nobel Prizes in 
physics in 1973 and 2000

Submitted by Leo (or Reona) Esaki, the original version of a paper on 
semiconductor superlattices was rejected for publication by Physical 
Review on the referee’s assertion that it was “too speculative” and 
involved “no new physics.” Nevertheless Esaki shared the Nobel 
Prize in physics in 1973 with Ivar Giaever and Brian David Josephson 
for his discovery of the phenomenon of electron tunneling. He is 
known for his invention of the Esaki diode, which exploited that 
phenomenon. Proposed by L. Esaki and Tsu (see IBM Journal of Res 
and Dev 14, 1970, 61) the present heterostructures can be classified 
as either type I: AlAs/GaAs (Question (4)) or type II, GaSb/ InAs 
(Question (5)). 
 In the first case, heterostructures of type I, the mobile electrons 
and holes are localized in the semiconductor that having a 
smaller bandgap (SC1). The probability of electron–hole radiative 
recombination of electron–hole will be large. Therefore, these 
heterostructures are used in optoelectronic devices (lasers) due 
to their efficient emission of photons. Electrons can be injected by 
doping the semiconductor SC2. They will occupy, nevertheless the 
states E1, E2, and E3 of SC1. The wavelength of emission is in part 
adjustable by an adequate choice of quantum well width (Question 
(4)). 
 In heterostructures of type II, mobile electrons (in SC1) and 
mobile holes (in SC2) are spatially delocalized. The recombination 
probability will be reduced to a minimum, especially if the 
semiconductor SC1 does not contain impurities. Taking into account 
the relative position of the bottom of the conduction band CB1, 
compared with the valence band VB2, the electrons issued from SC2 
will occupy the states E1, E2, and E3 of SC1. The structure presents a 
semi-metallic character related to the overlapping of the VB2–CB1 
(see Ex. 9). This property will be useful for realizing very fast devices 
due to the high mobility (large time of flight) of electrons in this type 
of heterostructure.
 In superlattices, the coupling can be adjusted by a careful choice 
of L2. A more detailed study (of Question (6)) can use the Krönig–
Penney model (Ex. 1) but the exercise would lose in clarity what it 
gains in rigor. For further information see Ref. [16] Ch. 10.2 and 10.3. 
From the point of view of elaboration of quantum wells a decisive 
step has been reached from the use of molecular beam epitaxy 
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(Dingle, Wiegmann, and Henry, Phys. Rev. Lett. 33, 1974, 827) and 
their characterization in situ is detailed in Chapter I, Pbs. 4 and 10.
 As in 3D homogenous semiconductors, the Coulomb association 
of an electron and a hole in quantum wells can lead to the formation 
of an exciton, see Ex. 20. If the energy of the exciton thus formed is 
relatively weak, the quantization of an electron and a hole will be 
independent and the electron–hole coupling will lead to a 2D gas of 
excitons that can move freely parallel to the plane of the layer.
 In CdS, CdSe, and CdTe quantum wells, another possibility was 
demonstrated by luminescence of semiconductors where strongly 
bound excitons form a hydrogenic exciton whose center of mass 
motion is quantized when it is perpendicular to the plane of the 
layer. These quantized states are easy to calculate because they 
only concern particles with mass me

x + mh
x enclosed in a well with 

width corresponding to the thickness of the layer and the height 
determined by the value of the bandgap. We also know how to 
fabricate heterostructures whose properties are novel such as 
CdZnTe/CdTe where the opposing constraints in the wells of CdTe 
and the barriers of CdZnTe effectively spatially delocalize light 
holes from heavy holes. Thus, we obtain heterostructures of type I 
for heavy holes and heterostructures of type II for light holes. As a 
result, heavy excitons of type I and light excitons of type II can exist 
in such structures. 
 We note that understanding these phenomena require only the 
knowledge acquired in Chapter I, Pbs. 4 and 10 (elaboration and 
characterization of superlattices) and Ex. 21 (heavy and light holes), 
Ex. 20 (excitons), and thus the quantization of electronic states in 
potential wells such as seen in the present exercise. 
 The Nobel Prize in physics in 2000 was awarded “for basic work 
on information and communication technology” with one half jointly 
to J. Zhores, I. Alferov, and H. Kroemer “for developing semiconductor 
heterostructures used in high-speed- and opto-electronics” and 
the other half to Jack S. Kilby “for his part in the invention of the 
integrated circuit

Problem	9b:	Electronic	states	in	2D	quantum	wells	(variation	of	
Problem	9a)

We consider an electron gas (with effective mass mx) that can 
propagate freely along the Oz axis but is limited in the interval 
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0 ≤ x ≤ d and 0 ≤ y ≤ d by the existence in the xOy plane of the 
boundaries of potential barriers assumed to be infinite. In reality, 
we are studying the electronic states (of conduction electrons) for 
a semiconductor SC1 forming a parallelepiped rod of length L with 
a square cross-section (d × d) surrounded by a semiconductor SC2 
in such a way that the electrons of SC1 are localized into wells (the 
bottom of the conduction band SC2 is such that BC2 ≥ BC1).
 (1) Applying periodic boundary conditions with period L along 

z and fixed boundary conditions along x and y, find the wave 
function for these electrons and characterize the quantization 
of the wave vector k by the quantum numbers nx,ny, and nz. 
What are the conditions imposed on nx and ny? 

  Deduce the expressions for quantized energies and specify 
the minimal value E1. 

 (2) Knowing that L >> d, find the symbolic expression for the first 
three distinct energy levels for variable nz first (with nx and ny 
fixed and = 1), and next for nz (nx and ny varying). 

  Numerical application: d = 100 Å; L = 10 mm; mx = 0.066 m 
(GaAs). Deduce the characteristics of the dispersion curve 
along the directions k|| parallel to the xOy plane and next along 
the direction kz perpendicular to the xOy plane. 

 (3) Describe the progressive filling of the energy levels and sketch 
the density of states. ( / . )

2 22 3 8m ª eVÅ

Solution:

 (1) See Chapter IV, Exs. 1 to 4 and especially Ex. 7 as well as the 
preceding problem. 

  

y

p p

=

= =

A k x k y i k z

k n d k n d n n
x y z

x x y y x y

sin sin exp ( )

/ ; / ,, where are inteegers ≥ 1

  kz = nz2p/L, where nz is an integer > or <0 or zero

  E
k

m m

n n
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+Ê

Ë
Á
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È
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Í
Í
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4p

  E
m dx1

2 2

2=  p , where nx = ny = 1, nz = 0.
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 (2) Starting from the level E1(110), the energy variation along z 
will be very small: nz = ± 1; dE1 = 22p2/mxL2 

     nz = ± 2; dE2 = 82p2/mxL2, etc.
  On the contrary, starting from the same level E1(110), 

the energy level E2(210) or E2(120) will be such that 

E
md

E
md2

2 2

2 3

2 2

2
5
2

220 4= = p pand ( ) . Taking into account that  

L >> d, the parabolic dispersion curve along kz will be qua-
si-continuous and increase very slightly when nz increases 
even though it will be formed from discrete points along k||. 
Permuting kz and k||, its characteristics will be analogous 
to that found in Fig. 55 from the preceding problem with 

E E2 1
5
2

=  and not E2 = 4E1 as in Fig. 55. 

  E1 ª 113 meV; E2 = 284 meV; E3 = 454 meV 
  dE1 ª 0.23 meV; dE2 = 0.9 meV; dE3 ª 2 meV
 The filling of the states will first start in the kz direction. Aside 
from the (110) level, E0 occupied by 2e– (≠ Ø), all the other levels will 
be occupied by 4e (1, 1, ±nz) and the energetic difference between 
these levels increases (see Fig. 59). 
 The result is that the total number of electrons between E1 and 
E (where E – E1 >> δE) will increase as E  and the density of states, 
which is the derivative of this quantity, will evolve as 1/ .E
 This result is expected because this is just the evolution of the 
density of free electron states in 1D when considering the intervals 
ΔE such that ΔE >> δE (see Chapter IV, Ex. 13, Fig. 12). 
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Figure 59
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 Having attained the energy E2 along kz, the filling of states now 
proceeds starting from the energy levels E(210) and E(120) by an 
analogous operation to that described above for the initial (110) 
state. The characteristics of the density of states curve, shown in Fig. 
60, clearly illustrate the essential phenomenon: the discontinuities 
in E1, E2, and E3 are related to the quantization of energy levels in the 
kx and ky plane. 

g E( )

0 E1 E2 E3 E

Figure 60

 Taking into account the characteristics of this curve, one must 
expect more marked quantum effects than in the case of a well limited 
in a single direction (compare Fig. 56 in the preceding problem with 
Fig. 60).
 Due to recent progress in nanolithography of semiconductors, 
we now know how to realize superlattices in 2D made from a matrix 
formed from regularly distributed quantum wells in the xOy plane 
and coupled between them (see for example, Marzin et al. Phys. Rev. 
Lett. 73, 1994, 716).

Problem	10:	Band	structure	and	optical	properties	of	graphite	
in the ultraviolet

The calculated band structure diagram for graphite (using the tight-
binding approximation for a 2D lattice, see Remark) is shown in 
Fig. 61. We propose to analyze this structure and deduce the optical 
properties of the crystal. 
 In the direct space, the 2D structure of graphite is shown in  
Fig. 14 of Chapter I, Ex. 17 (see also Fig. 48 of Chapter I, Pb. 12) in 
which each carbon atom (Z = 6) has four valence electrons where 
three of these electrons, s, make covalent bonds with three nearest 
neighbors and the forth, π, is more or less free. 
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Figure 61 In the middle, calculated electron band structure of graphite in 
the 2D and tight-binding approximations. Above, experimental 
density of states. Below, first Brillouin zone. 

 (1) It is well known that graphite conducts electricity. Where is 
the conduction band? Does its dispersion relation follow a 
parabolic law? Where is the Fermi level found? Does the Fermi 
energy EF obtained correspond to the value deduced from free 
electron theory (EF ≈ 9 eV, see Chapter IV, Ex. 14b)?



608 Band Theory

 (2) When electromagnetic waves in the UV range irradiated a 
graphite crystal with its electric field contained in the plane 
of the layer ( )E c

 

^ , the photon absorption results from the 
allowed electronic transitions between states of the same 
parity, that is to say between occupied levels and empty levels 
represented either by dashed lines (p states) or full lines (s 
states). Eventually with the help of the experimental evolution 
of the imaginary part e2(hv) of e w( ), Fig. 62, can you localize 
the regions where vertical electronic transitions are located in 
Fig. 61? 

  Compare the evolution of e1(hν) and e2(hν) to that deduced 
from the Lorentz model of bound electrons by considering 
that the average energy of transitions experienced by one type 
of electrons is wIT , while the average energy of transitions 
experienced by the other type of electrons is w2T . 

  The numerical values of these energies will be identified at 
the max of e2(ω), the electronic densities that come into play 

are such that w1 12 5p eV= . , where w
e1

2
1

2

0
p = n

e
m

 and n1 = 1 π 

electron (per C atom ) and  w w2p p= 3 1 , corresponding to 
three s electrons per C atom while the damping terms, chosen 
arbitrarily are

  g t
w

g t
w

1 1
1 1

2 2
1 2

5 5
= = = =- -p pand .

  Find the energetic position of the maxima of the energy loss 
function.

12

4

0

–4

Graphite E c^

10 20 30 hv
eV

e2

e1 5e2

5e1

8

Figure 62
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 (3) The electric field of the electromagnetic wave is now polarized 
parallel to the c-axis. Describe qualitatively the expected 
consequences on the evolution of e w( ) from the selection 
rules for vertical transitions (which take place between bands 
of opposite parity p sÆ x  and s pÆ x  when E||c. 

  What comments can be made concerning the anisotropy of 
the optical constants and the energy loss function of graphite 
in the far UV?

  Remark: The band structure presented (Fig. 61) corresponds 
to that calculated by Bassani and Parrivicini (Nuovo Cimento 
50B, 1967, 95) in which the beginning of the branch passing 
by Γ1u+ has been added. The electron energies of the 2s and 
2p valence of the carbon atom are indicated by E(s) and E(p) 
with the origin of energies corresponding to the vacuum level 
(habitual choice for calculations using the LCAO method). We 
will also note the equality between the length of the ΓP and 
ΓQ segments in the representation, which in reality is unequal 
(see the Brillouin zone to the right). 

Solution:

 (1) Graphite consists of two carbon atoms C1 and C2 at 
nonequivalent positions (see Chapter I, Ex. 17) where each 
atom has four valence electrons. 

  We expect that four valence bands occupied by eight atoms 
per basis and that the atomic wave functions are of type 2s, 
2px, 2py, and 2pz. For atoms distributed along a hexagonal 
lattice, three of the four valence electrons for each C form 
covalent bonds with their neighbor atoms. These s bonds are 
described by hybrid orbitals and the fourth electron per atom 
is described by an orbital of type 2pz (it is a π electron). The 
Hamiltonian of graphite will be invariant under reflection, the 
s wave functions are even and the π wave functions are odd in 
this reflection.

  We therefore find eight bands of which the first four are 
occupied following the increasing energy sequence: 3s Æ π 
Æ πx Æ 3sx where the symbol x represents the anti-bonding 
orbitals (CB) while the absence of the symbol represents 
bonding orbitals. Thus, the first band s, in full lines, which 
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passes through the point Γ1G
+ results from combinations of 

type px(C1) – px(C2) and py(C1) – py(C2). In addition the band π 
pass through Γ2u

– and corresponds to combinations of the type 
pz(C1)+pz(C2). Finally the anti-bonding orbitals (x) result from 
a sign change in the combinations and occur in the inverse 
order.

  The crystal cohesion is assured by the fact that the average 
energy of the four valence bands is smaller than the electronic 
energy of the initial C–C molecule, 4E(s) + 4E(p), because 
the density of states is maximal at the bottom of each band 
(regions where the bands are quite horizontal: a ∂E/∂k small 
leads to a g(E) max). 

  We note in particular that the first band s(Γ1g
+) is nearly flat 

and very narrow (quasi-atomic state). The π electron bands 
in dotted lines have the nearly expected parabolic shape (see 
Chapter IV, Ex.14b) along ΓP direction (Γ–

2u-P–
3 followed by P–

3 
Γ–

2g , in the reduced zone scheme). As foreseen also, along the 
ΓQ direction deviations from parabolic behavior are observed 
in the vicinity of the Brillouin zone (near Q–

2g). The Fermi 
level is found at E(p) (i.e., P–

3) between four full bands and 
four empty bands. The width of the bandgap is zero and the 
electrical conductivity results in the continuity of the states at 
point P3

–. Measured from the bottom of the π band the Fermi 
energy is EF ~4.5 eV which is half the result expected from the 
theory of free electrons. 

 (2) The most probable vertical electronic transitions 

k k
af i- <<Ê

ËÁ
ˆ
¯̃

2p
 are found at the points where — - =k c v( )E E 0  

in reciprocal space and ,here, around regions that have the 
larger density of states in the valence and conduction bands 
(see Pb. 6 for additional details). The most probable transitions 
of type π Æ πx take place essentially between Q–

2u
 and Q–

2g (and 
to a lesser degree between Γ–

2u
 and Γ–

2g), while transitions of 
type s Æ sx take place essentially between Q+

2u
 and Q+

2g , P1
+ 

and P2
+, and to a lesser degree between Γ+

3g
 and Γ+

3u.
  The average energy of the first transitions (e Æ p*) is of the 

order of 4.5 eV while the average of the seconds is of the order 
of 14 eV, which confirms the analysis of the evolution of e2, 
which exhibits maxima at these energies. 
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  A Lorentz model, applied to two types of bound electrons 
(the π and the s), results in transitions of type π Æ π* at 
hw1T ª 4.5 eV and the others of type s Æ s* at hw2T ª 14 eV 
leads to

  e w e e
w

w w wg

w

w w wgr i
i i

( ) = + = +
- -

+
- -1 2

1
2

1
2 2

1

2
2

2
2
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T

p

2
2

T

.

  This is just a simple extension of the analytical results obtained 
in Ex. 25. Separating the real and imaginary parts we obtain 
the curves with dashed lines in Fig. 63. 
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  Taking into account the simplicity of this model and the 
very arbitrary choice of damping coefficients γ1 and γ2, the 
agreement with experiment is satisfactory. 

  The energy loss function e w
e w e w

2

1
2

2
2

( )
[ ( ) ( )]+

is maximal when 

e1(ω) is zero which corresponds to w1 7′ ª eV and w ′′ ª 27 eV 
in Fig. 62. We can also analytically find these maxima by 
neglecting the damping terms γ1 and γ2 and then determining 
the zeros of e1 in e wr ( ) above, which leads to a simple solution 
of the double-squared equation (see J. Cazaux, Optics Com. 3, 
1971, 221 and 225).

  The comparison between this function deduced from 
experimental values of e w( ) and that deduced from the 
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model (J. Cazaux Solid State Comm. 8, 1970, 545) is very 
good concerning the position of the maxima, but it is much 
worse for the amplitudes. The latter result is explained by 
the amplification of the differences due to the inversion of 
e-1 in the spectral regions where e1 and e2 are small and 
consequently e-1 is large.

 (3) When the electric field is such that E||c
 

 selection rules 

impose transitions of opposite parity of type

  p sÆ Æ+ -x Q Q( )1 2u g  and s pÆ Æ+ -( )Q Q1 2g u .
  The mean energy of the first is of the order of 16 eV and that 

of the second is of order 11 eV. One may expect essentially 
a completely different evolution of e w( ) compared to that 
obtained previously. Figure 64 shows the experimental 
evolution of e1(ω) and e2(ω)—in lines and with points—
compared with the results from the Lorentz model, analogous 
to that developed for E c^  but taking into account the new 
transitions and the effective number of electrons being 
involved (For additional details see J. Cazaux, Optics Comm. 
2, 1970, 173 and 3, 1971, 221 and 225 ).
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Comments

The anisotropy of graphite and of a number of lamellar crystals such 
as boron nitride in the UV is a consequence of the electronic selection 
rules (VBÆCB) which leads to a different evolution of e2(ω) for 
E c
 

^  and E c
 

|| . Via the Kramers–Krönig relations, it also results a 
change for e1(ω) with different polarizations. Taking into account the 
relations between the complex optical index N( )w  and the complex 
dielectric function e wr( ):  N( ) ( )w e w= , the initial anisotropy of er

leads to the anisotropy of N( )w , and thus of the reflecting power and 
of its energy loss function. 
 Starting from numerical values deduced from the band structure 
curves in Fig. 61, it is possible to directly calculate e2(ω) from the 
evaluation of the joint-density of states (see comment of Pb. 6) and 
the result can then be compared withthose of optical measurements. 
For the limits of the Lorentz model and plasmons, see comment of 
Ex. 25.

Problem 11: p–p* band structure of graphene

Graphene is a single layer of carbon atoms arranged in a honeycomb 
structure as shown in Fig. 65. The distance between two neighboring 
atoms is d = 1.42 Å. 

Figure 65
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The band structure of graphene has been calculated using the tight-
binding approximation by taking into account the 2pz orbital only 
for the two neighboring atoms of the primitive cells. Ignoring the 
interaction between second nearest neighboring atoms the energy 
dispersion of p(–) and p*(+) bands is given by 

 E
k a k a k ay y x= ± + + ◊

Ê

ËÁ
ˆ

¯̃
g 0

2 21 4
2

4
2

3
2

cos cos cos  (1)

 G0 is the nearest-neighbor hopping energy γ0 ≈ 2.8 eV; “a” is the 
lattice constant; k is the wave vector of orthogonal components kx 
and ky.
 (1) Represent the A and B vectors of the reciprocal lattice and the 

first Brillouin zone (BZ) with its central point, G at (0,0), and 
special points M, M1, and K at the BZ surface where GM is in 
the [11] direction like kx while GM1 is in the [01] direction, K 
being the intersection point with ky.

  Evaluate the electron energies at these special points, E(G), 
E(M1), and E(K). Draw the band structure scheme, E(ka), 
along GM1, GK (simplify eventually the energy expression in 
this direction) and KM1; compare the calculated structure to 
that shown in Pb. 10, Fig. 61. Indicate the position of the Fermi 
level EF. 

 (2) The next step is focused on some properties of graphene as 
deduced from its band structure at around point K. 

  Express the group velocity, vg = (1/ )∂E/∂k, and the effective 
mass of the particles at the top and bottom of the p and p* band 
respectively. Give the order of magnitude of their numerical 
values and remarks. With ky = GK ± Dky and kx = ±Dkx with 
Dky << GK, show that the constant energy surfaces are circles 
at around M. Express the density of states, g(E)dE, around K. 
Compare the corresponding expressions for a free electron 
gas in 2D. (, e)

Solution:

 (1) In the primitive unit cell, there are two carbon atoms in 
nonequivalent position a = d√3 = 2.46 Å; A acos30° = 2p; 
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|A|=|B|= (2p/a cos30°) = 4p/3d (see Chapter I, Ex. 17, and 
Chapter IV, Ex. 14b).

b
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ky
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B
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A
B

A
B

A
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Figure 66

  GM = |A|/2 = 2p/a√3; GK = GM/cos30° = 4p/3a; KM1 = GM1 

sin30° = p/a√3. 
  E(G) = ±3g0 = 8.4 eV, E(M) = ±g0 = ±2.8 eV; E(K) = 0 eV.
  Note that Eq. 1 takes a simplified form along the ky axis:
  E = ±g0[1+2 cos(kya/2)] (2)
  There are two carbon atoms and then two p electrons per 

primitive cell. Therefore, for a perfect undoped graphene 
sheet the p* band is empty and the Fermi level is situated 
between the two symmetrical bands at the points where the 
π band touches the π* band: EF is at E = 0 in the suggested 
energy scale.Then a zero excitation energy is needed to excite 
an electron from just below the Fermi energy to just above 
at the K points in the corners of the Brillouin zone. The 
calculated band structure scheme is similar to that of graphite 
derived also from tight-binding calculations but including the 
dispersion of the s electrons (Fig. 61, Pb. 10). In particular 
there is the zero gap between p and p* bands at point labeled 
K here and labeled P in Fig. 61). This zero gap energy at this 
point explains the good electric conductivity of graphite. The 
key difference is that the energy dispersion is electron–hole 
symmetric here.
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 (2) From Equation 2, one obtains vg = 1/ (∂E/∂ky) = ±(1/) g0a 
sin (kya/2) = ±g0a√3/2.

  The effective mass obeys to 1/m* = (1/2)(∂2E/∂k2) = (–/+)
g0a2cos(kya/2)/22 = (–/+)g0a2/42.

  The numerical values are vg = 5.7 ¥ 105 m/s and 1/m* = (–/+) 
6.15 ¥ 1029 kg–1. The particles are holes on the top of the p 
band and are electrons on the bottom of the p* band; their 
mass is ~0. 

  At around point K and along the Kky direction the change of 
E, DE, with Dky may be dired from ∂E/∂ky of Equation 2, one 
obtains DE = ±(√3/2)g0 (Dkya) (3) 

  A similar expression, E = ±(√3/2)g0 (Dkxa), is obtained along 
the GM1 direction from developments of the form cos(a + e) = 
cosa cose– sina sine ~ cosa – e sina where e << a. 

  The surfaces of constant energies are concentric circles in 
the kx, ky plane or conical surfaces in a 3D representation: 
E; kx; and ky (see Fig. 37). At points K the energy dispersion 
is E = ±vg|k| and it is distinct from the energy dispersion of 
free electrons E = 2k2/2m (Chapter IV, Ex. 14b). The density 
of states is g(k)dk =2pkdk/(2p)2/LxLy= g(E)dE/2 with 1/2 for 
the spin degenerency. Then for a unit surface:

  g(E) = p–1kdk/dE = 4E/3pa2g0
2

.
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  In the k-space, the density of states is the same for all the 2D 
objects but g(E) differs in function of each specific dispersion 
relation (Chapter IV, Ex. 14). g(E) is a constant for a free 
electron gas but it increases linearly with E in the present 
example.

Comments: Graphene; Nobel Prize in physics in 2010

The term graphene first appeared in 1987 to describe single (2D) 
sheets of graphite solids conceptually different from the surface layer 
on the top 3D graphite. Sometimes the term is used in descriptions of 
carbon nanotubes. The Nobel Prize in physics in 2010 was awarded 
to A. Geim and K. Novoselov at the University of Manchester “for 
groundbreaking experiments regarding the 2D material graphene.”
 The present exercise is just a simple introduction to the theoretical 
aspect of this fascinating material in showing that graphene differs 
from most conventional 3D materials. Intrinsic graphene is a semi-
metal or zero-gap semiconductor. Its band structure is characterized 
by an E–k relation linear for low energies near the six corners of the 2D 
hexagonal Brillouin zone, leading to zero effective mass for electrons 
and holes. Due to this linear (or “conical”) dispersion relation at low 
energies, electrons and holes near these six points, two of which are 
inequivalent, behave like relativistic particles described by the Dirac 
equation for spin 1/2 particles. Hence, the electrons and holes are 
called Dirac fermions, and the six corners of the Brillouin zone are 
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called the Dirac points. Moreover, in the present case this pseudo-
relativistic description restricted to vanishing rest mass leads to 
interesting additional features such as the unimpeded penetration 
of relativistic particles through high and wide potential barriers: one 
of the most exotic and counterintuitive phenomena. 
 Experimental results from transport measurements show that 
electrons and holes of graphene have high mobilities >15,000 
cm2V−1s−1 presently limited by the scattering on defects while the 
intrinsic limit, scattering by acoustic phonons, would be to 200,000 
cm2V−1s−1 at room temperature. At a carrier density of 1012 cm−2

, the 
corresponding resistivity of the graphene sheet would be 10−6 Ω·cm 
that is less than the resistivity of silver, the lowest resistivity substance 
known at room temperature. Despite the zero carrier density near 
the Dirac points, graphene exhibits a minimum conductivity of the 
order of 4e2/h. In the presence of a magnetic field, graphene displays 
an interesting quantum Hall effect (see Chapter IV, Ex. 23), which can 
even be measured at room temperature. This anomalous behavior is 
a direct result of the emergent massless Dirac electrons in graphene 
in a magnetic field leading to Landau level with energy precisely at 
the Dirac points.
 Epitaxial graphene on SiC can be patterned using standard 
microelectronics methods and very high-frequency transistors were 
produced on monolayer graphene on SiC. Bandgap of the epitaxial 
graphene can be tuned from 0 to 0.25 eV by applying voltage to a 
dual-gate bilayer graphene field-effect transistor (FET) at room 
temperature or by irradiating with laser beams. 
 As an alternative to microelectronics where the information is 
carried by the electric charge graphene is thought to be an ideal 
material for spintronics (information carried by the spin) due to 
small spin–orbit interaction and near absence of nuclear magnetic 
moments in carbon. Electrical spin-current injection and detection 
in graphene was recently demonstrated up to room temperature 
with a spin coherence length above 1 mm at room temperature.
 From this brief overview it appears that the potential 
applications of graphene are very large. These are concerned with 
spintronics, microelectronics, and optoelectronics with graphene 
ballistic transistors; graphene optical modulators; and its use as 
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transparent conducting electrodes and in solar cells. They are also 
concernedwith nonelectronic applications such as single-molecule 
gas detection, room temperature distillation of ethanol for fuel and 
human consumption and graphene biodevices including the most 
ambitious biological application of graphene for rapid, inexpensive 
electronic DNA sequencing. The interested readers are referred 
to excellent review articles from Wu, Yu, and Shen with its 405 
references in bibliography (J. Appl. Phys. 108, 2010, 071301) or from 
Abergel et al. (Advances in Physics 59, 2010, 261) from which the 
present comments are inspired. 

Problem	12:	Single-wall	carbon	nanotubes	(SWCNTs)	

Conceptually, single-wall carbon nanotubes (SWCNTs) can be 
considered to be formed by the rolling of a graphene layer (single 
layer of graphite) into a seamless cylinder. Hence, nanotubes are 1D 
objects with a well-defined direction along the nanotube axis, T. The 
way the graphene ribbon is wrapped is represented by a chiral vector, 
c


 = n a


 + m b


 where the integers n and m denote the number of unit 
vectors along the two directions in the in-plane directions (n, m) of 
graphene relative to its unit vectors, a and b, while |c| is the length 
of the circumference of the tube perpendicular to T (corresponding 
to the minimal lattice vector denoted with m¢ and n¢). If m = 0, the 
nanotubes are called zigzag nanotubes, and if n = m, the nanotubes 
are called armchair nanotubes. Otherwise, they are called chiral, E1. 
Because of the curvature, c corresponds to a few hexagonal cells.
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x

Figure 69 
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 (1) Represent the chiral vector (8, 4) and the corresponding 
nanotube axis T in the graphene plane. Express the diameter 
dt of a nanotube (m, n) as a function of the lattice parameter 
a. Numerical application for an ideal (8, 4) nanotube with d 
(nearest neighbor C–C distance) =1.42 Å. 

 (2) In an SWNT, the tube is infinitely long, kz wave vector is 
continuous in the interval –p/a, p/a. Along the circumference, 
the wave vector, k| of the electrons moving around the 
circumference of the tube is quantized reducing the available 
states to slices through the 2D band structure of p and p* 
electron states of graphene. Then, with –for p and + for 
p* states, this band structure is composed of multiple 1D 
subbands obeying to the dispersion relation of the form:

   E(k) = ±[( vFk)2 + (Ei
g/2)2]1/2 (1)

  For nanotubes of type n–m=3l, where l is zero or any positive 
integer with the fundamental gap, E1 is very small ~0.0 eV. For 
other nanotubes, the fundamental gap obeys:

   E1
g = 2g0d/dt  (2)

  with g0 (nearest-neighbor hopping energy) ≈2.8 eV. Evaluate 
E1 for a (8,4) SWNT and suggest a value for E2. From the 
dispersion relation (1), express the density of states, g(E), and 
represent the corresponding curves with vF ~ 6 × 105 m/s. 
Also represent the dispersion curves, E(kz) in the interval  
–0.2 Å–1 ≤ kz ≤ 0.2 Å–1 and compare it to the dispersion curve 
of a (5,5) SWNT. Provide remarks concerning the electrical 
conductivity of the two. (, e)

Solution:

 (1) From triangles such as OKL, one obtains OL2 = OK2+KL2 – 
2OK◊KLcos(a) or c2 = (pdt)2 = (na)2+(ma)2– (ma◊na)cos(120°). 
Then dt = (a/p) (n2+nm+m2)1/2. With a = d√3 = 2.46 Å,  
dt(8,4) = 8.25 Å: a value in agreement to the fact that most of 
SWNTs have a diameter of close to 1 nm, with a tube length L 
that can be many millions of times longer.

 (2) E1
g ~ 0.96eV and E2

g ~ 1.92eV. Along a circumference, the 
electron waves are stationary with a wavelength l obeying 
to nl = pdt. The bandgap energy for n = 2, E2

g is 2E1
g , also 

obtained from Eq. 2 with dt/2 instead of dt.
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 Along the tube axis, one deals with a 1D material: g(E)dE = 2 and 
g(k)dk = 2L|dk|/p–factor 2 for the spin degeneracy (see Chapter IV, 
Ex. 1). From Eq. 1, dk = (1/vF)EdE[E2 – (E1

g/2)2]–1/2. Then per unit 
length:

 g(E) = (2/p) (|dk|/dE) = (2/pvF)E[E2 – (E1
g/2)2]–1/2.

 Equation 1 is only valid at around point K of the Brillouin 
zone of graphene (see Pb. 11). This explains the restricted  
interval –0.2 Å–1 ≤ kz ≤ 0.2 Å–1 within the validity of the above 
expression for g(E). With two p electrons per unit cell, the 
p band is filled and the p* band is empty at 0 K. Then the 
chiral SWNT (8,4) is a semiconductor and the SWNT (5,5), 
an armchair nanotube with n = m, is a conductor: Eg = 0. 
The corresponding dispersion curves are shown in Fig. 40, at left. 
The energy density of states of a conductor nanotube is a constant: 
g(E)= 4/nF such as for SWNT (5,5), where Eg = 0 but not for bandgap 
nanotubes for which the corresponding density of states are shown 
in Fig. 40, at right. g(k)dk is the same for all the 1D objects, but g(E) 
differs in function of each specific dispersion relation, E(k). For a 1D 
free electron gas, g(E) is g(E)= (2L/p)(2m/E)1/2.
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Figure 71 (Left) Energy dispersion curves of a (8,4) SWNT—full lines: p 
states; dashed lines p* states compared to the energy dispersion 
curves of a (5,5) SWNT—dotted lines. (Right) Density of states 
of a (8,4) SWNT.

Comments

 (a) On SWNT
  Carbon nanotubes have been discovered in 1991 by S. Iijima 

(Nature 354, 1991, 56) and this discovery has been followed 
by an increased number of graphene-related papers (>10,000 
in 20011). This exercise is inspired from a review article from 
M. J. Biercuk et al. that appeared in Carbon Nanotubes 111, 
2008, 455. Like for the previous exercise on graphene, the 
present exercise is a simple introduction to these fascinating 
objects in illustrating, here, the difference of their electrical 
conductivity as a function of the way a graphene ribbon is 
wrapped. 

 (b) On fullerenes: Nobel Prize in chemistry in 1996
  Fullerenes can be considered as large molecules of carbon in 

the form of a soccer ball. In this category, the most well-known 
molecule, C60, is composed of 60 atoms of carbon regularly 
distributed on the spherical surface, which can be envisioned 
as a nanoscopic roll of a marble, as shown in Fig. 72. Each atom 
of carbon has only three nearest neighbors, the fourth valence 
electron of each carbon can therefore be considered to be free 
and the 60 free electrons are thus constrained to move on the 
spherical surface less than 10 Å in diameter. 
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Figure 72 (Left) Representation of the molecular structure of C60. (Right) 
free electron spherical shell model. 

 Because of the quasi-spherical shape molecule, it is very 
tempting to apply a free electron approach in order to obtain a 
simple description of the energy level diagram. Within this model, 
the p electrons of the C60 molecule are treated as if they were in a 
spherically symmetric potential V(r). The solutions of the radial 
Schrödinger equation are the spherical harmonics leading to the 
radial quantum number n when matching the radial function to the 
well boundaries. In the limit of an infinitesimally narrow potential 
well, and an infinitely high potential barrier, a simple analytical 
expression can be derived for the energies of the eigenstates (see 
G. Gensterblum, J. Elec. Spectrosc. Rel. Phen. 81, 1996, 89–223). 
Their optical properties in the UV range may be derived from an 
expression established for graphite when the electric field is parallel 
to the c-axis (see Pb. 10). Postulating that the damping terms are 
negligible in the dielectric function, this expression may be written 
in the form

e w
w

w w

w

w wp s
( ) = +

-
+

-
1 1

4
3
4

2

2 2

2

2 2
p p

where wp is the free plasma angular frequency of n (1p + 3s) electrons 
per carbon atom in a fcc lattice of C60,p and ws corresponding to the 
collective p – p * and s – s *electronic transitions 
 In fact the electronic structure of such objects has not yet been 
fully elucidated. We know that they can be doped by alkaline metals 
and that atoms can be easily placed in the spherical cavity. The 
electrons from these dopants are entirely transferred toward the 
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unoccupied states of the macromolecule but understanding the 
physical properties of these surprising objects is not complete. In 
particular why do K3C60 and Rb3C60 become superconducting below 
19 and 20K respectively, while Na3C60 and K4C60 are insulators? In 
the field of nanotechnology, heat resistance, and superconductivity 
are some of the more heavily studied properties.There are other 
fullerenes such as C70, but fullerenes with 72, 76, 84, and even up 
to 100 carbon atoms are commonly obtained. Nano “onions” are 
spherical particles based on multiple carbon layers surrounding a 
buckyball core. Silicon buckyballs have been created around metal 
ions and have been proposed for lubricants.
 For the past decade, the chemical and physical properties of 
fullerenes have been a hot topic, fullerenes were under study for 
potential medicinal use: binding specific antibiotics to the structure 
to target resistant bacteria and even target certain cancer cells such 
as melanoma.
 H. W. Kroto, R. F. Curl, and R. E. Smalley were awarded the Nobel 
Prize in Chemistry 1996 for the discovery of this new form of carbon, 
buckminsterfullerene (“buckyballs”). [See also their letter to Nature 
318, 1985, 162]. The name was homage to Buckminster Fuller, 
whose geodesic domes it resembles. 

Questions

 (Q.1) The law of mass action leads to ne∙nh = const. for a given temperature. 
What physical arguments can you make to explain that an increase 
in n-doping of a semiconductor leads to a decrease in the density of 
holes? 

 (Q.2) The static dielectric constant of water is Œr = 80, its optical index in 
the visible is n ≈ 4/3 or n ª er . Where is the error?

 (Q.3) What is the microscopic cause of the dispersion of white light by a 
glass prism?

 (Q.4) Why do bismuth and antimony have an electrical resistivity greater 
than that of copper even though their atoms have each five valence 
electrons and those of copper have just one?

 (Q.5) How does the semiconductor bandgap vary as a function of 
temperature? Why?
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 (Q.6) What is the general effect of adding impurities on the resistivity of a 
semiconductor? Are there exceptions?

 (Q.7) With the help of the periodic table, order the following materials by 
increasing width of the bandgap: AlP, BeO, GaAs, LiF, MgO, and Ge. 

 (Q.8) Why silicon cannot intrinsic at ambient temperatures while 
germanium can be? 

 (Q.9) Why does the plasma frequency of semiconductor and insulators 
often correspond to the formula given by free electrons (w2

p = Ne2/
me0) even though the valence electrons are not free?

( Q.10) What characterizes the electronic specific heat of a material with a 
bandgap? 

 (Q.11) What is a heavy hole and a light hole?
 (Q.12) Why do substitution alloys of the CuZn type of crystal structure 

change when they are enriched with one of the elements to the 
detriment of the other? 

 (Q.13) Why is the ionization energy of impurities in semiconductors 
smaller than in free atoms? 

 (Q.14) Why are the majority of oxides, alkali halides, and also diamond 
transparent when they are pure? 

 (Q.15) Why is ruby red?
 (Q.16) What is the Gunn effect?
 (Q.17) What is an exciton?
 (Q.18) What is a superlattice of type I?
 (Q.19) Why is molybdenum harder than silver?
 (Q.20) Why is nickel ferromagnetic and not copper?
 (Q.21) In which direction does the Fermi level of a semiconductor vary 

when it is p-doped? It is then placed in contact with an n-type 
material. Can you find a simple analogy to explain the equilibration 
of the Fermi level upon contact?

 (Q.22) What are the analogies and differences between “plasmons” and 
“polaritons”? 

 (Q.23) Why can one approximately say for compounds of the type ANB8 – N: 
the larger is the bandgap energy, the smaller is the static dielectric 
constant? 

 (Q.24) In optoelectronics, what is the interest to elaborate materials with 
an adjustable bandgap? How a superlattices be used to provide an 
alternative elaboration to homogenous materials of type AxA¢1 – xB?
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 (Q.25) The condition for a photon with energy hν to be absorbed by a pure 
material with bandgap Eg is strictly when hν ≥ Eg. Is this condition 
correct?

 (Q.26) For semiconductors, give the order of magnitude of the limits for 
carrier density and resistivity. What is the order of magnitude for 
the resistivity of the best insulating solids? 

 (Q.27) What are the microscopic causes of the optical anisotropy of graphite 
in the UV? 

 (Q.28) Cite at least one method that allows the experimental determination 
of Eg in semiconductors and insulators. 

 (Q.29) Most of the transparent materials are also electrical insulators. Give 
a noticeable exception. 

 (Q.30) Compare normal magneto resistance in semiconductors to giant 
magnetoresistance (GMR) in alternating magnetic/nonmagnetic 
layers.

 (Q.31) What is graphene? What are their specific properties?
 (Q.32) What are the structural and electrical differences between a zigzag 

and an armchair nanotube?

Answers at the end of the book



Chapter I

 (Q.1) d ~ 3 – 4 Å, from which we obtain Nv ≈ 1/d3 ≈ several 1028 

atm−3; Ns = NV

2
3  ≈ d−2 ≈ 1019 at m−2

; NL = NV

1
3  = 1/d ≈ 3 – 4 × 

109 atm−1.
 (Q.2) (a) All of the atomic electrons (see Ex. 23).
 (b) the electric potential (see Pbs. 3 and 4).
 (c) the atomic nucleus and the magnetic moment (see Pbs. 

7 and 11).
 (Q.3) Taking the into account the strong interaction with crystal-

line potential, the slow electrons are only sensitive to the 
first atomic layers and the reciprocal lattice is formed of 
lines because the direct lattice is essentially 2D: the Ewald 
sphere is always intercepted by these lines (see Pb. 3). On 
the other hand, fast electron have a very short wavelength 
which results in a very large radius of the Ewald sphere 
(compared to 2p/a; see Ex. 21).

 (Q.4) Nothing, because the main interaction, photoelectric 
effectleads to the absorption of X-rays. The probability of 
the Bragg conditions to be satisfied is essentially zero.

 (Q.5) This is specular reflection (see Exs. 18 and 18b and also  
Pb. 4).

 (Q.6) No, it is the reverse via the expansion of the reciprocal 
lattice.

 (Q.7) See comment in Pb. 4.
 (Q.8) See comment in Pb. 3 and illustration.

Answers to Quest ions
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 (Q.9) 10−6 torr sec. See comment in Pb. 3.
 (Q.10) See comment in Pb. 4.
 (Q.11) See Pb. 5.
 (Q.12) See Pb. 10.
 (Q.13) See comment in Pb. 12.
 (Q.14) None. The plane (300) is a virtual plane parallel to (100) and 

such that d300 = d100/3. The first expression describes the 
reflection of order 1 on the (300) plane which is equivalent 
to describing the third reflections on the (100) plane. It is 
nevertheless preferable to use the notation of the type (300) 
when reasoning in reciprocal space because the points nh, 
nk, are nl are naturally found (e. g., 420, 330, 200, . . . ).

  One should not combine the two notations: 2d300 sinq = l 
represents the reflections of the ninth order on the (100) 
plane or that of the first order on the (900) plane.

 (Q.15a) The diagrams are very similar because they have in common 
the lack of reflections that are forbidden by the fcc lattice. In 
addition, the forbidden reflections by the basis correspond 
to 2n + 2 = 2, 6, 10 (see Pb. 1) for Ge and are very weak 
for GaAs because fGa − fAs ≈ 2 (see Pb. 9) while the allowed 
reflections give: fGa + fAs ≈ 2fGe. The situation is comparable 
to the quasi-extinction of certain reflections in the binary 
crystals of the KCl type where Z1 and Z2 are very nearly 
equal or quite identical if one takes into account the transfer 
of charge from K to Cl (see Pb. 2).

 (Q.15b) h = odd because f(K+) = f(Cl−) so that Z(K+) = Z(Cl−) = 18. See                
Pb. 7.

 (Q.16) See Course Summary:
 (a) l(Å) = 12.400/E (eV) or E ≈ 8050 eV.
 (b) l(Å) = 12.26/ V( )volts  or V ≈ 63 V.
 (c) l(Å) = 0.28/ E( )eV or E ≈ 33 × 10−3 V. This result 

can be obtained directly from b) by considering M 
(neutron)/m (electrons) = 1840 so that

  0.28 = 12.26/ 1840 . Expressed in Kelvin, the neutron 
energy corresponds to 400 K.

 (Q.17) The reciprocal lattice of a simple cubic is a simple cubic and 
the first Brillouin zone is cubic. The reciprocal lattice of a fcc 
lattice is a bcc lattice (see Fig. 10b). The basis does not play 
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a role in these constructions so that they are the same for 
NaCl and GaAs.

 (Q.18) The following techniques are named often by their acro-
nyms, what are their full name and their main characteris-
tics:

 (a) LEED: Low-energy electron diffraction. See Pb. 3 for the 
characteristics.

 (b) RHEED: Reflection high-energy electron diffraction. 
See Pb. 4 for the characteristics.

 (c) EBSD: Electron backscattered diffraction. See Ex. 21b 
for the characteristics.

 (Q.19) (a) The first Brillouin zone corresponds to the minimum 
volume limited by the symmetry planes between the 
origin of the reciprocal space and its various points.

 (b) and (c) See Ex. 21b.
 (Q.20) X-ray tubes and synchrotron radiation: See Summary of 

Course
 (Q.21) The Laüe’s experiments demonstrate the periodic structure 

of crystals that was previously suspected. These experiments 
demonstrate also the wave nature of the X-rays; see Ex. 20.

 (Q.22) The Davisson and Germer experiments demonstrate the 
wave nature of incident electrons; see Pb. 3.

Chapter II

 (Q.1) See Ex. 9.
 (Q.2) ∈ represents the cohesion energy of a pair of atoms (dia-

tomic molecule). In the fcc structure each atom as 12 neigh-

bors or Ec = 6∈ = 62.4 meV. In addition, r
a

0 1 12 2
2

= =, s  

from which we find a = 5.38, see Ex. 10.
 (Q.3) a(MgO) = 4a(NaCl), see Ex. 8.
 (Q.4) The Madelung constant decreases with the number of 

neighbors. Thus, the binding energy is weaker for the ions 
located at the corners of a crystal, see Ex. 5.

  When water molecules are interposed between the ion 
and the crystal the Coulomb attraction between the two is 
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decreased by a factor equal to the relative dielectric constant 
of water: er ∼ 80.

 (Q.7) They are the multiplier coefficients of the deformations 
produced by a tension (C11) or a shear (C44). For a common 
value of the deformation slip (shear) requires less effort than 
traction (or compression). The transverse waves propagate 
slower than the longitudinal waves V VT L C C/ /= 44 11 , see 
Ex. 16 of Chapter II and also Question (5) of Chapter III.

 (Q.8) A tension produces a relative elongation ∆c/c along 1D 
associated and a relative decrease for the two other 
dimensions (Da/a) = (Db/b)= –s(Dc/c). If there is no change 
in volume during the tension: (DV/V) = (Da/a) + (Db/b) + 
(Dc/c) = 0, so that s = 0.5. In practice s is of order 1/3.

 (Q.9) The compressibility b is such that b
s

=
-( )3 1 2
E

, see Ex. 13. 

s ≈ 1/3 so that b ≈ 1/E. The numerical data for b indicated 
in the various exercises of this chapter lead to E ≈ 7 × 1010 
Pa (Al); 2.5 × 1010 Pa (alkali halides); ≈ 5 × 108 Pa (rare gas 
crystals). Some materials such as diamond are outside this 
range.

 (Q.10) E = 2.5 × 1010 Pa (see above); ∆V/V = b∆p = 4 × 10−6 for ∆p = 
105 Pa. We have dilation.

 (Q.11) The Madelung constant measures the cohesive energy and 
it must be larger for an ion in a crystal than for the ion in 
a molecule. Otherwise the crystal would dissociate into 
molecules (see comment in Ex. 2b and Ex. 4). 

Chapter III

 (Q.1) The speed of sound is proportional to b/M . The restoring 
constants in diamond are much larger (strong covalent 
binding) than in lead while the atomic mass is much lower: 
Vs(Pb) << Vs (diamond).

 (Q.2) The Debye temperature is proportional to vs.
  The speed of sound in Pb is small (see reply to Question (1)). 

For T > qD (which is the case): U (vibration) = 3 kBT per atom, 
that is 75 meV at ambient temperature.

 (Q.5 and Q.6) See Ex. 11.
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 (Q.3) See reply to Question (1) taking into account that qD is 
proportional to vs.

 (Q.4) C(50K)/C(5K) ª 103 because we are in the region where Cv 

varies as T3 (T << qD). K(50K)/K(5K) ª 103 because K = 1
3

CvL  

and K varies as C while the mean free path of phonons L is 
limited by the size L of the sample.

 (Q.5) See Pb. 7. The restoring constants b related to a shear 
are smaller than those related to a compression. These 
microscopic causes are also responsible for macroscopic 
effects evoked in Question (7) of Chapter II.

 (Q.6) K = (1/3)CvL from which L = 3.1 × 10–8 m = 310 Å.
 (Q.7) 3kB per atom for T > qD. C ∝ T3, see Table I of Ex. 18.
 (Q.8) kB per atom for T > qD. C ∝ T3, see Table I of Ex. 18. 
 (Q.9) No. Like the concept of photon, quantification in energy, 

applies in the free space and does implies that the EM wave 
is enclosed in a cavity, the concept of phonon, quantification 
in vibration energy, does not requires the use of boundary 
conditions: see Course Summary, paragraph 5 and comment 
in Ex. 11.

 (Q.10) ≈ d/8, see Ex. 21.
 (Q.11) Due to a half quantum, see Ex. 21.
 (Q.12) See Ex. 5. 
 (Q.13) The microscopic causes are due to a non-strictly parabolic 

potential to which atoms are subject, which induces a 
restoring force that is not exactly proportional to the 
elongation: deviation from the Hooke’s law, see Pb. 6.

 (Q.14) See Ex. 6.
 (Q.15) There is an optical branch in the dispersion curve. It is 

related to the existence of two atoms per basis identical 
but in non-equivalent positions having therefore restoring 
forces different in direction (see Pb. 7 and Ex. 1).

 (Q.16) Li F, NaCl, KBr, RbI, CsI. The greater the ion mass the lower 
the resonant frequency, see Ex. 10.

 (Q.17) c mw e( ) /ions Ne T g= = -2 2 2n , see Pb. 1, paragraph 3

  c ions LiF NaCl AgCl( ) = ( ) ( )7 3 65 8 3; . ; . ( )
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  The LST relation gives
  w w e eL T/ /= •5 , where e• = n2

  wL/wT = 2.6(LiF); 1.6(NaCl); 1.75(AgCl).
 (Q.18) In general er < 1 implies that c < 0, that is to say that the 

elementary dipolar moments are opposite the electric field 
that they created. This phase opposition is here due to the 
inertia of the ions when the electric frequency w, in the IR, 
is above that of the resonance.

  For free or bonded electrons, the same phenomena are 
observed in the UV, see Chapter IV, Ex. 29, and Chapter V, Ex. 
26). The experimental consequence is an evanescent wave 
and a frequency interval wT < w < wr where there is a total 
reflection because er < 0: see Pb. 1.

 (Q.19) Diamond is an electrical insulator with a band gap energy of 
∼5 eV and its thermal conductivity is only due to phonons K 
= (1/3)CvL but the velocity of sound, v is very large ∼17,000 
ms−1 (Chapter II, Pb. 4) because of the large value of b/m  
(see answer to Question (1)).

 (Q.20) See Remark 2 at the end of the solution of Pb. 9.

Chapter IV

 (Q.1) The alkali metals are transparent in the UV (for w > wp). 
Below the plasma frequency, and therefore in the visible, 
they are totally reflective and thus with a metallic shine, see 
Ex. 29 and Pb. 5. Unfortunately, they oxidize in air and one 
must use other metals to realize mirrors. In the antiquity 
Cleopatra used polished silver mirrors.

 (Q.2) After transfer into vacuum the sample is slightly expanded 
(see Chapter II, Question and Answer (10)). The average 
velocity of electrons and their Fermi energy are therefore 
lower: EF µ (N/V)2/3. The relative increase in volume will 
be 1.6 × 10−5, the relative decrease of the Fermi energy is of 
order 10−5, around 50 µeV in absolute value; see Ex. 9. 

 (Q.3) The error results from the omission of the natural speed of 
electrons, ≈vF in the calculation of the transport distance: L 
ª vFt = ct/200 ª 150 Å.
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 (Q.4) er – ie2, if E = E0eiwt; or e1 – ie2, if E = E0e–iwt. See Technical 
Remark, Ex. 29.

 (Q.5) r = AT; Dr = ADT from which a = 1/T ª 3 × 10–4, see Ex. 16. 
 (Q.6) sini = nsinr but for X-rays: n ≈ 1, see Ex. 30. Same explanation 

for the Bragg law.
 (Q.7) It is due to the Meissner effect: Bint = m0(1 + c) H = 0 from 

which c = −1, see Pb. 7.
 (Q.8) r ª 1 – 2 mW.cm. This is a consequence of the Matthiessen 

law, see Ex. 16. During the elaboration one must eliminate 
the maximum number of impurities, elaborate it as a single 
crystalline and then use it at very low temperatures. For 
copper, one can thus win 5 orders of magnitude on t and 
therefore, the mean free path can go from L = 300 Å to L = 
300 cm, resulting in r(Cu) ª 10–11 W cm (at 4 K).

 (Q.9) If we assume that e2(w) = 0 at all frequencies, the simple 
application of the KK relations leads to e1 = 1, see Pb. 5. 
The only material with an optical index of 1 over all the 
frequencies is the vacuum! On the contrary, for all others 
e1 and n vary with w, most notably in the visible it is the 
variation of n with l that is responsible for the dispersion of 
white light by a prism, see also Chapter V, Ex. 26).

 (Q.10) Diffraction is used for the examination of periodic structures 
(ordered at long range distances), while EXAFS is used for 
short distances between first neighbors, which concerns 
dispersed materials, for instance copper sulfate in solution, 
see Pb. 4.

 (Q.11) See Ex. 26. 
 (Q.12) Several hundreds of thousands see the Kubo criteria, Ex. 5.
 (Q.13) Widemann–Franz law, K/s = LT suggests that a good 

conductor of electricity is also a good conductor of heat, see 
Ex. 12 and Course Summary.

 (Q.14) t > L, see Ex. 20.
 (Q.15) The measurement of electrical resistivity at low temperature, 

see Ex. 17.
 (Q.16) None in principle, in the free electron theory, the behavior 

of ‘free’ electrons is therefore, insensitive to the crystalline 
potential. In fact several exercises (no. 4b, 15 . . . ) make a 
reference to crystalline effects but anecdotally.
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 (Q.17) By measuring the value of the Hall voltage, we deduce that 
n of RH = (ne)−1, by measuring the conductivity we deduce m 
in s = nem, see Pb. 6.

 (Q.18) The ejection of an Auger electron is much more likely that 
the emission of an X-ray photon when the initial binding 
energy of the atomic electron ejected is EL < 5 keV, see Pb. 4.

 (Q.19) The vertical resolution; see Pb. 5.
 (Q.20) Photoemission experiments and angle resolved photo-

electron spectroscopy, see Pb. 4.
 (Q.21) The surface dipole layer formed by electron wave functions 

escaping a few into the vacuum and the fixed ions. See Pb. 2, 
Fig. 33, and comments.

Chapter V

 (Q.1) A small portion of excess electrons will neutralize the 
majority of holes. If ni = 1013 cm−3 and if ne becomes 1015 
by doping, it is sufficient for 1% of the electrons provided 
by doping to neutralize (via electron/hole recombination) 
99% of the initial holes. The final concentration will thus be 
ne = 1015 cm-3 and nh ≈ 1011 cm−3.

 (Q.2) The dielectric constant is so unstable that we should call it 
the ‘dielectric function’. If for water er (0) = 80, its value in 
the visible spectral domain (0.4 µm < l < 0.8 µm) is

  er(visible) = 16/9.
 (Q.3) See Ex. 29.
 (Q.4) See Ex. 9.
 (Q.5) It decreases when T increases because the atoms separate 

from each other due to thermal dilation, see comment in Ex. 
25.

 (Q.6) A very rapid decrease related to the addition of impurities 
if they are easily ionized, see Pb. 4. Nevertheless, for deep 
levels, they are not and this addition can induce a change 
in the Fermi level that favors less mobile carriers to the 
detriment of more mobile ones, so that ρ increases. One of 
the exceptions to the general tendency is therefore semi-
insulating GaAs, see Ex. 20.
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 (Q.7) Ge, GaAs, AlP, MgO, BeO, LiF. The band gap energy increases 
as the size of atoms decreases and their ionic character 
increases, see Exs. 21 and 25.

 (Q.8) Because ni corresponds to 1010 cm−3, which assumes that 
one can realize it with an impurity concentration lower 
than ni/N0 (where N0 ≈ 5 × 1022 cm−3), that is to say, smaller 
than 10−12, which is not possible. On the other hand, since 
Eg is small for Ge, ni ≈ 10−13 cm−3, its purification to 10−9 is 
possible.

  The semiconductor industry owes a debt to chemists 
who were able to obtain this degree of perfection in 
purification.

 (Q.9) See Ex. 25.
 (Q.10) Instead of a monotonic increase as a function of temperature 

as for normal metals, it exhibits an exponential behavior, see 
Exs. 22 and 23.

 (Q.11) See Ex. 21.
 (Q.12) See Ex. 6.
 (Q.13) The Coulomb attraction is reduced by the value of the 

dielectric constant and the particle mass by the effective 
mass, see Ex. 16 and Pb. 4. 

 (Q.14) Because the band gap is greater than 3 eV or in other words 
because the binding energy of valence electrons is greater 
than that of blue photons. For more details, see Ex. 25.

 (Q.15) Due to chromium impurities, which introduce deep levels in 
the band gap, see comment in Ex. 28.

 (Q.16) See Ex. 30.
 (Q.17) See Ex. 19.
 (Q.18) See Ex. 9.
 (Q.19) Because the d electron bands are half full, see Ex. 8.
 (Q.20) See Ex. 7.
 (Q.21) Starting from an intrinsic semiconductor where EF is in the 

middle of the band gap, the addition of electrons (n-doping) 
raises EF, the neutralization of electrons (p-doping) lowers 
it. When these two parts come into contact, the electrons 
on the n-side diffuse to the p-side in the same way as two 
containers of a gas at different pressures.
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 (Q.22) Their respective excitation frequencies correspond, in each 
case to ∈1(w) = 0, see Chapter III, Pbs. 1 and 2; Chapter 
IV, Pb. 4; and Chapter V, Pb. 10. The only difference is the 
spectral domain concerned: the infrared for polaritons and 
the ultraviolet for plasmons, which is a consequence of 
the different particle mass involved (ions for one part and 
electrons for other).

 (Q.23) If we restrict ourselves to the electronic contribution to the 

static dielectric constant, we find that c
w

we
p

T
( )0

2

2ª -  (see Ex. 

25), where wT  increases with the band gap energy.
 (Q.24) This allows the adjustment of the emission wavelength 

of photons (laser diodes and photodiodes) or the 
absorption (photo-detector) where hν = Eg. In addition to 
the compositional change for homogenous materials, the 
choice of quantum well width (or period in a super-lattice) 
introduces an additional degree of liberty in the choice, see 
comment in Ex. 29 and in Pb. 9.

 (Q.25) No if we think of excitons, see Ex. 19.
 (Q.26) On the side of semi-metals: n = 1018 cm–3; r ª 10–2 W cm
  On the side of insulators: n = 1010 – 1011 cm–3;
  r ª 106 – 107 W cm
  r(Al2O3) ª 106 W cm, r(sulfur) ª 1017 W cm
 (Q.27) The transition selection rules, see Pb. 10.
 (Q.28) The optical measurement of the absorption threshold 

position is the most general method, see Ex. 28 and Pb. 6. 
Combined photoemission and BIS experiments permit 
also the measurement of EG, see Fig. 55(left) in Pb. 10 and 
Chapter IV, Pb. 4. However, for direct band gap materials, 
we can also measure the radiation of fluorescence; for 
intrinsic semiconductors (Eg small), we can use electrical 
measurements where s = f(1/T), see Ex. 11 and Pb. 4, while 
for insulators (EG large), we can locate the starting position 
from the function e e e2 1

2
2
2/( )+  in electron loss spectroscopy, 

see Ex. 25.
 (Q.29) See comment on ITO in Ex. 28.
 (Q.30) See comments on GMR in Ex. 19.
 (Q.31) See Pb. 11 and comments.
 (Q.32) See Pb. 12 and comments.
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